BNL Home
  • RHIC

    Brookhaven physicists are using detectors at the Relativistic Heavy Ion Collider to explore how the matter that makes up atomic nuclei behaved just after the Big Bang.

  • ATLAS

    Brookhaven physicists and engineers are collaborators in the ATLAS experiment at CERN's Large Hadron Collider.

  • Neutrinos

    LBNE and the Daya Bay Neutrino Experiments seek to understand the subtle oscillations of neutrinos, ghost-like particles formed in the heart of stars

  • Cosmology

    In the LSST and BOSS experiments, Brookhaven physicists seek to measure and constrain the properties of dark matter, dark energy and the standard cosmological model.

Nuclear Physics

PHENIX

Responsibile for the operation and  physics exploitation of the PHENIX experiment at RHIC.

STAR

Responsibile for the operation and  physics exploitation of the STAR experiment at RHIC.

RHIC Spin

Leads, supports, and provides for the common requirements of the RHIC spin program, particularly for polarimetry.

RIKEN BNL Research Center

Conducts quantum chromodynamics and proton spin structure research.

Nuclear Theory

The nuclear theory group conducts research in all areas of QCD, including structure of hadrons and nuclei at high energies, the QCD phase diagram and the properties of quark-gluon matter.

RHIC Computing Facility

Provides computing services for experiments at RHIC, and the Large Synoptic Survey Telescope project.

High-Energy Physics

Cosmology & Astrophysics

Solving problems in observational cosmology: how to measure and constrain properties of dark matter, dark energy and the standard cosmological model.

Electronic Detector

Studies very rare processes at the Intensity Frontier.

Omega

Group members are collaborators on the LHC ATLAS experiment.

Physics Application

Develops physics applications software for the LHC ATLAS experiment.

High-Energy Theory

Focuses on providing theoretical foundation for the search for physics beyond the standard model, including lattice QCD calculations of key quantities required for this quest.

ATLAS Computing Facility

Provides computing services for U.S. ATLAS.

High-Energy Physics

Baryonic Oscillation Spectroscopic Survey

BOSS studies dark energy—the force thought to be responsible for the universe’s accelerating expansion.

Dark Energy Survey

Seeks to probe the origin of the accelerating universe and uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion.

Large Synoptic Survey Telescope

A 3.2 gigapixel camera mounted in a  ground-based telescope designed to produce the widest, densest, and most complete images of our universe ever captured.

Deep Underground Neutrino Experiment

An international collaboration working to precisely measure neutrino oscillations.

ATLAS

An experiment at CERN's Large Hadron Collider designed to detect particles created by proton-proton collisions.

Daya Bay Neutrino Experiment

An international collaboration studying the subtle transformations of neutrinos.

MicroBooNE

Measures low energy neutrino cross sections and investigates low energy excess events observed by the MiniBooNE experiment.

Muon g-2

A high precision measurement of the muon's g-2 value. A deviation between theory and observed value will suggest the existence of new particles.

Mu2e

Experiment which directly probes the Intensity Frontier and aids research on the Energy and Cosmic frontiers with precision measurements to characterize properties of new particles.

Nuclear Physics

PHENIX

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

STAR

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

Electron Ion Collider (Future)

Plans for the world's first electron-nucleus collider, also known as eRHIC, call for the addition of a 5 to 10 GeV electron ring inside the RHIC tunnel.

The Physics Department is part of Brookhaven's Nuclear & Particle Physics Directorate.

Seminars & Colloquia

  1. SEP

    12

    Tuesday

    Physics Colloquium

    "Momentum-space structure of hadrons and nuclei at high energy"

    Presented by Elena Petreska, NIKHEF

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, September 12, 2017, 3:30 pm

    Transverse-momentum-dependent (TMD) distributions describe the configuration of quarks and gluons inside protons and nuclei in three-dimensional momentum space. Observables in scattering experiments can be calculated with the help of TMD factorization formulas, where the target and projectile are represented with non-perturbative TMD distributions, which are separated from the short-distance perturbative part of the collision. A complementary approach to study the momentum structure of protons and nuclei at high energy is the Color Glass Condensate which is an effective theory for the high-gluon-density region of ultra-relativistic particles. We introduce both theories and we discuss connections between them. We present phenomenological results derived from these connections.

  2. OCT

    24

    Tuesday

    Physics Colloquium

    "TBA"

    Presented by Christoph Lehner, BNL

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, October 24, 2017, 3:30 pm

    Hosted by: 'Rob Pisarski'

  1. AUG

    25

    Friday

    Nuclear Theory/RIKEN Seminar

    "QCD corrections to high-pT hadron production in ep scattering"

    Presented by Werner Vogelsang, Tuebingen University

    2 pm, Small Seminar Room, Bldg. 510

    Friday, August 25, 2017, 2:00 pm

    Hosted by: 'Heikki Mantysaari'

    We discuss various cross sections and spin observables in high-pT hadron production in lepton proton collisions, with special focus on the role of perturbative QCD corrections. We present phenomenological studies relevant for present fixed-target experiments and for a future EIC.

