Condensed-Matter Physics & Materials Science Seminar

"Fermi-Surface Reconstruction in Nd-doped CeCoIn5"

Presented by Elizabeth Green, Dresden High Magnetic Field Laboratory

Thursday, June 21, 2018, 11:00 am — ISB Bldg. 734 Seminar Room 201 (upstairs)

Heavy fermion compounds are well known to exhibit novel properties when exposed to high magnetic fields. Most notably CeCoIn5 exhibits a field-induced superconducting state at high magnetic fields known as the Qphase. Recent neutron scattering measurements show a similar Q-vector for the 5% Nd-doped CeCoIn5 at zero applied magnetic field [1] which has initiated intense theoretical and experimental work on this doping series. In this talk I will present de Haas-van Alphen effect measurements which indicate a drastic Fermi-surface reconstruction occurs between 2 and 5% Nd-doping levels. The cylindrical Fermi surface, believed to play a crucial role in superconductivity in these materials, develops a quasi-three-dimensional topology with increased doping levels thus reducing the likelihood of an enhanced nesting scenario, previously given as a possible explanation for the Q-phase. However, effective masses remain relatively unchanged up to 10% Nd indicating the crossing of a spin density wave type of quantum critical point. In addition, I will present evidence that by substituting Ce with Nd the electronic pairing potential may be altered. These results help elucidate the reasoning for the emergence of the Q-phase seen in the 5% Nd sample and may be relevant to other heavy fermion compounds. [1] S. Raymond et al., JPSJ 83, 013707 (2014).

Hosted by: Cedomir Petrovic

13080  |  INT/EXT  |  Events Calendar