BNL Home
  • RHIC

    Brookhaven physicists are using detectors at the Relativistic Heavy Ion Collider to explore how the matter that makes up atomic nuclei behaved just after the Big Bang.

  • ATLAS

    Brookhaven physicists and engineers are collaborators in the ATLAS experiment at CERN's Large Hadron Collider.

  • Neutrinos

    LBNE and the Daya Bay Neutrino Experiments seek to understand the subtle oscillations of neutrinos, ghost-like particles formed in the heart of stars

  • Cosmology

    In the LSST and BOSS experiments, Brookhaven physicists seek to measure and constrain the properties of dark matter, dark energy and the standard cosmological model.

Nuclear Physics

PHENIX

Responsibile for the operation and  physics exploitation of the PHENIX experiment at RHIC.

STAR

Responsibile for the operation and  physics exploitation of the STAR experiment at RHIC.

RHIC Spin

Leads, supports, and provides for the common requirements of the RHIC spin program, particularly for polarimetry.

RIKEN BNL Research Center

Conducts quantum chromodynamics and proton spin structure research.

Nuclear Theory

The nuclear theory group conducts research in all areas of QCD, including structure of hadrons and nuclei at high energies, the QCD phase diagram and the properties of quark-gluon matter.

RHIC Computing Facility

Provides computing services for experiments at RHIC, and the Large Synoptic Survey Telescope project.

High-Energy Physics

Cosmology & Astrophysics

Solving problems in observational cosmology: how to measure and constrain properties of dark matter, dark energy and the standard cosmological model.

Electronic Detector

Studies very rare processes at the Intensity Frontier.

Omega

Group members are collaborators on the LHC ATLAS experiment.

Physics Application

Develops physics applications software for the LHC ATLAS experiment.

High-Energy Theory

Focuses on providing theoretical foundation for the search for physics beyond the standard model, including lattice QCD calculations of key quantities required for this quest.

ATLAS Computing Facility

Provides computing services for U.S. ATLAS.

High-Energy Physics

Baryonic Oscillation Spectroscopic Survey

BOSS studies dark energy—the force thought to be responsible for the universe’s accelerating expansion.

Dark Energy Survey

Seeks to probe the origin of the accelerating universe and uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion.

Large Synoptic Survey Telescope

A 3.2 gigapixel camera mounted in a  ground-based telescope designed to produce the widest, densest, and most complete images of our universe ever captured.

Deep Underground Neutrino Experiment

An international collaboration working to precisely measure neutrino oscillations.

ATLAS

An experiment at CERN's Large Hadron Collider designed to detect particles created by proton-proton collisions.

Daya Bay Neutrino Experiment

An international collaboration studying the subtle transformations of neutrinos.

MicroBooNE

Measures low energy neutrino cross sections and investigates low energy excess events observed by the MiniBooNE experiment.

Muon g-2

A high precision measurement of the muon's g-2 value. A deviation between theory and observed value will suggest the existence of new particles.

Mu2e

Experiment which directly probes the Intensity Frontier and aids research on the Energy and Cosmic frontiers with precision measurements to characterize properties of new particles.

Nuclear Physics

PHENIX

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

STAR

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

Electron Ion Collider (Future)

Plans for the world's first electron-nucleus collider, also known as eRHIC, call for the addition of a 5 to 10 GeV electron ring inside the RHIC tunnel.

The Physics Department is part of Brookhaven's Nuclear & Particle Physics Directorate.

Seminars & Colloquia

  1. DEC

    17

    Monday

    Physics Colloquium

    "The Science of the Sudbury Neutrino Observatory (SNO) and SNOLAB"

    Presented by Art McDonald, Queens University

    3:30 pm, Large Seminar Room, Bldg. 510

    Monday, December 17, 2018, 3:30 pm

    Hosted by: David Asner

    A description of the science associated with the Sudbury Neutrino Observatory, performed with substantial contributions from BNL scientists, and its relation to other neutrino measurements will be given, along with a discussion of the new set of experiments that are at various stages of development or operation at SNOLAB. These experiments will perform measurements of neutrino properties and seek direct detection of Weakly-Interacting Massive Particles (WIMPS) as Dark Matter candidates. Specific examples will include SNO+ (with BNL participation), in which the central element of the SNO detector will now be liquid scintillator with Te dissolved for neutrino-less double beta decay and DEAP-3600 using liquid argon for single phase direct Dark Matter detection. Future directions for Dark Matter detection with liquid argon will also be discussed.

  2. DEC

    18

    Tuesday

    Physics Colloquium (Leona Woods Distinguished Postdoctoral Lectureship Award)

    "On top of the top: challenging the Standard Model with precise measurements of top quark properties"

    Presented by María Moreno Llácer, CERN

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, December 18, 2018, 3:30 pm

    Hosted by: Andrei Nomerotski

    The understanding of the Electro-Weak Symmetry Breaking mechanism and the origin of the mass of fundamental particles is one of the most important questions in particle physics today. The top quark is unique among the known quarks since it is the heaviest fundamental particle in the Standard Model. Its large mass makes the top quark very different from all other particles, with a Yukawa coupling to the Higgs boson close to unity. For these reasons, the top quark and the Higgs boson play very special roles in the SM and in many extensions thereof. An accurate knowledge of their properties can bring key information on fundamental interactions at the electroweak breaking scale and beyond. The Large Hadron Collider is providing an enormous dataset of proton-proton collisions at the highest energies ever achieved in a laboratory. With the unprecedentedly large sample of top quarks, a new frontier has opened, the flavour physics of the top quark, allowing to study whether the Higgs field is the unique source of the top quark's mass and whether there are unexpected interactions between the top quark and the Higgs boson. The answers to these questions will shed light on what may lie beyond the Standard Model and can even have cosmological implications.

