Monday, October 7, 2019, 11:00 am — Hamilton Seminar Room, Bldg. 555
There is a critical need for robust photosynthetic systems that can achieve efficient solar fuel production by CO2 reduction or water splitting. We combine highly efficient molecular catalysts with light-harvesting solid surfaces for use in solar CO2 reduction. In particular, coordination complexes of rhenium and cobalt have been coupled with mesoporous SiO2, TiO2, C3N4, and Si nanostructures. A variety of techniques, including infrared and X-ray absorption spectroscopies, were utilized to investigate CO2-reduction catalysis in these hybrid systems. Appropriate covalent linkages and catalyst/surface interactions were found to be important in promoting selective CO2 reduction.
Hosted by: David Grills and Anatoly Frenkel
15237 | INT/EXT | Events Calendar