Sustainable Energy Technologies Department

"Advances in Ultra-High Energy Resolution STEM-EELS"

Presented by Tracy C. Lovejoy, Nion R&D

Wednesday, September 26, 2018, 2:00 pm — Bldg. 734, Room 201

The capabilities of scanning transmission electron microscopes (STEMs) have advanced very significantly in the last two decades. The first major advance was the successful implementation of electron-optical aberration correction, which allowed the STEMs to reach direct sub-angstrom resolution in 2002 [1]. This improvement made the imaging and spectroscopy of single atoms straightforward. A very recent major development has been the improvement of energy resolution of EELS due to the introduction of a new generation of monochromators and ultra-stable electron spectrometers. The Ultra-High Energy Resolution Monochromated EELS-STEM (U-HERMES™) system developed by Nion combines a dispersing-undispersing ground-potential monochromator [2], a bright cold-field-emission gun, an advanced aberration corrector, and a new EEL spectrometer. The latest version of the system allows 5 meV energy resolution EELS and has achieved 1.07 Å spatial resolution at the sample at 30kV when monochromating, and it greatly extends the capabilities of vibrational spectroscopy in the EM, introduced 4 years ago [3]. U-HERMES™ has so far been used for: damage-free identification of different bonds including hydrogen bonds in guanine [4]; probing atomic vibrations at surfaces and edges of nano-objects with nm-level spatial resolution [5]; achieving sub-nm spatial resolution in images obtained with dark-field EELS vibrational signals [6]; nanoscale mapping of phonon dispersion curves [7]; nanoscale temperature determination by electron energy gain spectroscopy [8]; identification of different isotopes by vibrational spectroscopy in the EM [9]; vibrational spectroscopy of ice; and vibrational fingerprinting of biological molecules.

Hosted by: Feng Wang

14408  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.