BNL Home
  • RHIC

    Brookhaven physicists are using detectors at the Relativistic Heavy Ion Collider to explore how the matter that makes up atomic nuclei behaved just after the Big Bang.

  • ATLAS

    Brookhaven physicists and engineers are collaborators in the ATLAS experiment at CERN's Large Hadron Collider.

  • Neutrinos

    LBNE and the Daya Bay Neutrino Experiments seek to understand the subtle oscillations of neutrinos, ghost-like particles formed in the heart of stars

  • Cosmology

    In the LSST and BOSS experiments, Brookhaven physicists seek to measure and constrain the properties of dark matter, dark energy and the standard cosmological model.

Nuclear Physics

PHENIX

Responsibile for the operation and  physics exploitation of the PHENIX experiment at RHIC.

STAR

Responsibile for the operation and  physics exploitation of the STAR experiment at RHIC.

RHIC Spin

Leads, supports, and provides for the common requirements of the RHIC spin program, particularly for polarimetry.

RIKEN BNL Research Center

Conducts quantum chromodynamics and proton spin structure research.

Nuclear Theory

The nuclear theory group conducts research in all areas of QCD, including structure of hadrons and nuclei at high energies, the QCD phase diagram and the properties of quark-gluon matter.

RHIC Computing Facility

Provides computing services for experiments at RHIC, and the Large Synoptic Survey Telescope project.

High-Energy Physics

Cosmology & Astrophysics

Solving problems in observational cosmology: how to measure and constrain properties of dark matter, dark energy and the standard cosmological model.

Electronic Detector

Studies very rare processes at the Intensity Frontier.

Omega

Group members are collaborators on the LHC ATLAS experiment.

Physics Application

Develops physics applications software for the LHC ATLAS experiment.

High-Energy Theory

Focuses on providing theoretical foundation for the search for physics beyond the standard model, including lattice QCD calculations of key quantities required for this quest.

ATLAS Computing Facility

Provides computing services for U.S. ATLAS.

High-Energy Physics

Baryonic Oscillation Spectroscopic Survey

BOSS studies dark energy—the force thought to be responsible for the universe’s accelerating expansion.

Dark Energy Survey

Seeks to probe the origin of the accelerating universe and uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion.

Large Synoptic Survey Telescope

A 3.2 gigapixel camera mounted in a  ground-based telescope designed to produce the widest, densest, and most complete images of our universe ever captured.

Deep Underground Neutrino Experiment

An international collaboration working to precisely measure neutrino oscillations.

ATLAS

An experiment at CERN's Large Hadron Collider designed to detect particles created by proton-proton collisions.

Daya Bay Neutrino Experiment

An international collaboration studying the subtle transformations of neutrinos.

MicroBooNE

Measures low energy neutrino cross sections and investigates low energy excess events observed by the MiniBooNE experiment.

Muon g-2

A high precision measurement of the muon's g-2 value. A deviation between theory and observed value will suggest the existence of new particles.

Mu2e

Experiment which directly probes the Intensity Frontier and aids research on the Energy and Cosmic frontiers with precision measurements to characterize properties of new particles.

Nuclear Physics

PHENIX

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

STAR

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

Electron Ion Collider (Future)

Plans for the world's first electron-nucleus collider, also known as eRHIC, call for the addition of a 5 to 10 GeV electron ring inside the RHIC tunnel.

The Physics Department is part of Brookhaven's Nuclear & Particle Physics Directorate.

Seminars & Colloquia

  1. JUN

    27

    Tuesday

    Physics Colloquium

    "TBA"

    Presented by TBA, TBA

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, June 27, 2017, 3:30 pm

    Hosted by: 'Robert Pisarski'

  2. SEP

    12

    Tuesday

    Physics Colloquium

    "EIC theory TBC"

    Presented by Elena Petreska, NIKHEF

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, September 12, 2017, 3:30 pm

  3. OCT

    24

    Tuesday

    Physics Colloquium

    "TBA"

    Presented by Christoph Lehner, BNL

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, October 24, 2017, 3:30 pm

    Hosted by: 'Rob Pisarski'

  1. JUN

    27

    Tuesday

    Nuclear Physics Seminar

    "Measurement of longitudinal flow correlations in 2.76 and 5.02 TeV Pb+Pb collisions with the ATLAS detector"

