Nuclear Physics & RIKEN Theory Seminar

"Energy loss of QCD jets in heavy-ion collisions"

Presented by Konrad Tywoniuk, University of Bergen

Friday, February 19, 2021, 9:15 am — Videoconference / Virtual Event (see link below)

Abstract: The quark-gluon plasma (QGP) created in high-energy heavy-ion collisions at RHIC and LHC is opaque to energetic and heavy particles that are created in short-distance particle scattering. Jets, aligned collections of energetic hadrons resulting from the fragmentation of fundamental quarks and gluons that are collected within a cone of radius R, are of special interest since they develop on time-scales comparable to the lifetime of the plasma. Jet ``quenching'', or the suppression of the jet yield at large transverse momentum, is therefore a probe not only of the elastic and inelastic interactions with the medium, but also of the medium's capability to resolve correlated QCD color charges. The energy removed from the jet is redistributed in modes that span hard collinear gluon radiation (bremsstrahlung) to softer excitations that ultimately thermalize with the surrounding medium.

The radius dependence of the jet spectrum is particularly sensitive to the rich physics outlined above. In the first part of the talk, I will present a recent calculation of the jet spectrum in heavy-ion collisions where the medium parameters are sampled from a realistic hydrodynamic evolution of the QGP. Up to relatively large radii R~0.6, the suppression is dominated by perturbative physics while non-perturbative effects, related to the details of thermalization, start to dominate at R~1. This provides, for the first time, a solid basis for higher-order precision calculations of the jet spectrum that are paramount to realize the potential of hard probes as precision tools to extract the properties of the QGP.

However, jets are rare events and their spectrum drops rapidly with transverse momentum. This induces a strong bias on any process happening in the medium and makes it hard to dig out rare events where heavy-ion jets were substantially modified. In the second part of my talk, I will report on a recent attempt to extract the jet energy before quenching using machine learning. This allows to reduce the biases and enhance the signal of medium modifications. It also allows to better constrain jets as tomographic tools of the medium.

Hosted by: Yacine Mehtar-Tani

Join Videoconference More Information

16177  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.