Friday, May 24, 2019, 12:00 pm — NSLS-II Bldg. 743 Room 156
Circularly polarized light with spin angular momentum (SAM) is one of the most valuable probes of magnetism. We demonstrate that light beams with orbital angular momentum (OAM), or vortex beams, can also couple to magnetic excitations exhibiting dichroisms in a magnetized medium. In our recent experiments with coherent THz beams we observed that resonant optical absorption in a ferrimagnetic crystal of Dy3Fe5O12 depends strongly on both the handedness of the vortex and direction of the beam propagation with respect to the sample magnetization. This effect exceeds the conventional dichroism for conventional circularly polarized light. Our results demonstrate the potential of the vortex beams with OAM as a new spectroscopic probe of magnetism in matter. A possibility to convert synchrotron radiation at the 22-IR-2 MET beamline into a vortex beam and use it for materials spectroscopy will be also discussed in this talk. In collaboration with T. N. Stanislavchuk1, P. Marsik2, C. Bernhard2, V. Kiryukhin3, S-W. Cheong3, and G. L. Carr4 1 Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 2 Department of Physics, University of Fribourg, Switzerland. 3 Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University 4 NSLS-II, Brookhaven National Lab
Hosted by: Ignace Jarrige
14971 | INT/EXT | Events Calendar
Not all computers/devices will add this event to your calendar automatically.
A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.
Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.