Chemistry Department Colloquium

"Binding and Patterning of Organic Molecules on Silicon Surfaces"

Presented by Gua-Qin Xu

Thursday, April 16, 2009, 11:00 am — Hamilton Seminar Room, Bldg. 555

Attaching functional organic layers to silicon surfaces is emerging as one of the promising approaches in the development of new semiconductor-based microelectronic devices and biosensors. It provides opportunities for incorporating molecular recognition, chirality, chemical/biological sensing, light emission/detection and lubrication for various technological needs. Recent systematic investigations on chemical reactions of organic molecules on silicon surfaces clearly demonstrated that both Si(100) and Si(111)-7x7 can act as reagent-like substrates with a high reactivity for covalent binding of different classes of organic functionalities. Reaction mechanisms including [2+2]-cycloaddition, [4+2]-cycloaddition, dative-bonding, dissociation and ene-like reactions have been revealed and will be discussed, providing a molecule-level understanding on reaction mechanisms, chemical and surface-site selectivities at organic/silicon hybrid interfaces. In addition, new approaches for fabricating organic nanopatterns using self-assembled templates on silicon surfaces will be introduced, which can be useful in growing organic nanomaterials for developing nano- or molecular-scale devices.

Hosted by: Jan Hrbek

5281  |  INT/EXT  |  Events Calendar