National Synchrotron Light Source Seminar

"Electric field control of magnetism and ferroelectricity in single crystals of multiferroic BiFeO3"

Presented by Valery Kiryukhin, Rutgers University

Monday, January 11, 2010, 10:00 am — Seminar Room, Bldg. 725

Abstract: BiFeO3 is a room-temperature multiferroic combining large electric polarization (P) with long-wavelength spiral magnetic order. Significant efforts have been devoted to studies of thin-film BiFeO3 model multiferroic devices, and local control of magnetization by an electric field has been demonstrated recently. However, the extant thin films consist of a poorly controlled patchwork of ferroelastic domains severely impeding experimental work. We report growth of mm-sized single crystals consisting of a single ferroelectric (FE) domain. The obtained crystals were studied using optical microscopy, PFM, and neutron diffraction.
Switching between two (out of 8) unique directions of P by an electric field is demonstrated. Magnetic moments are strongly coupled to the lattice, and rotate together with P when the field is applied. Within a single FE domain, electric field can be used to control the populations of the 3 equivalent magnetic domains with different directions of the spiral wave vector. In particular, a FE monodomain with a single-wave-vector magnetic spiral can be prepared. The spiral has the same helicity in the entire sample. These effects are reversible. Thus, electric field can be used to control the ferroelectric and magnetic states, and even the magnetic helicity of the sample. This level of control makes single-crystal BiFeO3 a promising object for investigation of physics of magnetoelectric coupling in multiferroics, as well as for model multiferroic device research. Based on these results, we demonstrate a novel device, a switchable FE diode, and also report observation of a photovoltaic effect in semiconducting BiFeO3 samples.

Hosted by: Christie Nelson

6050  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.