BNL Home
  • RHIC

    Brookhaven physicists are using detectors at the Relativistic Heavy Ion Collider to explore how the matter that makes up atomic nuclei behaved just after the Big Bang.

  • ATLAS

    Brookhaven physicists and engineers are collaborators in the ATLAS experiment at CERN's Large Hadron Collider.

  • Neutrinos

    LBNE and the Daya Bay Neutrino Experiments seek to understand the subtle oscillations of neutrinos, ghost-like particles formed in the heart of stars

  • Cosmology

    In the LSST and BOSS experiments, Brookhaven physicists seek to measure and constrain the properties of dark matter, dark energy and the standard cosmological model.

Nuclear Physics

PHENIX

Responsibile for the operation and  physics exploitation of the PHENIX experiment at RHIC.

STAR

Responsibile for the operation and  physics exploitation of the STAR experiment at RHIC.

RHIC Spin

Leads, supports, and provides for the common requirements of the RHIC spin program, particularly for polarimetry.

RIKEN BNL Research Center

Conducts quantum chromodynamics and proton spin structure research.

Nuclear Theory

The nuclear theory group conducts research in all areas of QCD, including structure of hadrons and nuclei at high energies, the QCD phase diagram and the properties of quark-gluon matter.

RHIC Computing Facility

Provides computing services for experiments at RHIC, and the Large Synoptic Survey Telescope project.

High-Energy Physics

Cosmology & Astrophysics

Solving problems in observational cosmology: how to measure and constrain properties of dark matter, dark energy and the standard cosmological model.

Electronic Detector

Studies very rare processes at the Intensity Frontier.

Omega

Group members are collaborators on the LHC ATLAS experiment.

Physics Application

Develops physics applications software for the LHC ATLAS experiment.

High-Energy Theory

Focuses on providing theoretical foundation for the search for physics beyond the standard model, including lattice QCD calculations of key quantities required for this quest.

ATLAS Computing Facility

Provides computing services for U.S. ATLAS.

High-Energy Physics

Baryonic Oscillation Spectroscopic Survey

BOSS studies dark energy—the force thought to be responsible for the universe’s accelerating expansion.

Dark Energy Survey

Seeks to probe the origin of the accelerating universe and uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion.

Large Synoptic Survey Telescope

A 3.2 gigapixel camera mounted in a  ground-based telescope designed to produce the widest, densest, and most complete images of our universe ever captured.

Deep Underground Neutrino Experiment

An international collaboration working to precisely measure neutrino oscillations.

ATLAS

An experiment at CERN's Large Hadron Collider designed to detect particles created by proton-proton collisions.

Daya Bay Neutrino Experiment

An international collaboration studying the subtle transformations of neutrinos.

MicroBooNE

Measures low energy neutrino cross sections and investigates low energy excess events observed by the MiniBooNE experiment.

Muon g-2

A high precision measurement of the muon's g-2 value. A deviation between theory and observed value will suggest the existence of new particles.

Mu2e

Experiment which directly probes the Intensity Frontier and aids research on the Energy and Cosmic frontiers with precision measurements to characterize properties of new particles.

Nuclear Physics

PHENIX

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

STAR

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

Electron Ion Collider (Future)

Plans for the world's first electron-nucleus collider, also known as eRHIC, call for the addition of a 5 to 10 GeV electron ring inside the RHIC tunnel.

The Physics Department is part of Brookhaven's Nuclear & Particle Physics Directorate.

Seminars & Colloquia

  1. JUN

    5

    Tuesday

    Physics Colloquium

    "How we got the government we have, and why scientists should engage with it"

    Presented by Benn Tannenbaum, Sandia National Laboratory

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, June 5, 2018, 3:30 pm

    Hosted by: Andrei Nomerotski

    It seems like a terrible time to be a scientist in the United States. Federal budgets aren't being passed, and when they are, funding for science never seems to increase. The debate over immigration reform—including what to do about visas for high-skilled workers, such as scientists—is stalled. Everyone agrees that cybersecurity is a problem, but no one seems to have a solution. Meanwhile, we have no meaningful debate in Congress or in the administration on climate change or energy policy. This lecture will cover how we got here, why we are stuck, some speculation on how the current administration is impacting research, and how the scientific community can impact policy.

  1. MAY

    25

    Friday

    Joint Nuclear Theory/RIKEN/CFNS Seminar

    "Novel QCD Physics at an Electron-Ion Collider"

    Presented by Stanley Brodsky, SLAC National Accelerator Laboratory, Stanford University

    10:30 am, Building 510, CFNS Seminar Room 2-38

    Friday, May 25, 2018, 10:30 am

    Hosted by: Chun Shen

    An electron-ion collider can test many fundamental features of QCD for hadron and nuclear physics, including flavor-dependent antishadowing in deep inelastic electron-nucleus scattering, the breakdown of sum rules for nuclear structure functions, the role of ``hidden-color " degrees of freedom, and the effects of "color transparency" on the baryon-to-meson anomaly observed at high transverse momentum in heavy-ion collisions. I will also discuss intrinsic heavy quark phenomena and the production of exotic multiquark states at the EIC. On the theory side, I will discuss the new insights into color confinement that one obtains from light-front holography, including supersymmetric features of the meson, baryon, and tetraquark spectroscopy. The Principle of Maximum Conformality (PMC) can be used to systematically eliminate renormalization scale ambiguities and thus obtain scheme-independent pQCD predictions.

