Condensed-Matter Physics & Materials Science Seminar

"Imaging of Local Structure and Dynamics in Hard and Soft Condensed Matter Systems"

Presented by Dmitry Karpov, New Mexico State University

Friday, June 22, 2018, 1:30 pm — ISB Bldg. 734, Conf. Rm. 201 (upstairs)

With advancement of coherent probes there is a shift from integral studies to highly localized studies in either spatial or temporal domains. Nanostructures and low dimensional phenomena, correlated fluctuations and associated transitions directly benefit from new instrumental capabilities. Studies of ferroelectric and magnetic materials and of their local behavior allow both to test fundamental physics concepts and provide access to technologies with direct practical applications. Topological phase transitions and topological defects are among the topics that are actively pursued in modern materials science. In recent study [1] conducted by our group we were able to visualize three-dimensional topological vortex structure in a volume of individual ferroelectric nanoparticle of barium titanate under external electric field using Bragg coherent diffractive imaging technique. Among other things we observed: (i) electric field induced structural transition from mixture of tetragonal and monoclinic phases to dominant monoclinic phase; (ii) controllable switching of vortex chirality; (iii) vortex mediated behavior of the nano-domains in the particle; (iv) and that the core of the vortex in the volume behaves as a nanorod of zero ferroelectric polarization which can be rotated by external electric field and can serve as a conducting channel for charge carriers. These findings can be used in the design of novel nanoelectronics devices and for creating artificial states of matter. Better understanding of the materials behavior at the nanoscale requires ways of probing anisotropies of the refractive index. Using polarized laser light, we've developed a method [2] termed birefringent coherent diffractive imaging that allows to extract projections of dielectric permittivity tensor in nematic liquid crystal. Further expanding this tool into full-vectorial mode shows that the method can be applied for imaging of magnetic domains, cellular structures, and ot

Hosted by: Ian Robinson

14119  |  INT/EXT  |  Events Calendar