  2. SEP

    15

    Friday

    Nuclear Theory/RIKEN Seminar

    "TMD gluon distributions for dijet production and their behavior at small x"

    Presented by Elena Petreska, NIKHEF

    2 pm, Small Seminar Room, Bldg. 510

    Friday, September 15, 2017, 2:00 pm

    Hosted by: ''Heikki Mantysaari''

    Starting from the Color Glass Condensate (CGC) cross section for dijet production in proton-nucleus collisions we derive a transverse-momentum-dependent (TMD) factorization formula for small transverse-momentum imbalance of the jets and for finite number of colors. For the eight TMD distributions appearing in the cross section we determine their operator definitions at small-x as CGC correlators of Wilson lines and we study their JIMWLK evolution. We find that at large transverse momentum the universality of TMDs gets restored. We also discuss an extension of the approach to generalized TMDs (GTMDs) that can give an insight into the angular correlations between impact parameter and dipole size in the CGC framework.

  3. SEP

    29

    Friday

    Nuclear Theory/RIKEN Seminar

    "TBA"

    Presented by Aleksey Cherman, University of Washington

    2 pm, Small Seminar Room, Bldg. 510

    Friday, September 29, 2017, 2:00 pm

    Hosted by: 'Heikki Mantysaari'

  1. AUG

    24

    Thursday

    Particle Physics Seminar

    "Precision tests with antimatter: A glimpse at the 1S – 2S transition in trapped antihydrogen"

    Presented by Dr. William Bertsche, CERN

    10 am, Small Seminar Room, Bldg. 510

    Thursday, August 24, 2017, 10:00 am

    Hosted by: 'Xin Qian'

    Optical spectroscopy with antihydrogen atoms remains one of the most promising routes towards testing CPT invariance and physics beyond the Standard Model in an effort to address the observed Baryon asymmetry in the Universe today. The ALPHA collaboration has made significant progress towards the first measurements of optical transitions in trapped antihydrogen atoms, and has recently published the first observation of the 1S – 2S transition in a fully antimatter atom. This work finds the transition consistent with CPT invariance at a level of approximately 2 x 10-10 [1]. This talk will review the details of this pioneering experiment and discuss the prospects of future spectroscopy studies and other fundamental measurements with the ALPHA experiment. [1] M. Ahmadi, et al (ALPHA Collaboration), "Observation of the 1S–2S transition in trapped antihydrogen" Nature 541, 506–510 (2017).

  2. AUG

    25

    Friday

    Nuclear Theory/RIKEN Seminar

    "QCD corrections to high-pT hadron production in ep scattering"

    Presented by Werner Vogelsang, Tuebingen University

    2 pm, Small Seminar Room, Bldg. 510

    Friday, August 25, 2017, 2:00 pm

    Hosted by: 'Heikki Mantysaari'

    We discuss various cross sections and spin observables in high-pT hadron production in lepton proton collisions, with special focus on the role of perturbative QCD corrections. We present phenomenological studies relevant for present fixed-target experiments and for a future EIC.

  3. AUG

    31

    Thursday

    Particle Physics Seminar

    "Wiener-SVD approach to data unfolding"

    Presented by Dr. Hanyu Wei, BNL

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, August 31, 2017, 3:00 pm

    Hosted by: 'Xin Qian'

    Data unfolding is a commonly used technique in the high energy physics experiments, to retrieve the distorted or transformed measurements by various detector effects. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the Singular Value Decomposition (SVD) of the response matrix is developed. With the well-known Wiener filter concept, the modified SVD approach, Wiener-SVD, achieves the maximizing signal-to-noise ratio of the binned data in a transformed set of orthonormal bases where the uncertainties are bin-to-bin uncorrelated. In this talk, the mathematical principles and formulations of the newly developed Wiener-SVD unfolding will be presented. A few applications will be demonstrated. A comparison with the commonly used regularization method will also be shown. The advantages and disadvantaged of the Wiener-SVD approach will be discussed.

  4. SEP

    5

    Tuesday

    Simons Center for Geometry and Physics Public Lecture

    "Mysteries of the Universe and Everyday Life"

    Presented by Michelangelo Mangano; Young-Kee Kim; Joe Lykken, LHC/CERN; University of Chicago; Fermilab

    5:30 pm, Della Pietra Family Auditorium, Simons Center, SBU

    Tuesday, September 5, 2017, 5:30 pm

    In the past few decades we have learned a great deal about the basic laws of Physics in the infinitely small – and the infinitely large – and how the two are intimately connected. New windows have expanded our understanding, and many unexpected questions have emerged. This is an exhilarating time in history. New tools, both theoretical and observational, may lead in the next decade to major advances in our understanding of the universe. As in the past, when major discoveries are made about the fundamental laws of Nature, not only is our view of the world enriched, but also our life is transformed. A good place to explore the discoveries from the past decades is in the description of symmetry, symmetry breaking and the Higgs boson in High Energy Physics: why, how and where to…. in a nutshell. These talks will present what we know and what we seek in the fundamental laws of Nature; how we go about answering basic questions in high energy experiments, how much we have learned, and how the technical developments needed to make discoveries have changed society. They will also delineate the boundaries of our knowledge and the known unknowns in fundamental high energy physics and cosmology.

