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INTRODUCTION

Air core magnets, whether superconducting or cryogenic, have high external fields
which, in practical applications, can be troublesome. These can be removed either by
additional windings (which decrease the useful field) or by using iron (which increas-
es the useful field). This paper is on the consequences of the latter procedure.

COILS OF INFINITESIMAL THICKNESS
The problem of distribution of_ fields around a multipole air core magnet surround-
ed by iron has been solved by Beth.l 1t has been treated also by Meuser.Z The config-
uration studied by these authors is shown in Fig. 1. Region (1) of radius aj is sur-
rounded by a winding of infinitesimal thickness (ap in Fig. 1 is assumed equal to aj)

bearing a current normal to the paper of

I =1 cos nd
(&)

The region (3) beyond radius r = b is filled.with iron of permeability u.

For the present purpose we assume | to be infinitely large and write Beth's solu-
tion in the form:

[

In region (1): B 2m uoIo (r/a)n-l { 1+ (a/b)2n } sin nf

T
(L
B, =2mu I (r/a)n-1 { 1+ (a/b)2n } cos nb .
e oo
. n=1
. _ n+l " .
In region (2): Br = 2m uOIo a { bzn + ;E;T sin né
- (2)
B.=2nu I an+1 { EE—E - } cos nb
3 oo 2n o+l
b T :
This solution gives zero azimuthal field at r = b. The maximum normal field is
- whl
Bmax = 41 uoIO (a/b) . (3

wWork performed under the auspices of the U.S. Atomic Energy Commission.

1. R.A. Beth, Brookhaven National Laboratory, Accelerator Dept. Report AADD-119 (1966).
2. R.B. Meuser, Lawrence Radiation Laboratory Report UCRL-18318 (1968).
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For the case where By, is assigned a specific value B, (to avoid saturation,
for example), the expression (3) defines b in terms of Bpszx and the other parameters.

in Eqs. (1), the term (a/.b)2n represents the increase in field inside the magnet
due to the presence of the iron. From (1) and (3) the field amplitude is

nel B0 2n/nt+l
Zm uoIo (x/a) { 1+ ( G 1 ) }
oo

The second term is the increase due to the iron shield. For a dipole, (n = 1), the
increase  is simply B,/2. 1If fields as high as 20 kG are allowed at r = b, the irom
will add 10 kG to whatever field is set up inside the magnet. For a quadrupole,
(n.= 2), the additional term in the bracket is

B 4/3
(o7 )
417 uolo

If, for example, I, is such as to give 60 kG "pole-tip fields" without iron and B, is
chosen to be 20 kG, the increase in pole~tip field due to the iron will be about
5600 G.

The radius b for a 60 kG dipole with 20 kG at ¥ = b will be given approximately
by
b = 2a
The radius b for a 60 kG pole-tip quadrupole with 20 kG at r = b will be given approx-
imately by
=1.7a

COILS OF FINITE THICKNESS

To obtain the fields for coils of finite thickness we merely replace I, in
Eqs. (1) and (2) by I, da and integrate from an imner radius aj to an outer radius aj.
For radii r < a; it is necessary only to integrate Egs. (1) to obtain

n-1 1 2-n  2-n 1 w2 o2 |
B =2npl r {'7—:—- ( a - a ) + ——— ( a - a )} sin n8
T o’o 2 n 2 1 (n + 2) b2n 2 1
. (&)
Be = 2m uoIo rn~1 { > } n ( ag-n - -n ) + —— ag+2 - a?+2 >} cos nb
' (n + 2) b
For radii r > a, we integrate Egs. (2) to obtain:
) (L) {2 w2 Y
B = 2m g, ( p2n + rn+1 > \n+2/\% Y A n®
5)
n-~1 (
_ T L ( n+2 )
Be Zﬂ'uolo bzn rn+1 cos nf
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Inside the coil, for a; > r > al, the solution is a combination of solutions of
types (4) and (5)

