Chemistry Department Colloquium

"Discovery of Novel Hydrogen Storage Materials: An Atomic Scale Computational Approach"

Presented by Professor Christopher Wolverton, Northwestern University, Dept. of Materials Science & Engineering

Wednesday, May 14, 2008, 11:00 am — Hamilton Seminar Room, Bldg. 555

Practical hydrogen storage for mobile applications requires materials that exhibit high hydrogen densities, low decomposition temperatures, and fast kinetics for absorption and desorption. Unfortunately, no reversible materials are currently known that possess all of these attributes. Here we present an overview of our recent efforts aimed at developing a first-principles computational approach to the discovery of novel hydrogen storage materials. Such an approach requires several key capabilities to be effective: (i) Accurate prediction of decomposition thermodynamics, (ii) Prediction of crystal structures for unknown hydrides, and (iii) Prediction of preferred decomposition pathways. We present examples that illustrate each of these three capabilities: (i) prediction of hydriding enthalpies and free energies across a wide range of hydride materials, (ii) prediction of low-energy crystal structures for complex hydrides, [such as Ca(AlH4)2 CaAlH5, and Li2NH], and (iii) predicted decomposition pathways for Li4BN3H10 and destabilized systems based on combinations of LiBH4, Ca(BH4)2 and metal hydrides. For the destabilized systems, we propose a set of thermodynamic guidelines to help identify thermodynamically viable reactions. These capabilities have led to the prediction of several novel high-density hydrogen storage materials and reactions.

Hosted by: Ping Liu

4213  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.