BNL Home
  • RHIC

    Brookhaven physicists are using detectors at the Relativistic Heavy Ion Collider to explore how the matter that makes up atomic nuclei behaved just after the Big Bang.


    Brookhaven physicists and engineers are collaborators in the ATLAS experiment at CERN's Large Hadron Collider.

  • Neutrinos

    LBNE and the Daya Bay Neutrino Experiments seek to understand the subtle oscillations of neutrinos, ghost-like particles formed in the heart of stars

  • Cosmology

    In the LSST and BOSS experiments, Brookhaven physicists seek to measure and constrain the properties of dark matter, dark energy and the standard cosmological model.

Nuclear Physics


Responsibile for the operation and  physics exploitation of the PHENIX experiment at RHIC.


Responsibile for the operation and  physics exploitation of the STAR experiment at RHIC.


Leads, supports, and provides for the common requirements of the RHIC spin program, particularly for polarimetry.

RIKEN BNL Research Center

Conducts quantum chromodynamics and proton spin structure research.

Nuclear Theory

The nuclear theory group conducts research in all areas of QCD, including structure of hadrons and nuclei at high energies, the QCD phase diagram and the properties of quark-gluon matter.

RHIC Computing Facility

Provides computing services for experiments at RHIC, and the Large Synoptic Survey Telescope project.

High-Energy Physics

Cosmology & Astrophysics

Solving problems in observational cosmology: how to measure and constrain properties of dark matter, dark energy and the standard cosmological model.

Electronic Detector

Studies very rare processes at the Intensity Frontier.


Group members are collaborators on the LHC ATLAS experiment.

Physics Application

Develops physics applications software for the LHC ATLAS experiment.

High-Energy Theory

Focuses on providing theoretical foundation for the search for physics beyond the standard model, including lattice QCD calculations of key quantities required for this quest.

ATLAS Computing Facility

Provides computing services for U.S. ATLAS.

High-Energy Physics

Baryonic Oscillation Spectroscopic Survey

BOSS studies dark energy—the force thought to be responsible for the universe’s accelerating expansion.

Dark Energy Survey

Seeks to probe the origin of the accelerating universe and uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion.

Large Synoptic Survey Telescope

A 3.2 gigapixel camera mounted in a  ground-based telescope designed to produce the widest, densest, and most complete images of our universe ever captured.

Deep Underground Neutrino Experiment

An international collaboration working to precisely measure neutrino oscillations.


An experiment at CERN's Large Hadron Collider designed to detect particles created by proton-proton collisions.

Daya Bay Neutrino Experiment

An international collaboration studying the subtle transformations of neutrinos.


Measures low energy neutrino cross sections and investigates low energy excess events observed by the MiniBooNE experiment.

Muon g-2

A high precision measurement of the muon's g-2 value. A deviation between theory and observed value will suggest the existence of new particles.


Experiment which directly probes the Intensity Frontier and aids research on the Energy and Cosmic frontiers with precision measurements to characterize properties of new particles.

Nuclear Physics


An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.


An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

Electron Ion Collider (Future)

Plans for the world's first electron-nucleus collider, also known as eRHIC, call for the addition of a 5 to 10 GeV electron ring inside the RHIC tunnel.

The Physics Department is part of Brookhaven's Nuclear & Particle Physics Directorate.

Seminars & Colloquia

  1. No events scheduled

  1. MAY



    Nuclear Theory/RIKEN Seminar

    "Probing nucleon substructure with Bayesian parameter estimation"

    Presented by Scott Moreland, Duke

    2 pm, Small Seminar Room, Bldg. 510

    Friday, May 5, 2017, 2:00 pm

    Hosted by: 'Heikki Mantysaari'

    Multi-particle correlations observed in small collision systems at top LHC energies exhibit signatures which are similar to those observed in large collision systems and generally attributed to the formation of a deconfined quark-gluon plasma (QGP). This suggests that even proton-proton and proton-lead collisions may produce small droplets of QGP which translate spatial inhomogeneities into final-state momentum anisotropies. A primary challenge in testing hydrodynamic descriptions of small collision systems is in modeling the initial stages of the collision. In this talk, I discuss recent efforts to apply Bayesian methodology to parametric descriptions of initial state physics. I show that such methods can be extended to smaller length scales which include partonic degrees of freedom and glean information regarding the fluctuating nature of the proton.

