Friday, December 4, 2020, 12:00 pm — ZoomGov
In frustrated magnets, seemingly simple competition between spin interactions can create theoretically infinite complexity. The Axial Next-Nearest Neighbor Ising (ANNNI) model is a classic model of frustration in which frustration occurs between nearest-neighbor ferromagnetic (FM) interactions and next-nearest-neighbor antiferromagnetic (AFM) interactions along chains of Ising spins. When cooled below the Neel temperature, the system passes through a theoretically infinite number of 1st order phase boundaries, referred to as the "Devil's staircase" or "Devil's flower". In this talk, we will discuss experiments performed at CSX (23-ID-1) using X-ray Photon Correlation Spectroscopy (XPCS) to test the dynamic behavior of these Devil's Staircase systems and demonstrate how this technique is broadly useful to study the peculiar dynamics of frustrated antiferromagnets. In particular, the results and model support a counterintuitive result: with decreasing temperature, the dynamics become faster.
Hosted by: Ignace Jarrige
15983 | INT/EXT | Events Calendar
Not all computers/devices will add this event to your calendar automatically.
A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.
Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.