  1. JAN

    18

    Friday

    Nuclear Theory / RIKEN Seminar

    "TBA"

    Presented by Andrey Sadofyev, Los Alamos National Lab

    2 pm, CFNS Seminar Room 2-38

    Friday, January 18, 2019, 2:00 pm

    Hosted by: Niklas Mueller

  2. JAN

    18

    Friday

    Nuclear Theory / RIKEN Seminar

    "TBA"

    Presented by Andrey Sadofyev, LANL T-2

    2 pm, CFNS Seminar Room 2-38

    Friday, January 18, 2019, 2:00 pm

    Hosted by: Niklas Mueller

  3. JAN

    25

    Friday

    Nuclear Theory / RIKEN Seminar

    "TBA"

    Presented by Paolo Glorioso, Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago

    2 pm, CFNS Seminar Room 2-38

    Friday, January 25, 2019, 2:00 pm

    Hosted by: Niklas Mueller

  4. MAR

    29

    Friday

    High Energy / Nuclear Theory / RIKEN Seminar

    "TBA"

    Presented by Aram Kotzinian, Yerevan Phys. Inst. and INFN Turin

    3 pm, Small Seminar Room, Bldg. 510

    Friday, March 29, 2019, 3:00 pm

  1. DEC

    20

    Thursday

    Particle Physics Seminar (Leona Woods Distinguished Postdoctoral Lectureship Award)

    "Measurement of top quark pair production in association with a Higgs or gauge boson at the LHC with the ATLAS detector"

    Presented by María Moreno Llácer, CERN

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, December 20, 2018, 3:00 pm

    Hosted by: Alessandro Tricoli

    The top quark is unique among the known quarks since it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. Given its large mass (the heaviest fundamental particle), the top quark may play a special role in the electroweak symmetry breaking mechanism and therefore, new physics related to this might be found first in top quark precision measurements. Possible new physics signals would cause deviations of the top quark couplings from the Standard Model (SM) prediction. It couples to the SM fields through its gauge and Yukawa interactions. The high statistics top quark sample at the LHC has allowed to access the associated production of a top quark pair with a boson: tt+photon, tt+W, tt+Z and tt+H. The latest measurements carried out by the ATLAS detector for these physics processes will be presented, highlighting the main challenges.

  2. JAN

    10

    Thursday

    Particle Physics Seminar

    "Cross section measurements and new physics searches with WZ vector boson scattering events at CMS"

    Presented by Kenneth Long, University of Wisconsin - Madison

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, January 10, 2019, 3:00 pm

    Hosted by: Alessandro Tricolli

    As the standard model (SM) Higgs boson looks increasingly like its SM expectation, expanded tests of the electroweak (EW) sector of the SM are a focal point of the long-term LHC program. Production of massive vector bosons via vector boson scattering provides a direct probe of the self-interactions of the massive vector bosons, which are intimately connected to the Higgs-Englert-Brout mechanism of EW symmetry breaking. A search for vector boson scattering of W and Z bosons has recently been performed by the CMS experiment using data collected in 2016. I will present this search as well as WZ cross section measurements, which are less dependent on theoretical inputs. This process is also sensitive to New Physics in the EW sector. I will present interpretations of these results in terms of explicit models predicting additional charged Higgs bosons and in the generalized framework of dimension-8 effective field theory.

  3. FEB

    7

    Thursday

    Particle Physics Seminar

    "Probing New Physics and the Nature of the Higgs Boson at ATLAS"

    Presented by Lailin Xu, University of Michigan

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, February 7, 2019, 3:00 pm

    Hosted by: Alessandro Tricoli

    The long-sought Higgs boson discovered at the LHC completes the Standard Model of the particle physics. During the last six years, substantial achievements have been made to probe the nature of the Higgs boson. Participle physics is however at an impasse: deep mysteries of the Electroweak symmetry breaking remain unanswered, and long-awaited new physics phenomena beyond the SM have not shown up yet. In this talk, I start with a brief overview on the current profile of measurements of the Higgs boson properties and couplings. I then present Higgs measurements in the four-lepton channel, and how we use the Higgs boson as a portal in the quest for new physics. In the end, I discuss the prospect of the Higgs measurements including the Higgs self-coupling at future colliders.

  4. MAR

    29

    Friday

    High Energy / Nuclear Theory / RIKEN Seminar

    "TBA"

    Presented by Aram Kotzinian, Yerevan Phys. Inst. and INFN Turin

    3 pm, Small Seminar Room, Bldg. 510

    Friday, March 29, 2019, 3:00 pm