Center for Functional Nanomaterials Seminar

"Development and application of methods for the modeling of complex inorganic materials for energy applications"

Presented by Nongnuch Artrith, Department of Materials Science and Engineering, University of California Berkeley

Wednesday, October 17, 2018, 11:00 am — CFN, Bldg. 735, first floor conference room

Many complex materials for energy applications such as heterogeneous catalysts and battery cathode materials have compositions with multiple chemical species and properties that are determined by complex structural features. This complexity makes them challenging to model directly with first principles methods. As an alternative, machine-learning techniques can be used to interpolate first principles calculations. Such machine-learning potentials (MLPs) enable linear-scaling atomistic simulations with an accuracy that is close to the reference method at a fraction of the computational cost. Here, I will give an overview of recent applications of MLPs based on artificial neural networks (ANNs) [1] to the modeling of challenging materials classes, e.g., nanoalloys in solution [2], oxide nanoparticles [3], and amorphous alloys [4]. The original multi-species ANN potential formalism [5] scales quadratically with the number of chemical species. This has previously prevented the modeling of compositions with more than a few elements. To overcome this limitation, we have recently developed an alternative mathematically simple and computationally efficient descriptor with a complexity that is independent of the number of chemical species [6,7]. The new methodology has been implemented in our free and open source atomic energy network (ænet) package (http://ann.atomistic.net) [7]. This development creates new opportunities for the modeling of complex materials for example in the field of catalysis and materials for energy applications. [1] J. Behler and M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401. [2] N. Artrith and A. M. Kolpak, Nano Lett. 14 (2014) 2670-2676; Comput. Mater. Sci. 110 (2015) 20-28. [3] J. S. Elias, N. Artrith, M. Bugnet, L. Giordano, G. A. Botton, A. M. Kolpak, and Y. Shao-Horn, ACS Catal. 6 (2016) 1675-1679. [4] N. Artrith, A. Urban, G. Ceder, J. Chem. Phys. 148 (2018) 241711. &

Hosted by: Qin Wu

14422  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.