Thursday, May 24, 2018, 1:30 pm — ISB Bldg. 734 Conf. Rm. 201 (upstairs)

In this talk, I will present an overview of some of our recent results in the area of non-equilibrium many-body theory. Experimental developments are enabling the study of electrons and atoms in the time domain with ever increasing resolution. The theoretical development has been somewhat lacking, and remains mostly rooted in extensions of equilibrium models. Our work has been to put the theoretical modeling on a firmer footing. Through numerical solution of the equations of motion, we can directly evaluate experimentally relevant spectra. These may be analyzed with the benefit of knowing the precise model and correlation functions that underlie the spectra. Most of the talk will focus on the interaction between a system of electrons interacting with several degrees of freedom, including the lattice, impurity scattering, and each other. Typically, non-equilibrium results are analyzed through a framework that relies on equilibrium intuition. Our results show that the validity of this type of analysis falls on a spectrum that varies from correct to wholly incorrect, which I will illustrate with specific examples. This line of thinking will be further developed by considering the flow of energy between various subsystems.

Hosted by: Peter D. Johnson

13067 | INT/EXT | Events Calendar