Nuclear Theory/RIKEN Seminar

"Holographic Pomeron: Scattering, saturation, entropy and black hole."

Presented by Ismail Zahed, Stony Brook

Friday, July 7, 2017, 2:00 pm — Small Seminar Room, Bldg. 510

I will discuss the general nature of the holographic Pomeron as a quantum QCD string exchange in both flat and curved AdS space for both pp and ep collisions at either large energies or small x. This description leads naturally to the concept of wee-strings and their distribution both in rapidity and transverse space. The holographic Pomeron carries intrinsic temperature and entropy, with the latter being identical to the recently reported entanglement entropy. I will show that this non-perturbative description of the Pomeron cross over to the the perturbative one, with a phase boundary dominated by string balls, i.e. long and massive strings near their intrinsic Hagedorn temperature. These string balls lead to a distribution of large multiplicity pp events that is in agreement with the one reported for pp collisions at the LHC. I will show that at low-x, the quantum string is so entangled that very weak string self-interactions can cause it to turn to a black hole. I will suggest that low-x saturation occurs when the density of wee-strings reaches the Bekenstein bound, with a proton size that freezes with increasing rapidity.

Hosted by: Heikki Mantysaari

12448  |  INT/EXT  |  Events Calendar