Condensed-Matter Physics & Materials Science Seminar

"Doublon-holon origin of the subpeaks at the Hubbard band edges"

Presented by Seung-Sup Lee, Ludwig-Maximilians-University, Germany

Thursday, June 14, 2018, 1:30 pm — ISB Bldg. 734 Conf. Rm. 201 (upstairs)

Dynamical mean-field theory (DMFT) studies frequently observe a fine structure in the local spectral function of the SU(2) Fermi-Hubbard model (i.e., one-band Hubbard model) at half filling: In the metallic phase close to the Mott transition, subpeaks emerge at the inner edges of the Hubbard bands. Here we demonstrate that these subpeaks originate from the low-energy effective interaction of doublon-holon pairs, by investigating how the correlation functions of doublon and holon operators contribute to the subpeaks [1, 2]. We use the numerical renormalization group (NRG) as a DMFT impurity solver to obtain the correlation functions on the real-frequency axis with improved spectral resolution [3]. A mean- field analysis of the low-energy effective Hamiltonian [2] provides results consistent with the numerical result. The subpeaks are associated with a distinctive dispersion that is different from those for quasiparticles and the Hubbard bands. Also, the subpeaks become more pronounced in the SU(N) Hubbard models for larger number N of particle flavors, due to the increased degeneracy of doublon-holon pair excitations. Hence we expect that the sub-peaks can be observed in the photoemission spectroscopy experiments of multi-band materials or in the ultracold atom simulation of the SU(N) Hubbard models. [1] S.-S. B. Lee, J. von Delft, and A. Weichselbaum, Phys. Rev. Lett. 119, 236402 (2017). [2] S.-S. B. Lee, J. von Delft, and A. Weichselbaum, Phys. Rev. B 96, 245106 (2017). [3] S.-S. B. Lee and A. Weichselbaum, Phys. Rev. B 94, 235127 (2016).

Hosted by: Andreas Weichselbaum

14125  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.