Friday, February 8, 2019, 2:00 pm — CFNS Seminar Room
Experimental verification of relativistic field theory models requires accelerator experiments. A possible pathway that could help understanding the dynamics of such models for bosons or fermions is the use of quantum technology in the form of quantum analog simulators. In this talk we will explore the possibility of generating nonlinear Dirac-type Hamiltonians using coherent superpositions of photons and spin wave excitations of atoms. Our realization uses a driven slow-light setup, where photons mimic the Dirac fields and different dynamics can be implemented and tuned by adjusting optical parameters. We will show our progress tin building a quantum simulator of the Jackiw-Rebbi model using highly-interacting photons strongly coupled to a room temperature atomic ensemble. We have identified suitable conditions in which the input photons dispersion relations can be tuned to a spinor of light configuration, mimicking the Dirac regime and providing a framework to create tunable interactions and varying mass terms. Lastly, we will show our vision to scale these ideas to multiple interacting fermions.
Hosted by: Niklas Mueller
14653 | INT/EXT | Events Calendar
Not all computers/devices will add this event to your calendar automatically.
A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.
Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.