. . g2 m . n-'-2 .
Br =2m u‘oIo [rn-l { 22- n + - 2n ag+2 b n+2 } 1l F ;nr _, 8in nd
: (n+2) b (n+2) r n“-4 -
(6
a2-n ' an—l—Z
By = 2m kI, ern-l { T e (5 - A >} r——t—m ] cos nd
(n+2) b (n+2) r n‘- 4
The vector potentials in the three regions are:
for r < a
2-n 2-n 1 2 w2
A=—2TruI-—- = (a_ - a >+——————(a - a )}cosne, (7)
z ' oo n L2 n 2 1 (n + 2) b2n 2 1
for r > a,
2t w I )
_ . oo 2 n+2 ) ( _)
Az ———n(n+ ) ( a, + cos ng , 8
. b T
for a, >r > a
2 1 n+2 )
Az=-2nu1[ {Zn L (am‘-am’z)} +§r]cosn9.
: . {n+2) b n(n+2) a4
¢
DIPOLE FIELDS
For a dipole, the field patterns are:
for r < ay
- - 1 3_ .3 } .
B, 2"”'910{(5"2 a1)+ 2(32 al) sin
3b
(10)
= _ 1 3 _ .3
Be"Z"”oIo{(az 31)+ 2(32 31>}°°Se-'
37,
for r > a,
- - 1 l) ( 3 _ 3 ) .
B (2/3)™ LI (b2 + a, - a; ) sin 8
r
(11)

o
ft

6 (2/3)nu010(%-—%)(ag—ai)cose ?
b T '
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for a, >r > a1

3
a
3 1 2
B =2mu 1l { a, + —= ( a, - a ) - -l 4 } sin ©
T 2 3b2 2 1 31_2 3
3 (12)
3 1 4
B, =21 u I { a, + —— ( a, - a ) + —— - = } cos 0 .
] 2 3b2 2 i 3r2 3
The vector potential for a dipole is:
for r < aé .
= _ 1 3_ 3 } .
A, = - 217 uolor {( a, - ay ) -+ 3b2 { a, ay ) cos 6 , 13
for r >4a2
= .2 L1 3.
A, =-=m uOIOr ( 5+ 5 ) ( a, - a; ) cos 6 , (14)
b T
for a, >r > 2,
a3
- . 3.3y, .2 }
A, = 2n uolor { a, + 5 ( a, ay > 3 "3 T Jcos 8 . (15}
3b 3r

The field patterns for two possible dipoles are shown in Figs. 2 and 3. Figure 2
represents a dipole for 40 kG in an aperture of 5 c¢m radius. The coil is 1 em in thick-
ness and is surrounded by an iron shield of 10 cm radius. The maximum flux density
entering the irom is 20 kG. To carry this flux at an average density of 16 kG the iron
should be about 13 em thick. Current density in the coil has a maximum value of about
6 x 10% A/em?. '

Figure 3 represents a 60 kG magnet of the same aperture. The thickness of the
coil is 1.5 cm, which results in about the same peak current density (6 X 10 A/cmz) as
the coil of Fig. 2. The iron shield has an inner radius of 12.9 cm and a peak entering
flux density of 20 kG. To carry the return flux at an average density of .16 kG, the

iron should be about 16 cm thick. The wgight of this shield would be slightly less
than 2 tons per meter of length.

QUADRUPOLE FIELDS
When n is set equal to 2 in Egs. (4)-(9), the reader may be disturbed by the ap-
pearance of 2-n in the denominator of several terms. This, however, appears in terms

of the form
1 ( aZ—n ~ a2-n )
2 ~n 2 1

As n appfoaches 2, set n=2 ~ A. The rerm now becomes

l(A_aA)::_l;(eAﬂnaz_eAﬁnal)
5\ %2 1 A
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As A -~ 0, this term becomes In (ap/ay). Similar treatment removes the apparent singu-
larity wherever it appears.

The vector potential for a quadrupole is:

for r < a;

A
z

2 1 4 4
-mu I { £n (az/al) + Z;Z ( a, - a; )} cos 26 ,

for r > a,

h=4
I
N

T I
- —200 4_4)(?_ L)
A ( a, a; A + rz cos 286

o

for a, >r > a1 .
a

- 2{ '.L(‘*_‘*)_.L l} '
n,uoIOr In (az/r) + Z a, a r4 -+ 7 cos 28

£
i

4b 1 4

Figure 4 shows the field patterns for a quadrupole with 60 kG "pole-tip fields"
surrounded by an iron shield whose maximum entering flux demsity is 20 kG. For an ap-
erture of 5 cm radius, the coil thickness is 1.5 ecm. The coil, as before, carries a
cos 28 current distribution of maximum density of about 6 X 1()ZlL A/cm®. The inner ra-
dius of the iron shield is 10.7 cm, To carry the flux at an average density of 16 kG
the iron should be about 7 cm thick.

