Chemistry Department Colloquium

"“NOx Catalysis from the Bottom Up”"

Presented by Dr. William F. Schneider, Dept. of Chemical and Biomolecular Engineering, University of Notre Dame

Thursday, April 26, 2012, 11:00 am — Hamilton Seminar Room, Bldg. 555

In order to meet the increasing demands of energy sustainability and environmental protection, catalysis science and application in the 21st century has to be driven by basic insights into how materials function and how they can be improved. The advent of first-principles simulations based on density functional theory (DFT), which are able to reliably simulate chemical structures and reactions at the molecular scale, has been instrumental in the recent renaissance in heterogeneous catalysis research. In this talk, I will illustrate the capabilities and challenges of applying these simulation tools in the context of the catalytic chemistry of nitrogen oxides (NOx). NOx is an unwanted by-product of combustion and is particularly difficult to remove from lean combustion sources, such as diesel engines. NOx also has rather complex chemistry that presents special challenges to simulation. I will describe some of our successes in understanding NOx chemistry from first-principles, with a first emphasis on recent work to capture the essential features of the beguiling simple catalytic oxidation of NO to NO2 over metals and metal oxides, to reconcile these models with experimental results, and to use these insights to guide the selection of new and improved catalysts. I will then discuss recent work to extend the same concepts to the selective catalytic reduction of NOx over narrow-pore metal-exchanged zeolites, a new class of effective and stable catalysts.


Figure: Dynamic simulation of an O-covered Pt surface catalyzing NO oxidation to NO2. From Wu et al. J. Catal. 2012, 286, 88-94.

Hosted by: Ping Liu

8150  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.