    Presented by Peng Huo, Stony Brook University

    11 am, Small Seminar Room, Bldg. 510

    Tuesday, June 27, 2017, 11:00 am

    Hosted by: 'Jin Huang'

    Longitudinal dynamics has recently become a topic of great interest in the study of ultra-relativistic heavy ion collisions. Measurement of the longitudinal fluctuations of the flow harmonic coefficients $v_n$ and event-plane angles $\Psi_n$ can provide a more complete picture of space-time evolution of the hot, dense medium formed in heavy ion collisions. Longitudinal flow decorrelations can be modeled with two contributions: magnitude fluctuations and event plane twist. However, existing observables do not separate these two effects. In this analysis, a new 4-particle correlator is used to separate the event-plane twist from magnitude fluctuations in 2.76 and 5.02 Pb+Pb collisions. Results show both effects have a linear dependence on pseudorapidity separation for $v_{2-5}$, and show a small but measurable variation with collision energy. The correlation of $\Psi_n $ of different order are also expected to have longitudinal fluctuations due to the non-linear mixing effects between lower and higher order flow harmonics. First measurement of such non-linear mode-mixing effects as a function of pseudorapidity is also presented. These result will help to constrain initial conditions along longitudinal direction and also help understand the longitudinal evolution of the fireball.

  2. JUN

    30

    Friday

    Nuclear Theory/RIKEN Seminar

    "TBA"

    Presented by Feng Yuan, LBL

    2 pm, Small Seminar Room, Bldg. 510

    Friday, June 30, 2017, 2:00 pm

  3. JUL

    7

    Friday

    Nuclear Theory/RIKEN Seminar

    "TBA"

    Presented by Ismail Zahed, Stony Brook

    2 pm, Small Seminar Room, Bldg. 510

    Friday, July 7, 2017, 2:00 pm

  4. AUG

    11

    Friday

    Nuclear Theory/RIKEN Seminar

    "TBA"

    Presented by Yoshitaka Hatta, Kyoto University

    2 pm, Small Seminar Room, Bldg. 510

    Friday, August 11, 2017, 2:00 pm

  5. AUG

    18

    Friday

    Nuclear Theory/RIKEN Seminar

    "TBA"

    Presented by Ignazio Scimemi, Universidad Complutense de Madrid

    2 pm, Small Seminar Room, Bldg. 510

    Friday, August 18, 2017, 2:00 pm

  1. JUN

    29

    Thursday

    Particle Physics Seminar

    "Wiener-SVD approach to data unfolding"

    Presented by Dr. Hanyu Wei, BNL

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, June 29, 2017, 3:00 pm

    Hosted by: 'Xin Qian'

    Data unfolding is a commonly used technique in the high energy physics experiments, to retrieve the distorted or transformed measurements by various detector effects. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the Singular Value Decomposition (SVD) of the response matrix is developed. With the well-known Wiener filter concept, the modified SVD approach, Wiener-SVD, achieves the maximizing signal-to-noise ratio of the binned data in a transformed set of orthonormal bases where the uncertainties are bin-to-bin uncorrelated. In this talk, the mathematical principles and formulations of the newly developed Wiener-SVD unfolding will be presented. A few applications will be demonstrated. A comparison with the commonly used regularization method will also be shown. The advantages and disadvantaged of the Wiener-SVD approach will be discussed.

  2. JUL

    10

    Monday

    Office of Educational Programs Event

    "High School Research Program Begins"

    8:30 am, Hamilton Seminar Room, Bldg. 555

    Monday, July 10, 2017, 8:30 am

  3. JUL

    20

    Thursday

    Particle Physics Seminar

    "W boson mass measurement with the ATLAS experiment"

    Presented by Fabrice Balli, CEA Saclay

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, July 20, 2017, 3:00 pm

    Hosted by: 'Alessandro Tricoli'

    The W boson mass is a fundamental parameter of the Standard Model (SM) and was measured by several experiments at high energy e+e- and ppbar colliders. This parameter's measurement has the biggest impact on indirect searches for new particles or interactions, by comparing the measurement of this parameter with the prediction from the SM. It was measured recently by the ATLAS experiment at LHC, using data recorded in 2011, with a centre of mass energy of 7 TeV. I will review the thorough work that was performed in the ATLAS collaboration for this measurement and will discuss some considerations for future measurements at the LHC.