CFN Virtual Colloquium

"Peel and Stack: Ultimate Heterogeneous Integration for Next Generation Electronics"

Presented by Jeehwan Kim, MIT

Thursday, June 2, 2022, 4:00 pm — Videoconference / Virtual Event (see link below)

For future of electronics such as bioelectronics, 3D integrated electronics, and bendable electronics, needs for flexibility and stackability of electronic products have substantially grown up. However, conventional wafer-based single-crystalline semiconductors cannot catch up with such trends because they are bound to the thick rigid wafers such that they are neither flexible nor stackable. Although polymer-based organic electronic materials are more compatible as they are mechanically complaint and less costly than inorganic counterparts, their electronic/photonic performance is substantially inferior to that of single-crystalline inorganic materials. For the past half a decade, my research group at MIT has focused on mitigating such performance-mechanical compliance dilemma by developing methods to obtain cheap, flexible, stackable, single-crystalline inorganic systems. In today's talk, I will discuss about our strategies to realize such a dream electronic system [1-5] and how these strategies unlock new ways of manufacturing advanced electronic systems [6-10]. I will highlight our 2D materials-based layer transfer (2DLT) technique that can produce single-crystalline freestanding membranes from any compound materials with their excellent semiconducting performance. In addition, I will present unprecedented artificial heterostructures enabled by stacking of those freestanding 3D material membranes, e.g., world's smallest vertically-stacked full color micro-LEDs [10], world's best multiferroic devices [7], battery-less wireless e-skin [9,10], and reconfigurable hetero-integrated chips with AI accelerators [8,10].

References: [1] Nature 544, 340 (2017), [2] Nature Materials 17, 999 (2018), [3] Nature Materials 18, 550 (2019), [4] Nature Nanotechnology 15, 272-276 (2020), [5] Science 362, 665 (2018), [6] Nature Electronics 2, 439 (2019), [7] Nature 578, 75 (2020), [8] Nature Nanotechnology 15, 574 (2020), [9] Science Advances 7, 27 (2021) [10] Science, under revision

Bio-sketch: Jeehwan Kim is an Associate Professor of Mechanical Engineering & Materials Science and Engineering at MIT. He is also a Principal Investigator of Research Lab of Electronics at MIT. Prof. Kim's group focuses on innovations in nanotechnology for next generation computing and electronics. Prof. Kim joined MIT in September 2015. Before joining MIT, he was a Research Staff Member at IBM T.J. Watson Research Center in Yorktown Heights, NY since 2008 right after his Ph.D. He worked on next generation CMOS and energy materials/devices at IBM. Prof. Kim is a recipient of 20 IBM high value invention achievement awards. In 2012, he was appointed a "Master Inventor" of IBM in recognition of his active intellectual property generation and commercialization of his research. After joining MIT, he continuously worked nanotechnology for advanced electronics/photonics. As its recognition, he received LAM Research foundation Award, IBM Faculty Award, DARPA Young Faculty Award, and DARPA Director's Fellowship. He is an inventor of > 200 issued/pending US patents and an author of > 50 articles in peer-reviewed journals. He currently serves as Associate Editor of Science Advances, AAAS. He received his B.S. from Hongik University, his M.S. from Seoul National University, and his Ph.D. from UCLA, all of them in Materials Science.

Hosted by: Chang-Yong Nam

Videoconference Instructions

Please click the link below to join the webinar: Passcode: 349211 Or iPhone one-tap : US: +16692545252,,1610998573#,,,,,,0#,,349211# or +16468287666,,1610998573#,,,,,,0#,,349211# Or Telephone: Dial(for higher quality, dial a number based on your current location): US: +1 669 254 5252 or +1 646 828 7666 Webinar ID: 161 099 8573 Passcode: 349211 International numbers available: Or an H.323/SIP room system: H.323: (US West) or (US East) Meeting ID: 161 099 8573 Passcode: 349211 SIP: Passcode: 349211

Join Videoconference

17679  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.