Chemistry Department Seminar

"Experimental and computational approaches to divine gene function in plants"

Presented by Dr. Ian Blaby, Brookhaven National Laboratory, Biology Department

Monday, April 17, 2017, 11:00 am — Hamilton Seminar Room, Bldg. 555

The availability of whole-genome sequences has ushered in a new era of biological research. While these resources are invaluable, the data serve to underscore the extent of biological complexity, and have provided the framework by which our lack of knowledge and progress can be measured. For instance, even in very well studied model organisms, over 40% of genes are of unknown function. In less characterized complex organisms, such as bioenergy crops, up to 80% of all genes in a given genome are of unknown or very limited function. Indeed, a complete functional understanding (i.e. combined knowledge of biochemical activity, biological role and compartmentalization) is missing for ~95% of plant genes. This fundamental knowledge gap undermines the ability of systems scientists to realize the potential of genomic science and impedes our ability to leverage photosynthetic organisms to meet national energy needs. To remove this obstacle, we are addressing the function of plant proteins at the cellular and subcellular levels by integrating multi-dimensional dataypes: in vivo analyses employing single-celled plants and photosynthetic bacteria, high-throughput automation, in vitro protein characterization and structure, and computation. Modern sequencing, functional genomics and genome-editing technologies coupled with high-throughput approaches accelerate the gathering of informative data; our group specializes in utilizing multi-sourced data types in combination with targeted molecular approaches to reduce the knowledge gap in foundational plant research.

Hosted by: Sanjaya Senanayake

12314  |  INT/EXT  |  Events Calendar