NSLS-II Friday Lunchtime Seminar

"RIXS study of the charge and magnetic evolution in La2-xCexCuO4 combi-film"

Presented by Xuerong Liu, Shanghai Tech University, China

Friday, October 19, 2018, 12:00 pm — NSLS-II Bldg. 743 Rm 156

Different from the simple one-band Hubbard model prediction, it has been recognized that the cuprate superconductors are electron-hole asymmetric. Recent RIXS work on the electron-doped Nd2-xCexCuO4 by K. Ishii et al. [1] and W. S. Lee et al. [2] reported a hardening of the spin excitations and the emergence of a charge excitation mode. Both these observations are in distinct contrast to that reported on the hole doped side, and brought attention again to the profound electron-hole asymmetry issue in the cuprates. Taking the advantage of a La2-xCexCuO4 combi-film, namely a film with large range doping gradient distribution, we studied the evolution of the charge and magnetic excitations from optimal- to over-doping systematically in fine steps. Our results establish the universality of the previous observation for the electron-doped cuprates. And more importantly, the doping dependent evolutions show that the magnetic and charge excitations are not the two faces of a coin. Rather, the spin-correlation roots in the short range correlation, and the charge-fluctuation stems from long range Coulomb interaction. [1] K. Ishii et al, Nat. Commun. 5, 3714 (2014). [2] W. S. Lee et al, Nat. Phys. 10, 883 (2014).

Hosted by: Ignace Jarrige

14452  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.