RIKEN Lunch Seminar

"Phase Transitions of Quantum Annealing and Quantum Chaos"

Presented by Dr Kazuki Ikeda, Osaka University

Thursday, February 20, 2020, 12:00 pm — Building 510, Room 1-224

It is known that quantum phase transitions occur in the process of quantum annealing. The order of phase transition and computational efficiency are closely related with each other. Quantum computation starts with a non-entangled state and evolves into some entangled states, due to many body interactions and the dynamical delocalization of quantum information over an entire system's degrees of freedom (information scrambling). It is common to diagnose scrambling by observing the time evolution of single qubit Pauli operators with an out-of-timeorder correlator (OTOC). We aim at establishing a method to clarify those relations between phase transitions and scrambling by OTOCs. Using the p-spin model, we diagnose quantum phase transitions associated with quantum annealing and reverse annealing. In addition we provide a novel Majorana fermion model in which non-stoquastic dynamics of annealing can turn a first-order phase transition into a second-order phase transition. We also show that these phase transitions can be diagnosed by the OTOCs.

Hosted by: Akio Tomiya

15593  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.