C-AD Accelerator Physics Seminar

"Storage Rings as Quantum Computers"

Presented by Kevin Brown, BNL

Friday, August 9, 2019, 4:00 pm — Bldg. 911B, Second Floor, Large Conf. Rm., Rm. A2

There are multiple ways that quantum computer elements have been realized and have been proposed to be realized. These include ion traps, Josephson junctions, Nuclear Magnetic Resonance spin states and optical systems. In this presentation, I will present a new idea; using a storage ring as a quantum computer. The key to building a storage ring quantum computer is to create an ultracold beam in the form of an "ion Coulomb crystal". In a classical Coulomb crystal, a chain of ions is bound into a lattice structure in which the ions remain locked in sequence despite the mutual Coulomb repulsion force between the positively charged ions. In an ion Coulomb crystal, the thermal vibrations of the ions are cooled to extremely low temperature, so that the quantum states in the motion of the ions are observable. There are a number of challenges in realizing such a system, although much can be learned from ion trap systems, since the storage ring is essentially an unbounded ion trap where the ion chains have a finite velocity.

More Information

15147  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.