RIKEN Seminar

"Gluon imaging using azimuthal correlations in diffractive scattering at the Electron-Ion Collider"

Presented by Mr Salazar Wong, Stony Brook University

Thursday, December 17, 2020, 9:00 am — https://bluejeans.com/871723105

Abstract: Deeply virtual Compton scattering (DVCS) is a powerful channel to study the spatial structure of protons and nuclei at the future Electron-Ion Collider (EIC). In the collinear framework, DVCS is dependent on the quark and gluon generalized parton distributions (GPDs). At small x, these objects are closely related to the dipole correlator of Wilson Lines [1].

It is well known that the transverse momentum spectrum of DVCS at small x gives access to the impact parameter dependence of the dipole correlator. In [2], it was shown that by studying the azimuthal anisotropies of the final state photon with the electron plane in DIS one could also access the angular dependence of the dipole correlator. This information is crucial to unveil the structure of the orbital angular momentum carried by gluons inside hadrons and nuclei.

In this talk, I will review the computation of DVCS at leading order in the CGC EFT, including the azimuthal angular correlations with respect to the electron plane. Then, I will show how to obtain similar expressions for exclusive vector meson production. I will then present our predictions for these anisotropies in electron-proton and electron-gold collisions for the kinematics of the future EIC. Finally, I will discuss the potential to measure the angular structure of color charge and geometric fluctuations in incoherent diffractive production. This talk is based on [3].

References:

[1] Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in DIS. arXiv:1601.01585

[2] Gluon Tomography from Deeply Virtual Compton Scattering at Small-x. Y. Hatta, B-W. Xiao, and F. Yuan. arXiv:1703.02085

[3] Gluon imaging using azimuthal correlations in diffractive scattering at the Electron-Ion Collider. H. Mäntysaari, K. Roy, F. Salazar, and B. Schenke. arXiv:2011.0246.

Hosted by: Akio Tomiya

More Information

16030  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.