BNL Home

Add Event to Your Calendar

To add this event to your calendar, click on the "Add to My Calendar" button below.

  1. MAY



    Nuclear Physics Seminar

    "Examining hydrodynamical modelling of the QGP through dilepton radiation"

    Presented by Gojko Vujanovic, Wayne State University

    11 am, Small Seminar Room, Bldg. 510

    Tuesday, May 28, 2019, 11:00 am

    Hosted by: Rongrong Ma

    Recent viscous hydrodynamical studies at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC), show that bulk viscosity plays an important role in their phenomenological description. A temperature-dependent bulk viscosity in the hydrodynamical evolution of the medium can modify the development of the hydrodynamic momentum anisotropy differently in the high- and low-temperature regions. Thus, anisotropic flow coefficients of various particle species are affected differently depending where their surface of last scattering lies. For the case of hadronic observables, they are predominantly sensitive to low temperature regions, while electromagnetic radiation is emitted at all temperatures. Therefore, bulk viscosity should affect electromagnetic radiation differently than hadron emission. The effects of bulk viscosity on one of the electromagnetic probes, namely photons, has already been investigated. The same statement holds true for hadrons. The goal of this presentation is to study how dilepton production, the other source of electromagnetic radiation, gets modified owing to the presence of bulk viscosity at RHIC and LHC energies. With calculations at different collision energies, comparisons in the dilepton signal can be made and more robust conclusions regarding the role of bulk viscosity in high energy heavy-ion collisions can be drawn. Dilepton radiation from the dilute hadronic sector of the medium, which are radiated in addition to dileptons emitted during the hydrodynamical evolution, will also be included to ascertain whether interesting dynamics induced by bulk viscosity may have observable consequences. To complete that investigation, particular attention will be given to how the $\rho(770)$ meson, and its subsequent dilepton decay, is calculated at the end of the hydrodynamical simulation.

Add to My Calendar

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.