Tuesday, February 13, 2018, 1:30 pm — ISB Bldg. 734 Conf. Rm. 201 (upstairs)

In a topological superconductor, a bulk superconducting gap induces a symmetry-protected gapless superconducting surface state. This surface state can host exotic Majorana zero modes, which are expected to revolutionize computation technology through energy-efficient fault-tolerant quantum computing. In this talk, we will discuss the search for bulk topological superconductors and the discovery of nematic superconductivity in MxBi2Se3 (M=Cu,Sr,Nb), where the superconducting system spontaneously breaks rotational symmetry at Tc. The nematic superconducting state and possible origins of the rotational symmetry breaking will be explored, with many conventional causes being eliminated.

Hosted by: Genda Gu

12889 | INT/EXT | Events Calendar