BNL Home
  • RHIC

    Brookhaven physicists are using detectors at the Relativistic Heavy Ion Collider to explore how the matter that makes up atomic nuclei behaved just after the Big Bang.

  • ATLAS

    Brookhaven physicists and engineers are collaborators in the ATLAS experiment at CERN's Large Hadron Collider.

  • Neutrinos

    LBNE and the Daya Bay Neutrino Experiments seek to understand the subtle oscillations of neutrinos, ghost-like particles formed in the heart of stars

  • Cosmology

    In the LSST and BOSS experiments, Brookhaven physicists seek to measure and constrain the properties of dark matter, dark energy and the standard cosmological model.

Nuclear Physics

PHENIX

Responsibile for the operation and  physics exploitation of the PHENIX experiment at RHIC.

STAR

Responsibile for the operation and  physics exploitation of the STAR experiment at RHIC.

RHIC Spin

Leads, supports, and provides for the common requirements of the RHIC spin program, particularly for polarimetry.

RIKEN BNL Research Center

Conducts quantum chromodynamics and proton spin structure research.

Nuclear Theory

The nuclear theory group conducts research in all areas of QCD, including structure of hadrons and nuclei at high energies, the QCD phase diagram and the properties of quark-gluon matter.

RHIC Computing Facility

Provides computing services for experiments at RHIC, and the Large Synoptic Survey Telescope project.

High-Energy Physics

Cosmology & Astrophysics

Solving problems in observational cosmology: how to measure and constrain properties of dark matter, dark energy and the standard cosmological model.

Electronic Detector

Studies very rare processes at the Intensity Frontier.

Omega

Group members are collaborators on the LHC ATLAS experiment.

Physics Application

Develops physics applications software for the LHC ATLAS experiment.

High-Energy Theory

Focuses on providing theoretical foundation for the search for physics beyond the standard model, including lattice QCD calculations of key quantities required for this quest.

ATLAS Computing Facility

Provides computing services for U.S. ATLAS.

High-Energy Physics

Baryonic Oscillation Spectroscopic Survey

BOSS studies dark energy—the force thought to be responsible for the universe’s accelerating expansion.

Dark Energy Survey

Seeks to probe the origin of the accelerating universe and uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion.

Large Synoptic Survey Telescope

A 3.2 gigapixel camera mounted in a  ground-based telescope designed to produce the widest, densest, and most complete images of our universe ever captured.

Deep Underground Neutrino Experiment

An international collaboration working to precisely measure neutrino oscillations.

ATLAS

An experiment at CERN's Large Hadron Collider designed to detect particles created by proton-proton collisions.

Daya Bay Neutrino Experiment

An international collaboration studying the subtle transformations of neutrinos.

MicroBooNE

Measures low energy neutrino cross sections and investigates low energy excess events observed by the MiniBooNE experiment.

Muon g-2

A high precision measurement of the muon's g-2 value. A deviation between theory and observed value will suggest the existence of new particles.

Mu2e

Experiment which directly probes the Intensity Frontier and aids research on the Energy and Cosmic frontiers with precision measurements to characterize properties of new particles.

Nuclear Physics

PHENIX

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

STAR

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

Electron Ion Collider (Future)

Plans for the world's first electron-nucleus collider, also known as eRHIC, call for the addition of a 5 to 10 GeV electron ring inside the RHIC tunnel.

The Physics Department is part of Brookhaven's Nuclear & Particle Physics Directorate.

Seminars & Colloquia

  1. DEC

    5

    Tuesday

    Physics Colloquium

    "Thinking inside the box - hadron resonances in QCD"

    Presented by Jozef Dudek, JLab

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, December 5, 2017, 3:30 pm

    Hosted by: 'Rob Pisarski'

    I will describe how we can make use of the finite box in which lattice QCD calculations are performed to learn something about hadron scattering amplitudes from first principles. These amplitudes contain information about the resonance structure of QCD and hence the spectrum of excited mesons and baryons. I'll present the results of recent calculations in which the lightest scalar, vector and tensor mesons have been studied.

