Physics Colloquium

"Direct Detection of sub-GeV Dark Matter"

Presented by Rouven Essig, Stony Brook University

Tuesday, May 16, 2017, 3:30 pm — Large Seminar Room, Bldg. 510

Dark matter makes up 85% of the matter in our Universe, but we have yet to learn its identity. A broad array of search strategies are needed to probe for non-gravitational interactions between dark matter and ordinary matter. While most searches focus on Weakly Interacting Massive Particles (WIMPs) with masses between 1 GeV and 1 TeV, it is imperative to also consider other motivated dark matter candidates. In this talk, I will discuss dark matter with MeV-to-GeV masses, which is a theoretically and phenomenologically appealing possibility and presents a new frontier in the search for dark matter. I will highlight novel dark matter direct-detection strategies that can probe this under-explored mass range. I will describe how XENON10 data already probes dark matter with masses as low as a few MeV, and discuss improvements expected from new experiments using semiconductors or scintillators. This includes SENSEI, a new ultra-low-threshold silicon CCD detector, which is poised to probe vast new regions of parameter space in the next few years. I will also present a few simple benchmark models of MeV-to-GeV dark matter, and contrast direct-detection probes with searches at colliders and fixed-target experiments.

Hosted by: Andrei Nomerotski

12352  |  INT/EXT  |  Events Calendar