Condensed-Matter Physics & Materials Science Seminar

"3D non-Fermi liquid behavior from 1D critical local moments"

Presented by Laura Classen, BNL

Thursday, March 1, 2018, 1:30 pm — ISB Bldg. 734 Conf. Rm. 201 (upstairs)

We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2Pt2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting sub-systems. We characterize the corresponding non-Fermi liquid behavior due to the "local criticality" from the spins by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.

Hosted by: Igor Zaliznyak

12929  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.