BNL Home

Our Areas of Research

Physics Fellowship Program

The RIKEN BNL Research Center offers a Fellow system at Brookhaven's Relativistic Heavy Ion Collider (RHIC) allowing joint appointments with universities and research laboratories throughout the world, enabling talented researchers to hold tenure track positions at their home institution as well as a Fellow position with the Center.

This system was established to increase the research potential of the Center and to disseminate its research activities and results. To date, nine RHIC Physics Fellows have received the U.S. Department of Energy Outstanding Junior Investigator Award and over 50 Fellows have received tenure at their home institutions since the inception of the program.

Institutions interested in initiating a new RHIC Physics Fellow position may obtain details on how to proceed by contacting Maureen McNeill-Shea, 1(631) 344-2758.

RBRC Research Groups


D. Kharzeev, Group Leader

This group conducts QCD related research that includes heavy ion physics, the quark gluon plasma, color glass condensate and hard QCD/spin physics.


T. Izubuchi, Group Leader

This group's mission is to solve the dynamics of QCD from first principle lattice simulations using in-house computer resources.


Y. Akiba, Group Leader

This group studies the spin structure of the proton via polarized p+p collisions at RHIC as well as the properties of quark gluon plasma.

The RIKEN BNL Research Center is part of Brookhaven's Nuclear & Particle Physics Directorate.

  1. JUN



    RIKEN BNL Research Center Workshop

    The Definition of Jets in a Large Background

    June 25-27, 2018

  1. FEB



    Nuclear Theory/RIKEN Seminar

    "Looking ahead to BESII: new observables and new theoretical frameworks"

    Presented by Yi Yin, MIT

    2 pm, Small Seminar Room, Bldg. 510

    Friday, February 23, 2018, 2:00 pm

    Hosted by: Chun Shen

    Upcoming beam energy scan (BES) phase II will explore the QCD phase diagram with an unprecedented precision and would potentially discover the QCD critical point. I will discuss recent theoretical developments aim at maximizing the discovery potential of BESII from both phenomenological and formal perspectives. First, I will discuss new observables which are very sensitive to the presence of the QCD critical point and are possible due to the iTPC upgrade. In the second part, I will report recent progress on understanding and describing hydrodynamic fluctuations. Remarkably, effects of hydrodynamic fluctuations can be potentially important for precise determination of shear viscosity at top RHIC energy and would play a crucial role near the QCD critical point.

  2. MAR



    Nuclear Theory/RIKEN Seminar

    "Quark / Antiquark Correlations in Heavy-Light Ion Collisions"

    Presented by Matt Sievert, LANL

    2 pm, Small Seminar Room, Bldg. 510

    Friday, March 2, 2018, 2:00 pm

    Hosted by: Chun Shen

    It has long been known that sub-nucleonic fluctuations of the energy density in the initial stages of heavy ion collisions play an important role in generating the observed distributions of particles and their flow. These energy density fluctuations are dominated by the radiation of small-x gluons which are populated to classically large occupation numbers in the wave functions of ultra-relativistic heavy ions. While these soft gluons dominate the initial conditions for the energy density, it is quark production which determines the initial conditions of other conserved charges, like flavor and baryon number. With the recent development of state-of-the art hydrodynamics codes tailored to the Beam Energy Scan which can propagate these conserved charges into the final state, it is timely and important to calculate the initial conditions of these conserved charges from first principles in QCD. In this talk, I will present new results for the spatial correlations among quarks and antiquarks produced at mid-rapidity by pair production from small-x gluons. This single-pair production mechanism, which has been studied for some time in momentum space, is the leading contribution to these correlations in coordinate space for dilute-dense collisions. As one moves from the dilute-dense regime toward the dense-dense regime, correlations due to double pair production become more important, and these correlations persist over larger length scales than the single-pair production mechanism. Over nonperturbative length scales, only the correlations from the overlap geometry remain. I will present explicit results for quark-antiquark correlations due to single pair production, and I will outline some preliminary results for the various double-pair production mechanisms. The ultimate goal of this work will be to construct a code which can initialize these conserved charges over all length scales in heavy-ion collisions.

RBRC partner logos