IRON CROSS SECTION

Numerical examples thus far have used the case where the flux density of the irom
ring is 20 kG (2 T). In this section it will be shown that less iron can be used if
lower fields are chosen at the iron surface. This will result in less increase in the
fields in the multipole due to the presence of iron, but it may nevertheless have eco-
nomic advantages.

From Eqs. (5) the normal field at the surface of the iron is

_ am uolo 1 ( w2 w2 ) .
—_— ay sin no

Br T a4 2 bn+1 8 -

If by is the iron inner radius for which a maximum normal field of 2 T is set up, then

2=Lm“‘olo 1 (an-:-z_ m2)
n+ 2 .ol \ %2 21

b

2
and

' b2 k-l
B =2 ( —_ ) sin nd
r b

-

The total flux that must be carried by the iron is that entering between 8 = 0 and
8 = m/2n, and is
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7/2n

2b b n
f Bbde=——2(—'?'-) . .
o T n b

If the flux returns in the iron with an average flux demsity By and the iron ring has
an outer diameter c, then

b

(%)

2b b n
2 f(_2
'C“nnl( b) + b

N
IR
N

{(c - b) Bl =

and

The cross-sectional area of the iron is

4 b

: 2
r - (3 (3)
‘ nB, b nB, \ b

For a dipole the area is

41 b2

{1 (2Y 1)
B1 B1 b |

For large b's the iron area approaches a constant value of 4m b%/Bl. If By is 16 kG
(1.6 T) as we have assumed in our previous examples, the maximum reduction in iron
area possible below that necessary for 20 kG entering field is [(1/1.6) + 1]:1 or
about 1.6:1.

For a quadrupocle, the iron area is

41 b3 b3
2 241}
231 b 23163

Evidently, by reducing the entering field, the necessary iron for shielding a quadru-
pole can be reduced as far as desived.

DISTRIBUTION OF STORED ENERGY

For an evaluation of stored energy in the various regions, an approximate method
will be used. It will be assumed that the thickness of the coil is small compared
with the aperture dimensions. The following notation will be used:

oa, = ay + A

[

T a; + x (within the winding)

2n o
2 uOIOA 1+ (al/b) 1= B,

The approximation will be carried only to the first order.
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Equations (4) to (6) can now be written:

for r < a,

B =B (r/a )n-l sin nB

T o 1

B, = B (r/a )n-l cos n8

8 0 1 ’
for a1 <r < a,

B_ =B sin nb

T o

2x/A
(a,/p)°"

>~}
[

B{l- }cosne
& o 1+ ’

for r > 2y

B
B = ——— (3.1/1:)n+1 [ 1+ (7:/b)zn ] sin nd

1+ (al/b)zn

- B
By = (allr)n+1 [ 1 - (£/b)°" ] cos nd

1+ (al/b)zn

Using these expressions the stored energy E in the various regions can easily be
evaluated: '

for r < a1

QN
- N

8n u

[=3

foral<r<a2

B’ ap b 2/3+ (al/b)2n + (a, /by*®
E = e { E } 3
4”‘c: 2n 2
1+ (al/b)
for r > ay
B2 aZn—E—Z 1 - (a /b)"’rl
B o= 2 1 { 2 }
8n aZn 2n 2
o "2 1+ (allb)

if (a:;_/b)2n is small, and ay = aj, then the energy stored outside the coil is approx-
imately the same as that stored in the useful aperture.

- 1048 -



The average energy density in the aperture is

B2
o

8n ™
o
In the coil it is

Bi { 2/3 + (allb)zn + (al/b)‘m }

[1 + (al/b)zn ]2

For the particular case where b = 2aj, the ratio of energy density in the coil to
energy density in the useful aperture is

87 u
[»]

for a dipole: 0.63
for a quadrupole: 1.29

For cases of the type discussed above where A = 0.3 aj the ratio of the total
energy stored in the coil to the total energy stored in the useful aperture will be

for a dipole: 0.44

for a quadrupole: 0.89
Hence for a dipole the total energy stored in the coil (for the dimensions quoted) is
a little more than 207 of the total energy stored in the dipole system. For a quad-

rupole of similar dimensions the energy stored in the c011 is about 457 of the total
energy stored in the system.
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Fig. 1. Geometr

for 40 kG dipole.

Fig. 2. Field pattern



Fig. 4. Field pattern for quadrupole with 60 kG pole-tip field.





