Condensed-Matter Physics & Materials Science Seminar

"A model of chiral spin liquids with tunable edge states"

Presented by Christopher Mudry, Paul Scherrer Institute, Switzerland

Thursday, June 15, 2017, 1:30 pm — Bldg. 734, ISB Conference Room 201 (upstairs)

We construct a quantum field theory in (2+1)-dimensional spacetime for strongly interacting Majorana fields that is amenable to a mean-field approximation. The mean-field phase diagram predicts the existence of two competing phases, one of which supports chiral non-Abelian topological order, while the other supports chiral Abelian topological order. The two mean-field phases are separated by a continuous phase transition. This quantum field theory captures the low-energy physics of quantum spin-1/2 localized on the sites of a lattice whose interactions are $SU(2)$ symmetric but break time-reversal symmetry. The lattice geometry can be interpreted as a one-dimensional stacking of two-leg ladders or as a bilayer of two square lattices. Both incompressible ground states can thus be thought of as chiral spin liquids in two-dimensional space supporting non-Abelian and Abelian topological order, respectively.

Hosted by: Alexei Tsvelik

12421  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.