  2. FEB

    27

    Tuesday

    Physics Colloquium

    "The Multi-Messenger Picture of a Neutron Star Merger"

    Presented by Brian Metzger, Columbia University

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, February 27, 2018, 3:30 pm

    Hosted by: ''Peter Petreczky''

    On August 17 the LIGO/Virgo gravitational wave observatories detected the first binary neutron star merger event (GW170817), a discovery followed by the most ambitious electromagnetic (EM) follow-up campaign ever conducted. A gamma-ray burst (GRB) of short duration and very low luminosity was discovered by the Fermi and INTEGRAL satellites within 2 seconds of the merger. Within 11 hours, a bright but rapidly-fading thermal optical counterpart was discovered in the galaxy NGC 4993 at a distance of only 40 Mpc. The properties of the optical transient match remarkably well predictions for kilonova emission powered by the radioactive decay of heavy nuclei synthesized in the expanding merger ejecta by the r-process. The rapid spectral evolution of the kilonova emission to near-infrared wavelengths demonstrates that a portion of the ejecta contains heavy lanthanide nuclei. Two weeks after the merger, rising non-thermal X-ray and radio emission were detected from the position of the optical transient, consistent with delayed synchrotron afterglow radiation from an initially off-axis relativistic jet with the properties consistent with those of (on-axis) cosmological short GRB. I will describe a unified scenario for the range of EM counterparts from GW170817 and their implications for the astrophysical origin of the r-process and the properties of neutron stars. I will preview the upcoming era of multi-messenger astronomy, once Advanced LIGO/Virgo reach design sensitivity and a neutron star merger is detected every few weeks.

  1. DEC

    1

    Friday

    Nuclear Theory/RIKEN seminar

    "TBA"

    Presented by Shanshan Cao, Wayne State University

    2 pm, Small Seminar Room, Bldg. 510

    Friday, December 1, 2017, 2:00 pm

  2. FEB

    9

    Friday

    Joint Nuclear Theory and HET Seminar

    "TBA"

    Presented by Michael Ramsey-Musolf, U. Mass. Amherst

    2 pm, Small Seminar Room, Bldg. 510

    Friday, February 9, 2018, 2:00 pm

    Hosted by: 'Chun Shen'

  1. NOV

    27

    Monday

    Particle Physics Seminar

    "The strong CP-problem and axion dark matter searches"

    Presented by Yannis Semertzidis, KAIST and IBS

    3 pm, Small Seminar Room, Bldg. 510

    Monday, November 27, 2017, 3:00 pm

    Hosted by: 'Chao Zhang'

    The strong CP-problem, i.e. why is the neutron EDM experimental limit is at least ten orders of magnitude lower than expected from the theory of QCD is one of the mysteries in physics today. Peccei and Quinn came up with a solution to the strong CP-problem at the expense of requiring an extra pseudo-scalar particle, the axion. It turns out, the axion at a certain mass range is also an ideal dark matter candidate and it can be detected via its conversion to microwave photons in the presence of a strong magnetic field. IBS/CAPP in South Korea, the center for axion and precision physics research of the institute for basic science, was established to elucidate the strong CP-problem and in particular the axion dark matter mystery. I'm going to give an overview of the history of axion dark matter searches, the present status and the plans for answering whether or not axions are a significant part of the dark matter in our galaxy.

