BNL Home
  • RHIC

    Brookhaven physicists are using detectors at the Relativistic Heavy Ion Collider to explore how the matter that makes up atomic nuclei behaved just after the Big Bang.

  • ATLAS

    Brookhaven physicists and engineers are collaborators in the ATLAS experiment at CERN's Large Hadron Collider.

  • Neutrinos

    LBNE and the Daya Bay Neutrino Experiments seek to understand the subtle oscillations of neutrinos, ghost-like particles formed in the heart of stars

  • Cosmology

    In the LSST and BOSS experiments, Brookhaven physicists seek to measure and constrain the properties of dark matter, dark energy and the standard cosmological model.

Nuclear Physics

PHENIX

Responsibile for the operation and  physics exploitation of the PHENIX experiment at RHIC.

STAR

Responsibile for the operation and  physics exploitation of the STAR experiment at RHIC.

RHIC Spin

Leads, supports, and provides for the common requirements of the RHIC spin program, particularly for polarimetry.

RIKEN BNL Research Center

Conducts quantum chromodynamics and proton spin structure research.

Nuclear Theory

The nuclear theory group conducts research in all areas of QCD, including structure of hadrons and nuclei at high energies, the QCD phase diagram and the properties of quark-gluon matter.

RHIC Computing Facility

Provides computing services for experiments at RHIC, and the Large Synoptic Survey Telescope project.

High-Energy Physics

Cosmology & Astrophysics

Solving problems in observational cosmology: how to measure and constrain properties of dark matter, dark energy and the standard cosmological model.

Electronic Detector

Studies very rare processes at the Intensity Frontier.

Omega

Group members are collaborators on the LHC ATLAS experiment.

Physics Application

Develops physics applications software for the LHC ATLAS experiment.

High-Energy Theory

Focuses on providing theoretical foundation for the search for physics beyond the standard model, including lattice QCD calculations of key quantities required for this quest.

ATLAS Computing Facility

Provides computing services for U.S. ATLAS.

High-Energy Physics

Baryonic Oscillation Spectroscopic Survey

BOSS studies dark energy—the force thought to be responsible for the universe’s accelerating expansion.

Dark Energy Survey

Seeks to probe the origin of the accelerating universe and uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion.

Large Synoptic Survey Telescope

A 3.2 gigapixel camera mounted in a  ground-based telescope designed to produce the widest, densest, and most complete images of our universe ever captured.

Deep Underground Neutrino Experiment

An international collaboration working to precisely measure neutrino oscillations.

ATLAS

An experiment at CERN's Large Hadron Collider designed to detect particles created by proton-proton collisions.

Daya Bay Neutrino Experiment

An international collaboration studying the subtle transformations of neutrinos.

MicroBooNE

Measures low energy neutrino cross sections and investigates low energy excess events observed by the MiniBooNE experiment.

Muon g-2

A high precision measurement of the muon's g-2 value. A deviation between theory and observed value will suggest the existence of new particles.

Mu2e

Experiment which directly probes the Intensity Frontier and aids research on the Energy and Cosmic frontiers with precision measurements to characterize properties of new particles.

Nuclear Physics

PHENIX

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

STAR

An experiment at the Relativistic Heavy Ion Collider designed to explore quark gluon plasma.

Electron Ion Collider (Future)

Plans for the world's first electron-nucleus collider, also known as eRHIC, call for the addition of a 5 to 10 GeV electron ring inside the RHIC tunnel.

The Physics Department is part of Brookhaven's Nuclear & Particle Physics Directorate.

Seminars & Colloquia

  1. No events scheduled

  1. JUL

    2

    Tuesday

    Nuclear Physics Seminar

    "Charm hadron collective flow and charm hadrochemistry in heavy-ion collisions"

    Presented by Xin Dong, Lawrence Berkeley National Laboratory

    10 am, Small Seminar Room, Bldg. 510

    Tuesday, July 2, 2019, 10:00 am

    Hosted by: Lijuan Ruan

    Heavy quark transport offers unique insight into the microscopic picture of the sQGP created in heavy-ion collisions. One central focus of heavy quark program is to determine the heavy quark spatial diffusion coefficient and its momentum and temperature dependence. This requires precise measurements of heavy flavor hadron production and their collective flow over a broad momentum region. In the meantime, heavy quark hadrochemistry, the abundance of various heavy flavor hadrons, provides special sensitivity to the QCD hadronization and also plays an important role for the interpretation of heavy flavor hadron data in order to constrain the heavy quark spatial diffusion coefficient of the sQGP. In this seminar, I will focus on the recent STAR results of charm hadron D0, D+/-, D*, Ds, Lambda_c production and D0 radial and elliptic flow in heavy-ion collisions utilizing the state-of-the-art silicon pixel detector, the Heavy Flavor Tracker. These data will be compared to measurements from other experiments at RHIC and the LHC as well as various model calculations. I will then discuss how these data will help us better understand the sQGP properties and its hadronization. Finally, I will present a personal view of future heavy quark measurements at RHIC.

  2. JUL

    9

    Tuesday

    Nuclear Physics Seminar

    ": Extracting the Heavy-Quark Potential from Bottomonium Observables in Heavy-Ion Collisions"

    Presented by Xiaojian Du, Texas A&M University

    11 am, Small Seminar Room, Bldg. 510

    Tuesday, July 9, 2019, 11:00 am

    Hosted by: Rongrong Ma

    The in-medium color potential is a fundamental quantity for understanding the properties of the strongly coupled quark-gluon plasma (sQGP). Open and hidden heavy-flavor (HF) production in ultrarelativistic heavy-ion collisions (URHICs) has been found to be a sensitive probe of this potential. Here we utilize a previously developed quarkonium transport approach in combination with insights from open HF diffusion to extract the color-singlet potential from experimental results on Υ production in URHICs. Starting from a parameterized trial potential, we evaluate the Υ transport parameters and conduct systematic fits to available data for the centrality dependence of ground and excited states at RHIC and the LHC. The best fits and their statistical significance are converted into a temperature dependent potential. Including nonperturbative effects in the dissociation rate guided from open HF phenomenology, we extract a rather strongly coupled potential with substantial remnants of the long-range confining force in the QGP.

