Condensed-Matter Physics & Materials Science Seminar

"Nematic superconductivity in twisted bilayer graphene"

Presented by Laura Classen, University of Minnesota

Tuesday, September 10, 2019, 1:00 pm — ISB Bldg. 734 Conf. Rm. 201 (upstairs)

Tunable insulating and superconducting phases have recently been induced in several twisted graphene-based heterostructures. These correlated phases are ascribed to an exceptional band flattening, which comes along with a very large hexagonal moiré pattern in real space. We study this interplay of orders in a phenomenological model for the moiré superlattice with a focus on superconductivity. Motivated by the presence of van-Hove instabilities, we approach the pairing problem as an interaction-induced instability of the Fermi surface in terms of the unbiased functional renormalization group. We find two pairing instabilities with different symmetries being close in energy and show that a similar situation arises in a model specific for twisted bilayer graphene. In view of recent experimental observations that the threefold lattice rotational symmetry is broken in the superconducting state of hole-doped twisted bilayer graphene, we analyze the corresponding Landau-Ginzburg free energy with two superconducting order parameters. The result is, indeed, a mixed ground state that breaks rotation symmetry and leads to nematic superconductivity. Time-reversal symmetry can simultaneously be broken.

Hosted by: Alexei Tsvelik

15179  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.