  2. DEC

    11

    Monday

    Particle Physics Seminar

    "A Unified Program of Argon Dark Matter Searches: DarkSide-20k and The Global Argon Dark Matter Collaboration"

    Presented by Cristiano Galbiati, Princeton University

    3 pm, Small Seminar Room, Bldg. 510

    Monday, December 11, 2017, 3:00 pm

    Hosted by: 'Alessandro Tricoli'

    : Experimenters from four different argon dark matter searches have joined their forces in the the "Global Argon Dark Matter Collaboration" to carry out a unified program for dark matter direct detection. The participants are researchers currently working on the ArDM experiment at LSC; on the DarkSide-50 experiment at LNGS; on the DEAP-3600 experiment at SNOLab; and on the MiniCLEAN experiment at SNOLab. In 2015/2016 The DarkSide-50 experiment at LNGS produced two zero-background science results, along with a comparison of the results obtained with both atmospheric and underground argon fills, demonstrating the ability of large experiments to eliminate background from betas/gammas at the tens of tonne-year exposure. The DEAP-3600 experiment at SNOLAB is the first tonne-scale experiment to achieve both stable operations and an extended physics run. DEAP-3600 has been collecting physics data with over 3 tonnes of argon since late 2016 and published its first results in 2017. Researchers from the four experiments will jointly carry out as the single next step at the scale of a few tens of tonnes the DarkSide-20k experiment. DarkSide-20k was approved in 2017 by the Italian INFN, by the host laboratory LNGS, and by the US NSF. DarkSide-20k is also officially and jointly supported by the three underground laboratories LNGS, LSC, and SNOLab. DarkSide-20k is a 20-tonne fiducial volume dual-phase TPC to be operated at LNGS with an underground argon fill, designed to collect an exposure of 100 tonne×years, completely free of neutron-induced nuclear recoil background and all electron recoil background. DarkSide-20k is set to start operating by 2021 and will have sensitivity to WIMP-nucleon spin-independent cross sections of 1.2 × 10−47 cm2 for WIMPs of 1 TeV/c2 mass, to be achieved during a 5 year run. An extended 10 year run could produce an exposure of 200 tonne×years, with sensitivity for the cross-section of 7.4 × 10&min

  3. JAN

    18

    Thursday

    Particle Physics Seminar

    "A Unified Program of Argon Dark Matter Searches: DarkSide-20k and The Global Argon Dark Matter Collaboration"

    Presented by Cristiano Galbiati, Princeton University

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, January 18, 2018, 3:00 pm

    Hosted by: 'Alessandro Tricoli'

    Experimenters from four different argon dark matter searches have joined their forces in the the "Global Argon Dark Matter Collaboration" to carry out a unified program for dark matter direct detection. The participants are researchers currently working on the ArDM experiment at LSC; on the DarkSide-50 experiment at LNGS; on the DEAP-3600 experiment at SNOLab; and on the MiniCLEAN experiment at SNOLab. In 2015/2016 The DarkSide-50 experiment at LNGS produced two zero-background science results, along with a comparison of the results obtained with both atmospheric and underground argon fills, demonstrating the ability of large experiments to eliminate background from betas/gammas at the tens of tonne-year exposure. The DEAP-3600 experiment at SNOLAB is the first tonne-scale experiment to achieve both stable operations and an extended physics run. DEAP-3600 has been collecting physics data with over 3 tonnes of argon since late 2016 and published its first results in 2017. Researchers from the four experiments will jointly carry out as the single next step at the scale of a few tens of tonnes the DarkSide-20k experiment. DarkSide-20k was approved in 2017 by the Italian INFN, by the host laboratory LNGS, and by the US NSF. DarkSide-20k is also officially and jointly supported by the three underground laboratories LNGS, LSC, and SNOLab. DarkSide-20k is a 20-tonne fiducial volume dual-phase TPC to be operated at LNGS with an underground argon fill, designed to collect an exposure of 100 tonne×years, completely free of neutron-induced nuclear recoil background and all electron recoil background. DarkSide-20k is set to start operating by 2021 and will have sensitivity to WIMP-nucleon spin-independent cross sections of 1.2 × 10−47 cm2 for WIMPs of 1 TeV/c2 mass, to be achieved during a 5 year run. An extended 10 year run could produce an exposure of 200 tonne×years, with sensitivity for the cross-section of 7.4 × 10&minus