  3. JUL

    9

    Tuesday

    Physics Department Summer Lecture Series

    "Silicon Detectors for Particle and Nuclear Physics"

    Presented by Gabriele Giacomini, BNL

    12:30 pm, Small Seminar Room, Bldg. 510

    Tuesday, July 9, 2019, 12:30 pm

    Hosted by: Mary Bishai

    Silicon technology is approximately 70 years old but thousands of years by a multitude of researchers has been dedicated to R&D; the well-established microelectronic industry is based on it. Being that the silicon is sensitive to photons (from infrared to X-rays, passing through visible light and ultraviolet) and to charged particles, we can leverage the microelectronic technology to make sensors out of silicon. Silicon sensors are used in a variety of applications including scientific experiments (High Energy Physics, Astrophysics, Photon Science, etc) as well as industrial and commercial use (cameras, etc). The basic structure is the p-n junction across which a voltage is applied. When an ionizing event occurs (a photon or a charged-particle interacting with silicon), a short current pulse (~ few ns) is generated and detected by the read-out electronics. There are many kinds of silicon sensors and each one must be tailored according to the specific application. We'll give an overview of the state of the silicon technology and its different applications.

  1. JUN

    25

    Today

    Physics Department Summer Lecture Series

    "The Really Big Picture: Cosmology in the 21st Century"

    Presented by Paul Stankus, Oak Ridge National Laboratory

    12:30 pm, Small Seminar Room, Bldg. 510

    Tuesday, June 25, 2019, 12:30 pm

    Hosted by: Mary Bishai

  2. JUN

    26

    Wednesday

    HET Seminar

    "Inducing and Detecting Collective Effects of Particle Dark Matter"

    Presented by Asher Berlin, SLAC

    2:30 pm, Small Seminar Room, Bldg. 510

    Wednesday, June 26, 2019, 2:30 pm

    Hosted by: Gopolang Mohlabeng

  3. JUN

    27

    Thursday

    Particle Physics Seminar

    "First measurement of the neutron-argon cross section between 100 and 800 MeV"

    Presented by Prof. Christopher Mauger, University of Pennsylvania

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, June 27, 2019, 3:00 pm

    Hosted by: Chao Zhang

    The DUNE experiment directs a neutrino beam from Fermilab towards a 40 kiloton liquid argon time-projection chamber (TPC) 1300 km away in the Sanford Underground Research Facility in South Dakota. By measuring electron neutrino and anti-neutrino appearance from the predominantly muon neutrino and anti-neutrino beams, DUNE will determine the neutrino mass ordering and explore leptonic CP violation. The neutrino oscillation phenomena explored by DUNE require robust determinations of the (anti-)neutrino energies by reconstructing the particles produced in charged current reactions. Among the particles emerging from the interaction which carry significant energy, neutrons are the most challenging to reconstruct. The CAPTAIN collaboration has made the first measurement of the neutrino-argon cross section between 100 and 800 MeV of neutron kinetic energy - an energy regime crucial for neutrino energy reconstruction at DUNE. We made the measurement in a liquid argon TPC with 400 kg of instrumented mass. I describe the measurement and discuss future plans.

  4. JUL

    1

    Monday

    Particle Physics Seminar

    "Searches of Dark Matter signals with the ATLAS detector at the LHC: Present and future"

    Presented by Dr. Rachid Mazini, Academia Sinica, Taiwan

    3 pm, Small Seminar Room, Bldg. 510

    Monday, July 1, 2019, 3:00 pm

    Hosted by: Alessandro Tricoli

    In this seminar, I will present an overview of up-to-date results on searches for Dark Matter signals with the ATLAS detector at the LHC using Run 2 data. Comparison with non-accelerator DM results as well as interpretation within some theoretical models will be discussed. In addition, expectation from the high-luminosity LHC (HL-LHC) DM searches program will be briefly presented. Finally, I will talk about the new ATLAS High Granularity Timing Detector (HGTD), planned for the phase 2 upgrade program for the HL-LHC run, and it performances for physics studies.

  5. JUL

    9

    Tuesday

    Physics Department Summer Lecture Series

    "Silicon Detectors for Particle and Nuclear Physics"

    Presented by Gabriele Giacomini, BNL

    12:30 pm, Small Seminar Room, Bldg. 510

    Tuesday, July 9, 2019, 12:30 pm

    Hosted by: Mary Bishai

    Silicon technology is approximately 70 years old but thousands of years by a multitude of researchers has been dedicated to R&D; the well-established microelectronic industry is based on it. Being that the silicon is sensitive to photons (from infrared to X-rays, passing through visible light and ultraviolet) and to charged particles, we can leverage the microelectronic technology to make sensors out of silicon. Silicon sensors are used in a variety of applications including scientific experiments (High Energy Physics, Astrophysics, Photon Science, etc) as well as industrial and commercial use (cameras, etc). The basic structure is the p-n junction across which a voltage is applied. When an ionizing event occurs (a photon or a charged-particle interacting with silicon), a short current pulse (~ few ns) is generated and detected by the read-out electronics. There are many kinds of silicon sensors and each one must be tailored according to the specific application. We'll give an overview of the state of the silicon technology and its different applications.