# Condensed-Matter Physics & Materials Science Seminar

## "Accurate spectral calculations for testing electronic structures, low energy excitations, and vibronic interactions"

#### Presented by Keith Gilmore, The European Synchrotron Radiation Facility, France

Thursday, March 29, 2018, 11:00 am — ISB Bldg. 734 Conf. Rm. 201 (upstairs)

Resonant inelastic x-ray scattering (RIXS) is a relatively new technique for probing low energy excitations in materials. In addition to traditional techniques, such as angle resolved photoemission, it has become an important, high precision characterization tool of strongly correlated electron materials. To calculate RIXS, and related core and valence level spectra, we solve the Bethe-Salpeter equation (BSE) based on a self-energy corrected density functional theory electronic structure. I outline our implementation of the BSE and use SrVO3 for demonstration. The sensitivity of spectral features to the self-energy approximation – whether G0W0, qpscGW, or DMFT – is highlighted. To include interactions beyond the usual BSE I introduce the cumulant expansion. Spectral functions derived from a GW self-energy are typically inadequate when the dressed Green's function is built via the Dyson equation. With the same GW self-energy, a superior Green's function and spectral function, implicitly including vertex corrections, is obtained through the cumulant expansion. I consider application of the GW-cumulant expansion to photoemission, photoabsorption, and X-ray scattering. Lastly, vibronic coupling has important impacts on these spectra. I show how to calculation the phonon contribution to photoemission, absorption and scattering with a vibronic cumulant.

Hosted by: Robert Konik

12927 | INT/EXT | Events Calendar