BNL Home
  • RHIC

    Brookhaven physicists are using detectors at the Relativistic Heavy Ion Collider to explore how the matter that makes up atomic nuclei behaved just after the Big Bang.


    Brookhaven physicists and engineers are collaborators in the ATLAS experiment at CERN's Large Hadron Collider.

  • Neutrinos

    LBNE and the Daya Bay Neutrino Experiments seek to understand the subtle oscillations of neutrinos, ghost-like particles formed in the heart of stars

  • Cosmology

    In the LSST and BOSS experiments, Brookhaven physicists seek to measure and constrain the properties of dark matter, dark energy and the standard cosmological model.

Nuclear Physics


Responsibile for the operation and  physics exploitation of the PHENIX experiment at RHIC.


Responsibile for the operation and  physics exploitation of the STAR experiment at RHIC.


Leads, supports, and provides for the common requirements of the RHIC spin program, particularly for polarimetry.

RIKEN BNL Research Center

Conducts quantum chromodynamics and proton spin structure research.

Nuclear Theory

Conducts research to understand many body aspects of QCD, including the properties of hot and dense matter as well high gluon density matter.  

Lattice Gauge Theory

Studies properties of hot and dense matter using lattice QCD methods.

RHIC Computing Facility

Provides computing services for experiments at RHIC, and the Large Synoptic Survey Telescope project.

High-Energy Physics

Cosmology & Astrophysics

Solving problems in observational cosmology: how to measure and constrain properties of dark matter, dark energy and the standard cosmological model.

Electronic Detector

Studies very rare processes at the Intensity Frontier.


Group members are collaborators on the LHC ATLAS experiment.

Physics Application

Develops physics applications software for the LHC ATLAS experiment.

High-Energy Theory

Focuses on providing theoretical foundation for the search for physics beyond the standard model, including lattice QCD calculations of key quantities required for this quest.

ATLAS Computing Facility

Provides computing services for U.S. ATLAS.

High-Energy Physics

Baryonic Oscillation Spectroscopic Survey

BOSS studies dark energy—the force thought to be responsible for the universe’s accelerating expansion.

Dark Energy Survey

Seeks to probe the origin of the accelerating universe and uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion.

Large Synoptic Survey Telescope

A 3.2 gigapixel camera mounted in a  ground-based telescope designed to produce the widest, densest, and most complete images of our universe ever captured.

Deep Underground Neutrino Experiment

An international collaboration working to precisely measure neutrino oscillations.


An experiment at CERN's Large Hadron Collider designed to detect particles created by proton-proton collisions.

Daya Bay Neutrino Experiment

An international collaboration studying the subtle transformations of neutrinos.


Measures low energy neutrino cross sections and investigates low energy excess events observed by the MiniBooNE experiment.

Muon g-2

A high precision measurement of the muon's g-2 value. A deviation between theory and observed value will suggest the existence of new particles.


Experiment which directly probes the Intensity Frontier and aids research on the Energy and Cosmic frontiers with precision measurements to characterize properties of new particles.

Nuclear Physics


An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.


An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

Electron Ion Collider (Future)

Plans for the world's first electron-nucleus collider, also known as eRHIC, call for the addition of a 5 to 10 GeV electron ring inside the RHIC tunnel.

The Physics Department is part of Brookhaven's Nuclear & Particle Physics Directorate.

Seminars & Colloquia

  1. No events scheduled

  1. SEP



    Nuclear Physics Seminar

    "Current state of nPDFs, LHC and future possibilities"

    Presented by Pia Zurita, Universidade de Santiago de Compostela, Spain, Spain

    2 pm, 2-160

    Thursday, September 1, 2016, 2:00 pm

    Hosted by: 'Thomas Ullrich'

    In the last years, significant progress has been made in obtaining nuclear PDFs (nPDFs) from data. In addition to the theoretical improvements routinely used in modern extractions of free proton PDFs, the most recent determinations of nPDFs have move towards truly global QCD analyses of nuclear effects. Furthermore, the end of the Run at the LHC I has shown promising results for the improvement of our knowledge on the nuclear medium. In this talk I will discuss the current state of nPDFs, comparing the most recent determinations, and address the possible impact of LHC and future colliders' data on the nPDFs.