  2. JUN

    1

    Friday

    Nuclear Theory/RIKEN Seminar

    "Liouville action, high multiplicity tail and shape of proton"

    Presented by Vladimir Skokov, BNL

    2 pm, Small Seminar Room, Bldg. 510

    Friday, June 1, 2018, 2:00 pm

    Hosted by: Chun Shen

    In this talk I violate the common wisdom "one seminar — one message" and discuss two seemingly unrelated results in the framework of the dilute-dense CGC approach: the effect of spatial eccentricity of the projectile (proton) shape on the second harmonic in double-inclusive gluon production and the theoretical description of the high gluon multiplicity tail. I will show that these two superficially unrelated results in combination may lead to unexpected consequences for the phenomenology of p-A collisions.

  1. MAY

    24

    Thursday

    Particle Physics Seminar

    "K+ to pi+ nu nubar- First result from NA62 experiment"

    Presented by Bob Velghe, TRIUMF

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, May 24, 2018, 3:00 pm

    Hosted by: Chao Zhang

    The K+ to pi+ nu nubar decay has been attracting interest for many decades. The accurate measurement of its branching ratio is a powerful test of the Standard Model (SM) and could reveal effects beyond the SM. As the decay occurs at the level of 1 in a 10 billion kaon disintegration, many experimental challenges have to be overcome. The CERN NA62 experiment uses a novel kaon decay-in-flight technique to observe K+ to pi+ nu nubar. The analysis of the 2016 data set was used to establish the method by allowing us to reach the 10^-10 single event sensitivity. The preliminary NA62 result on K+ to pi+ nu nubar from the analysis of the full 2016 data set will be presented.

  2. JUN

    1

    Friday

    Nuclear Theory/RIKEN Seminar

    "Liouville action, high multiplicity tail and shape of proton"

    Presented by Vladimir Skokov, BNL

    2 pm, Small Seminar Room, Bldg. 510

    Friday, June 1, 2018, 2:00 pm

    Hosted by: Chun Shen

    In this talk I violate the common wisdom "one seminar — one message" and discuss two seemingly unrelated results in the framework of the dilute-dense CGC approach: the effect of spatial eccentricity of the projectile (proton) shape on the second harmonic in double-inclusive gluon production and the theoretical description of the high gluon multiplicity tail. I will show that these two superficially unrelated results in combination may lead to unexpected consequences for the phenomenology of p-A collisions.

  3. JUN

    14

    Thursday

    Particle Physics Seminar

    "Jet substructure in ATLAS at the LHC – a tool for discoveries and measurements"

    Presented by Peter Loch, University of Arizona

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, June 14, 2018, 3:00 pm

    Hosted by: Alessandro Tricoli

    The ATLAS experiment at the Large Hadron Collider (LHC) applies jet substructure analysis techniques to extract the internal energy flow in high energy jets produced in the proton-proton collisions in searches for new physics as well as in Standard Model (SM) measurements. In this talk we will introduce the most commonly applied techniques and present an overview of results from the respective performance evaluations. In addition, we will discuss selected configurations of tagging algorithms designed to extract two- or three-prong energy flow patterns inside a jet, as generated by decays of SM particles like the W-boson or the top quark, or possible new heavy particles indicating physics beyond the SM. A brief presentation of recent results from searches and SM measurements, including the recent measurement of the internal structure of light quark and gluon jets, concludes the talk.

  4. JUN

    21

    Thursday

    Condensed-Matter Physics & Materials Science Seminar

    "Theories of transport scaling in disordered semimetals and topological spin-nematic excitonic insulators in graphite under high magnetic field"

    Presented by Ryuichi Shindo, Peking University, China

    1:30 pm, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Thursday, June 21, 2018, 1:30 pm

    Hosted by: Alexei Tsvelik

    In the first part of my talk, I will talk about transport scaling theories in disordered Weyl semimetal [1,2]. In electronic band structure of solid state material, two band touching points with linear dispersion (called as `Weyl node') appear in pair in the momentum space. When they annihilate with each other, the system undergoes a quantum phase transition from Weyl semimetal (WSM) phase to a band insulator (BI) phase. The continuous phase transition is recently discovered in solid state materials [3]. The phase transition is described by a critical theory with a `magnetic dipole' like object in the momentum space. The critical theory hosts a disorder-driven quantum multicritical point, which is encompassed by three quantum phases, WSM phase, BI phase, and diffusive metal (DM) phase. Based on the renormalization group argument, we clarify transport scaling properties around the Weyl node at the quantum multicritical point as well as all phase boundaries among these three phases [1,2]. In the second part of my talk, I will argue that three-dimensional topological excitonic insulator is realized in graphite under high magnetic field [4,5]. Graphite under high magnetic field exhibits consecutive metal-insulator (MI) transitions as well as re-entrant insulator-metal (IM) transition at low temperature. We explain these enigmatic insulator phases as manifestation of excitonic insulator phases with spin nematic orderings ("SNEI" phases). Especially, we explain unusual field-dependences of in-plane resistivity in the graphite experiment by surface transports via 2+1 massless surface Dirac fermion in one of the SNEI phases [4,5]. [1] https://arxiv.org/abs/1803.09051, under review [2] https://arxiv.org/abs/1710.00572, selected as PRB editors' suggestion [3] Tian Liang, et.al., Science Advances, 3, e1602510 (2017) [4] https://arxiv.org/abs/1802.10253, under review [5] in preparation &

  5. JUL

    9

    Monday

    Office of Educational Programs Event

    "High School Research Program Begins"

    8 am, Berkner Hall Auditorium

    Monday, July 9, 2018, 8:00 am

    Hosted by: Aleida Perez

  6. SEP

    13

    Thursday

    Particle Physics Seminar

    "Higgs couplings"

    Presented by Konstantinos Nikolopoulos

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, September 13, 2018, 3:00 pm

    Hosted by: Alessandro Tricoli