Friday, April 7, 2017, 11:00 am — Hamilton Seminar Room, Bldg. 555
Although organic photovoltaic (OPV) devices have increased in solar harvesting efficiency, there remains much debate surrounding the mechanism by which the active medium absorbs solar radiation and creates high yields of free, mobile carriers that do not immediately recombine. The uncertainty arises from the low dielectric constant of the active material, normally a conjugated polymer and a fullerene, which lack the ability to screen the coulombic interaction between charges.
This presentation will discuss the role of charge delocalization on producing a charge-separated state, where the electron and hole are created at a larger distance than that found in a charge- transfer state. It will examine the important role of the solid-state microstructure of the polymer and its impact on delocalizing the hole, and also on the aggregation properties of the electron acceptor and its role on delocalizing the electrons. In addition, the role that time-resolved microwave conductivity (fp-TRMC) plays in helping to unravel this story will be explained.
Hosted by: Alex Harris
12295 | INT/EXT | Events Calendar
Not all computers/devices will add this event to your calendar automatically.
A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.
Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.