RIKEN Seminar

"Electroweak effective field theory from massive scattering amplitudes"

Presented by Dr Teppei Kitahara, Nagoya University

Thursday, December 3, 2020, 9:00 am — Videoconference / Virtual Event (see link below)

The usual calculation method of field theory relies on Lagrangian under a certain symmetry. Then, one can obtain amplitudes by using Feynman rules and diagrams. In contrast, a method called "scattering amplitudes" (on-shell amplitudes, modern amplitude method, or spinor-helicity formalism) provides the amplitudes directly from symmetries without relying on Lagrangian. For example, a calculation of gluon n-point scattering amplitudes can be greatly reduced in this method. The scattering amplitude approach is expected to extract some essences in field theory, which are not obvious in the usual Feynman methods. Conventional scattering amplitude methods are the theory for massless particles, basically. In 2017, this method was generalized to involve massive particles by Nima Arkani-Hamed group. In this talk, first, I will provide a brief review of the scattering amplitudes. Next, I will introduce the scattering amplitude calculations connected with electroweak symmetry breaking, which are related to masses, vev, and longitudinal waves, by using the generalized method. In particular, we do not use Lagrangian. We derived (strictly speaking, re-derived) several equations for electroweak symmetry breaking that are supposed to be inherent in field theory. This talk is based on arXiv:1909.10551 and arXiv:2008.09652.

Hosted by: Akio Tomiya

Join Videoconference More Information

16006  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.