Condensed-Matter Physics & Materials Science Seminar

"Resonant inelastic X-ray scattering (RIXS) as a probe of exciton-phonon coupling"

Presented by Andrey Geondzhian, European Synchrotron Radiation Facility (ESRF), France (UTC+1)

Thursday, February 14, 2019, 9:30 am — ISB Bldg. 734 Conference Room 201 (upstairs)

Phonons contribute to resonant inelastic X-ray scattering (RIXS) as a consequence of the coupling between electronic and lattice degrees of freedom. Unlike other techniques that are sensitive to electron-phonon interactions, RIXS can give access to momentum dependent coupling constants. This Information is highly desirable in the context of understanding anisotropic conventional and unconventional superconductivity. In my talk, I will consider the phonon contribution to RIXS from the theoretical point of view. In contrast to previous studies, we emphasize the role of the core-hole lattice coupling. Our model, with parameters obtained from first principles, shows that even in the case of a deep core-hole, RIXS probes exciton-phonon coupling rather than a direct electron-phonon coupling. Further, to address the needs of predictive approach and overcome limitations of the model studies we developed a Green's function formalism to capture electron-phonon contributions to RIXS and other core-level spectroscopies (X-ray photoemission spectroscopy (XPS), X-ray absorption spectroscopy (XAS)). Our approach is based on the cumulant expansion of the Green's function combined with many-body theory calculated vibrational coupling constants. In the case of the XAS and RIXS, we use a two-particle exciton Green's function, which accounts implicitly for particle-hole interference effects that have previously proved difficult. Finally, to demonstrate the methodology, we successfully applied our formalism to small molecules, for which unambiguous experimental data exist.

Hosted by: Weiguo Yin

14730  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.