  5. SEP

    7

    Thursday

    Particle Physics Seminar

    "Radiation damage study of a thin YAG:Ce scintillator using low-energy protons"

    Presented by Dr. Vladmir Linhart, Czech Technical University in Prague

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, September 7, 2017, 3:00 pm

    Hosted by: '''Xin Qian'''

    Radiation hardness of a 50µm thin YAG:Ce scintillator in a form of dependence of a signal efficiency on 3.1MeV proton ?uence was measured and analyzed using X-ray beam. The signal efficiency is a ratio of signals given by a CCD chip after and before radiation damage. The CCD chip was placed outside the primary beam because of its protection from damage which could be caused by radiation. Using simplified assumptions, the 3.1MeV proton fluencies were recalculated to: • 150 MeV proton fluencies with intention to estimate radiation damage of this sample under conditions at proton therapy centers during medical treatment, • 150 MeV proton doses with intention to give a chance to compare radiation hardness of the studied sample with radiation hardness of other detectors used in medical physics, • 1 MeV neutron equivalent fluencies with intention to compare radiation hardness of the studied sample with properties of position sensitive silicon and diamond detectors used in nuclear and particle physics. The following results of our research were obtained. The signal efficiency of the studied sample varies slightly (±3%) up to 3.1MeV proton ?uence of c. (4 − 8) × 1014 cm−2. This limit is equivalent to 150MeV proton ?uence of (5 − 9) × 1016 cm−2, 150MeV proton dose of (350 − 600) kGy and 1MeV neutron ?uence of (1 − 2) × 1016 cm−2. Beyond the limit, the signal efficiency goes gradually down. Fifty percent decrease in the signal efficiency is reached around 3.1MeV ?uence of (1 − 2) × 1016 cm−2 which is equivalent to 150 MeV proton ?uence of around 2 × 1018 cm−2, 150MeV proton dose of around 15 MGy and 1 MeV neutron equivalent ?uence of (4 − 8) × 1017 cm−2. In contrast with position sensitive silicon and diamond radiation detectors, the studied sample has at least two order of magnitude greater radiation resistance. Therefore, YAG:Ce sci

  6. SEP

    12

    Tuesday

    Physics Colloquium

    "Momentum-space structure of hadrons and nuclei at high energy"

    Presented by Elena Petreska, NIKHEF

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, September 12, 2017, 3:30 pm

    Transverse-momentum-dependent (TMD) distributions describe the configuration of quarks and gluons inside protons and nuclei in three-dimensional momentum space. Observables in scattering experiments can be calculated with the help of TMD factorization formulas, where the target and projectile are represented with non-perturbative TMD distributions, which are separated from the short-distance perturbative part of the collision. A complementary approach to study the momentum structure of protons and nuclei at high energy is the Color Glass Condensate which is an effective theory for the high-gluon-density region of ultra-relativistic particles. We introduce both theories and we discuss connections between them. We present phenomenological results derived from these connections.

  7. SEP

    14

    Thursday

    Particle Physics Seminar

    "SB/BNL Joint Cosmo seminar (at BNL): Mapping the Cosmos with the Dark Energy Survey"

    Presented by Dr. Chihway Chang, ETH Zurich

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, September 14, 2017, 3:00 pm

    Hosted by: ''Erin Sheldon''

  8. OCT

    11

    Wednesday

    Particle Physics Seminar

    "SB/BNL Joint Cosmo Seminar (at Stony Brook)"

    Presented by Chang Feng, UC Irvine

    1:30 pm, Small Seminar Room, Bldg. 510

    Wednesday, October 11, 2017, 1:30 pm

    Hosted by: 'Neelima Sehgal'

  9. OCT

    26

    Thursday

    Particle Physics Seminar

    "Observation of Coherent Elastic Neutrino-Nucleus Scattering by COHERENT"

    Presented by Kate Scholberg, Duke University

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, October 26, 2017, 3:00 pm

    Hosted by: 'Xin Qian'

    Coherent elastic neutrino-nucleus scattering (CEvNS) is a process in which a neutrino scatters off an entire nucleus at low momentum transfer, and for which the observable signature is a low-energy nuclear recoil. It represents a background for direct dark matter detection experiments, as well as a possible signal for astrophysical neutrinos. Furthermore, because the process is cleanly predicted in the Standard Model, a measurement is sensitive to beyond-the-Standard-Model physics, such as non-standard interactions of neutrinos. The process was first predicted in 1973. It was measured for the first time by the COHERENT collaboration using the high-quality source of pion-decay-at-rest neutrinos from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory and a CsI[Na] scintillator detector. This talk will describe COHERENT's recent 6.7-sigma measurement of CEvNS, the status and plans of COHERENT's suite of detectors at the SNS, and future physics reach.