NSLS-II Seminar

"Mapping Structure from Microns to Atomic Length Scales with Coherent Diffraction."

Presented by Stephan Hruszkewycz

Thursday, May 26, 2011, 2:30 pm — Large Conference Room, Building 703

Coherent x-ray diffraction techniques that utilize speckle can be designed to provide reciprocal space information encoded with complex structural information ranging from unit cell to micron length scales. With two decades of development and an increased emphasis on coherence at light sources around the world, these techniques are maturing to the point of being useful as tools for exploring complex structural issues in materials science. This talk will focus on recent efforts to understand, develop, and apply novel coherent Bragg diffraction techniques to materials with complex local non-periodic structure. I will discuss experiments designed to use the coherent beams at the Advanced Photon Source(APS) and at the Linac Coherent Light Source (LCLS) as well as the simulation tools we designed to clarify the interaction of these beams with complex atomic structures. Specifically, our goals include 3D imaging of non-ideal oxide nanocrystals at the APS with both plane wave and focused coherent beams as well as measuring femtosecond dynamics in atomic glasses at LCLS using coherent speckle.

Hosted by: Enju Lima

7422  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.