Chemistry Department Colloquium

"Adsorption and oxidation reactions on RuO2 and IrO2 surfaces"

Presented by Jason F. Weaver, University of Florida, Dept. of Chemical Engineering

Tuesday, May 30, 2017, 11:00 am — Hamilton Seminar Room, Bldg. 555

Interest in the surface chemistry of late transition-metal oxides has been stimulated by observations that the formation of metal oxide layers tends to dramatically alter the catalytic performance of transition metals in applications of oxidation catalysis. In this talk, I will discuss our recent investigations of the growth and chemical properties of rutile RuO2 and IrO2 surfaces. Our interest in these oxides derives mainly from computational predictions that CH4 binds strongly and should undergo C-H bond activation at low temperature on certain facets of IrO2. I will discuss our investigations of the oxidation of metallic Ir surfaces by O-atom beams as well as O2 at pressures above 1 Torr. We find that stoichiometrically-terminated IrO2(110) layers could only be formed by oxidizing Ir(111) and Ir(100) at sufficiently high temperature and O2 pressure. I will discuss the binding characteristics of small molecules, and our recent discovery of highly facile CH4 activation on the IrO2(110) surface at temperatures as low as 150 K. We show that CH4 activation occurs by a mechanism wherein a molecularly-adsorbed ?-complex serves as the precursor for CH4 dissociation on the IrO2(110) surface and that the barrier for C-H bond cleavage is nearly 10 kJ/mol less than the molecular binding energy. Lastly, I will discuss results showing how the partial replacement of surface O-atoms with Cl-atoms alters the oxidation chemistry of methanol on RuO2(110), and may provide an approach for modifying the selectivity of RuO2 and IrO2 surfaces for other oxidation chemistries.

Hosted by: Sanjaya Senanayake

12283  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.