  1. SEP



    Particle Physics Seminar

    "SB/BNL Joint Cosmo Seminar"

    12 pm, Stony Brook

    Thursday, September 22, 2016, 12:00 pm

    Hosted by: 'Anze Slosar'

  2. SEP



    Particle Physics Seminar

    "SB/BNL Joint Cosmo Seminar:TBA"

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, September 29, 2016, 3:00 pm

    Hosted by: ''Anze Slosar''

  3. OCT



    Particle Physics Seminar

    "Dark Interactions: perspective from theory and experiment"

    9 am, Small Seminar Room, Bldg. 510

    Thursday, October 6, 2016, 9:00 am

    Hosted by: 'Michael Begel'

  4. OCT



    Center for Functional Nanomaterials Seminar

    "Reversed Nanoscale Kirkendall Effect in Au-InAs Hydbrid Nanoparticles"

    Presented by Anatoly I. Frenkel, Department of Materials Science and Engineering, Stony Brook University

    11 am, CFN, ldg 735, Conference Room A

    Thursday, October 6, 2016, 11:00 am

    Hosted by: 'Eric Stach'

    Metal-semiconductor hybrid nanoparticles (NPs) have synergistic properties that have been exploited in photocatalysis, electrical, and optoelectronic applications. Rational design of hybrid NPs requires the knowledge of the underlying mechanisms of diffusion of the metal species through the nanoscale semiconductor lattice. One extensively studied process of diffusion of two materials across the nanoparticle surface is known as the nanoscale Kirkendall effect. There, an atomic species A with the lower diffusion rate enters the nanocrystal slower than the B species diffusing from the nanocrystal outward. As a result, voids are formed in B, providing an interesting avenue for making hollow nanocrystals. We used time-resolved X-ray absorption fine-structure spectroscopy, X-ray diffraction and electron microscopy to monitor the diffusion process of Au atoms through InAs nanocrystals in real time. In this system the diffusion rate of the inward diffusing species (Au) is faster than that of the outward diffusion species (InAs), which results in the formation of a crystalline metallic Au core surrounded by an amorphous, oxidized InAs shell with voids in it. These observations indicate that in hybrid Au-InAs NPs the rarely observed "reversed nanoscale Kirkendall effect" is in play. It presents a potentially new way to synthesize unique nanoscale core-shell structures.

  5. NOV



    Particle Physics Seminar


    Presented by Jo Bovy

    1:30 pm, Stony Brook University

    Wednesday, November 9, 2016, 1:30 pm

    Hosted by: 'Neelima Sehgal'

  6. NOV



    Particle Physics Seminar

    "SB/BNL Joint Cosmo Seminar: TBA"

    1:30 pm, Small Seminar Room, Bldg. 510

    Thursday, November 10, 2016, 1:30 pm

    Hosted by: 'Anze Slosar'

  7. NOV



    Particle Physics Seminars- SB/BNL Joint Cosmo Seminar

    "A more precise and accurate route from sky images to cosmological constraints"

    Presented by Gary Bernstein, U Penn

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, November 17, 2016, 3:00 pm

    Hosted by: 'Anze Slosar'

    Current (e.g. DES) and future (e.g. LSST, Euclid) experiments aim to convert multiband images of the sky into precise constraints on cosmological models, neutrino masses, and modifications of general relativity. This standard path for this inference involves making point estimates of the galaxies' redshifts (from observed colors) and weak gravitational lensing distortions (from observed morphologies), then combining these into various cross-correlations and other summary statistics that are compared to numerical simulations of the Universe. These estimators require a slew of empirical corrections to various biases, and have yet to demonstrate accuracies sufficient to reduce biases below systematic errors. I describe two steps to greatly simplify this process and eliminate the need for simulation-based calibration of estimators: first, a practical means to estimate the joint posterior probability of a galaxies' redshift and line-of-sight lensing; second, a method to sample from the posterior distribution of all mass distributions and cosmologies conditional on the galaxy density and lensing data. The main advantages of the new scheme include improved lensing and photo-z accuracy (to the required part-per-thousand level), recovery of non-Gaussian information that is lost in the usual 2-point summary statistics, and correct propagation of uncertainties (including photo-z uncertainties) into the cosmological inferences.