Hybrid RBRC seminar

"Stabilizing complex Langevin for real-time gauge theories with an anisotropic kernel"

Presented by Paul Hotzy, Vienna, Tech. U.

Thursday, February 16, 2023, 12:30 pm — Hybrid: Bldg. 510, Room 2-160

Abstract: The complex Langevin (CL) method is a promising approach to overcome the sign problem that occurs in real-time formulations of quantum field theories. Using the Schwinger-Keldysh formalism, we study SU(N) gauge theories with CL. We observe that current stabilization techniques are insufficient to obtain correct results. Therefore, we revise the discretization of the CL equations on complex time contours, find a time reflection symmetric formulation and introduce a novel anisotropic kernel that enables CL simulations on discretized complex time paths. Applying it to SU(2) Yang-Mills theory in 3+1 dimensions, we obtain unprecedentedly stable results that we validate using additional observables and that can be systematically improved. For the first time, we are able to simulate non-Abelian gauge theory on time contours whose real-time extent exceeds its inverse temperature. Thus, our approach may pave the way towards an ab-initio real-time framework of QCD in and out of equilibrium with a potentially large impact on the phenomenology of heavy-ion collisions.

Hosted by: Nobuyuki Matsumoto

Join Videoconference More Information

18497  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.