BNL Home

Our Areas of Research

Physics Fellowship Program

The RIKEN BNL Research Center offers a Fellow system at Brookhaven's Relativistic Heavy Ion Collider (RHIC) allowing joint appointments with universities and research laboratories throughout the world, enabling talented researchers to hold tenure track positions at their home institution as well as a Fellow position with the Center.

This system was established to increase the research potential of the Center and to disseminate its research activities and results. To date, nine RHIC Physics Fellows have received the U.S. Department of Energy Outstanding Junior Investigator Award and over 50 Fellows have received tenure at their home institutions since the inception of the program.

Institutions interested in initiating a new RHIC Physics Fellow position may obtain details on how to proceed by contacting Colleen Michael, 1-631-344-4919.

RBRC Research Groups


D. Kharzeev, Group Leader

This group conducts QCD related research that includes heavy ion physics, the quark gluon plasma, color glass condensate and hard QCD/spin physics.


T. Izubuchi, Group Leader

This group's mission is to solve the dynamics of QCD from first principle lattice simulations using in-house computer resources.


Y. Akiba, Group Leader

This group studies the spin structure of the proton via polarized p+p collisions at RHIC as well as the properties of quark gluon plasma.

The RIKEN BNL Research Center is part of Brookhaven's Nuclear & Particle Physics Directorate.

  1. JUN



    RIKEN BNL Research Center Workshop

    Synergies of pp and pA Collisions with an Electron-Ion Collider

    June 26-28, 2017

  1. JUN



    Nuclear Theory/RIKEN Seminar

    "Hydrodynamic Fluctuations in Heavy Ion Collisions"

    Presented by Derek Teaney, Stony Brook

    2 pm, Small Seminar Room, Bldg. 510

    Friday, June 2, 2017, 2:00 pm

    Hosted by: 'Heikki Mantysaari'

    We develop a set of kinetic equations for hydrodynamic fluctuations which are equivalent to nonlinear hydrodynamics with noise. The hydrokinetic equations can be coupled to existing second-order hydrodynamic codes to incorporate the physics of these fluctuations. We use the hydrokinetic equations to analyze thermal fluctuations for a Bjorken expansion, evaluating the contribution of thermal noise from the earliest moments and at late times. In the Bjorken case, the solution to the kinetic equations determines the coefficient of the first fractional power of the gradient expansion $ \sim 1/(\tau T)^{3/2}$ for the expanding system. Numerically, we find that the contribution to the longitudinal pressure from hydrodynamic fluctuations is larger than second-order hydrodynamics for typical medium parameters used to simulate heavy ion collisions. Subsequently we analyze the behaviour of hydrodynamic fluctuations of near the QCD critical point, and dilineate the relevance Kiblle-Zurek scaling relative to other physics. If time permits we will also describe how thermal fluctuations place a lower bound on the bulk viscosity of QCD. References: Y.~Akamatsu, A.~Mazeliauskas and D.~Teaney, ``A kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion,'' [arXiv:1606.07742 [nucl-th]]. Y.~Akamatsu, D. Teaney, F. Yan, Y. Yin, ``Transitting the critical point,'' in progress.

  2. JUN



    RIKEN Lunch Seminar

    "Anomalies and Exact Results In Massive Quantum Chromodynamics"

    Presented by Zohar Komargodski, Stony Brook

    12:30 pm, Building 510, Room 2-160

    Thursday, June 8, 2017, 12:30 pm

    Hosted by: 'Hiromichi Nishimura'

RBRC partner logos