  2. MAY



    Nuclear Physics Seminar

    "Searching for collectivity and testing the limits of hydrodynamics: results from the 2016 d+Au beam energy scan"

    Presented by Ron Belmont, University of Colorado Boulder

    11 am, Small Seminar Room, Bldg. 510

    Tuesday, May 23, 2017, 11:00 am

    Hosted by: 'Jin Huang'

    The standard picture of heavy ion collisions is that large systems (collisions of large nuclei like Au+Au and Pb+Pb) create a quark-gluon plasma that exhibits collective behavior indicative of nearly inviscid hydrodynamical evolution. Recently, data from small systems (collisions of a small projectile and a large target like d+Au and p+Pb) have been found to exhibit strikingly similar evidence for collective behavior. To further elucidate these results, RHIC delivered in 2016 a beam energy scan of d+Au collisions at 4 different energies: 200, 62.4, 39, and 19.6 GeV. In this talk we present a wide array of results from the Run16 d+Au BES and discuss the implications for collective behavior and the limits of applicability for hydrodynamics.

  1. MAY



    Particle Physics Seminar

    "New MEG Results and Prospects for Improved Searches for Muon and Electron Number Violation in the Charged Sector"

    Presented by William Molzon, University of California, Irvine

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, May 4, 2017, 3:00 pm

    Hosted by: 'Xin Qian'

    Searches for muon and electron number violation in the charged sector continue to be a sensitive probe of non Standard Model physics. I will give results of the full data-set of the MEG collaboration's search for muons decaying to electron plus photon and describe improvements to the MEG muon beam and apparatus that will improve sensitivity by a factor of ten in the next few years. I will also briefly review other experiments in the planning and early construction phases that are expected to improve sensitivity in related processes in the coming 5-10 years.

  2. MAY



    Computational Science Initiative Event

    "Frontiers for High Performance Computing in Cancer Research"

    Presented by Dr. Eric A. Stahlberg, Frederick Nat Lab for Cancer Research

    10 am, Seminar Room, Bldg. 725

    Friday, May 5, 2017, 10:00 am

    Hosted by: 'Frank Alexander'

    Anticipated advances in high-performance computing are enabling exciting new areas of computational and data oriented cancer research. These frontiers are being explored in a unique collaboration between the US Department of Energy and the National Cancer Institute in the Joint Design of Advanced Computing Solutions for Cancer. While the three-year collaboration is still in its first year, the collaboration is providing tremendous insight into the promise and challenges of employing extreme scale computing to advance research in the challenging and complex problem of cancer. Challenged with the aim of providing predictive insight in areas such as tumor response to treatments, molecular level interactions, and even clinical outcomes, the collaborative effort advances the frontiers of cancer research and computing in both numerically-intensive and data-intensive applications, while providing insights into opportunities for the high-performance computing community overall.

  3. MAY



    Particle Physics Seminar

    "Tiny Bubbles in the Mine: New Results from the PICO-60 Dark Matter Detector"

    Presented by Dr. Eric Dahl, North Western

    10 am, Small Seminar Room, Bldg. 510

    Friday, May 19, 2017, 10:00 am

    Hosted by: 'Xin Qian'

    The PICO Collaboration builds bubble chambers for the direct detection of WIMP dark matter. These devices are unique among direct detection experiments both in the WIMP models they can probe and the backgrounds they face. The PICO collaboration has set consecutive world-leading direct-detection limits on the spin-dependent WIMP-proton cross section, most recently with a zero-background 1.2 ton-day exposure with a C3F8 target in the PICO-60 detector at SNOLAB. This result is significant not just because it reaches new WIMP parameter space, but also because it demonstrates our ability to eliminate the anomalous bubble nucleation background that limited past bubble chamber WIMP searches, opening the door for experiments at the ton scale and beyond. I will describe this new result from PICO, our immediate plans for new detectors at SNOLAB, and the broader role bubble chambers will play in the future of dark matter detection, including the new scintillating bubble chamber technology developed by my group at Northwestern.

  4. MAY



    Particle Physics Seminar

    "Higgs boson properties: what we learn from run II of LHC"

    Presented by Andrei Gritsan, Johns Hopkins University

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, May 25, 2017, 3:00 pm

    Hosted by: 'Alessandro Tricoli'

    During the second run in 2015-2016, LHC delivered the number of proton-proton collisions far beyond expectation and at higher energy than in run I. We will review the very first results on the H boson properties based on the full dataset collected by CMS by now. We will go through the four main topics: H boson couplings to gauge bosons, couplings to fermions, self-couplings, and search for an extended Higgs sector. Prospects of some of these measurements through the end of run III and phase II of LHC will be discussed.

  5. JUL



    Office of Educational Programs Event

    "High School Research Program Begins"

    8:30 am, Hamilton Seminar Room, Bldg. 555

    Monday, July 10, 2017, 8:30 am