Thursday, November 7, 2019, 3:00 pm — Conference room 201, Bldg 734
Over the past decade, quantum simulators based on ultracold atoms have emerged as a powerful tool to address open questions in strongly interacting systems and nonequilibrium quantum dynamics that have relevance in all areas of physics, from strongly correlated materials to cosmology. Today, quantum simulators based on ultracold dipolar molecules are within experimental reach, which exploit long-range dipole-dipole interactions and will give access to new classes of strongly correlated many-body systems. In this talk, I will present our efforts towards quantum simulation with ultracold dipolar molecules. In trailblazing experiments we have demonstrated the creation of ultracold molecules via atom-by-atom assembly, which yields complete control over the molecular degrees of freedom, including electronic, vibrational, rotational, and nuclear spin states. Exploiting this control, we have observed long nuclear spin coherence times in molecular ensembles, which makes ultracold molecules an interesting candidate for the realization of a long-lived quantum memory. In addition, the dipole-dipole interactions between molecules can be flexibly tuned via external electrostatic and microwave fields. This motivates our current work towards two-dimensional systems of strongly interacting molecules, which promises access to novel quantum phases, will enable high-speed simulation of quantum magnetism, and points towards potential quantum computing schemes based on ultracold molecules. In the end, I will briefly present our new project on enhancing quantum coherence by dissipation in programmable atomic arrays. For this effort we will develop a novel nanophotonic platform that will enable trapping of individual atoms in optical tweezer arrays with unprecedented accuracy and high-speed tunability.
Hosted by: Layla Hormozi
15311 | INT/EXT | Events Calendar
Not all computers/devices will add this event to your calendar automatically.
A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.
Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.