General Information

Top of Page

Our Areas of Research

Physics Fellowship Program

The RIKEN BNL Research Center offers a Fellow system at Brookhaven's Relativistic Heavy Ion Collider (RHIC) allowing joint appointments with universities and research laboratories throughout the world, enabling talented researchers to hold tenure track positions at their home institution as well as a Fellow position with the Center.

This system was established to increase the research potential of the Center and to disseminate its research activities and results. To date, nine RHIC Physics Fellows have received the U.S. Department of Energy Outstanding Junior Investigator Award and over 50 Fellows have received tenure at their home institutions since the inception of the program.

Institutions interested in initiating a new RHIC Physics Fellow position may obtain details on how to proceed by contacting Colleen Michael, 1-631-344-4919.

RBRC Research Groups


L. McLerran, Group Leader

This group conducts QCD related research that includes heavy ion physics, the quark gluon plasma, color glass condensate and hard QCD/spin physics.


T. Izubuchi, Group Leader

This group's mission is to solve the dynamics of QCD from first principle lattice simulations using in-house computer resources.


Y. Akiba, Group Leader

This group studies the spin structure of the proton via polarized p+p collisions at RHIC as well as the properties of quark gluon plasma.

The RIKEN BNL Research Center is part of Brookhaven's Nuclear & Particle Physics Directorate.

There are no conferences scheduled at this time.

  1. SEP



    Nuclear Theory/RIKEN Seminar

    "Asymptotic freedom of gluons in the Fock space"

    Presented by Stanislaw Glazek, University of Warsaw

    2 pm, Small Seminar Room, Bldg. 510

    Friday, September 4, 2015, 2:00 pm

    Hosted by: Soeren Schlichting

    Asymptotic freedom of gluons is defined in terms of scale-dependent renormalized QCD Hamiltonian operators that act in the Fock space. These operators are calculable in a new way [1,2], by solving a double-commutator differential equation [3], where the derivative is with respect to a scale parameter defined within the renormalization group procedure for effective particles (RGPEP). The RGPEP equation and its solutions are invariant with respect to boosts and may serve as a tool in attempts to dynamically explain the parton and constituent models of hadrons in QCD. The third-order QCD solution of the RGPEP equation to be discussed [2], provides an explicit example of how asymptotic freedom of gluons is exhibited in the scale-dependence of Hamiltonians as operators in the Fock space. This example also prepares ground for the fourth-order calculations of effective strong interactions using the same RGPEP equation [3], to facilitate Hamiltonian studies of many strong-interaction processes, e.g., those that involve heavy quarkonia in relativistic motion. Applications to other sectors of the Standard Model than the strong interactions await development, while only preliminary results are currently available in the domain of precise calculations in QED[4]. [1] Dynamics of effective gluons, S. D. Glazek, Phys. Rev. D63, 116006, 29p (2001). [2] Asymptotic freedom in the front-form Hamiltonian for gluons, M. Gomez-Rocha, S. D. Glazek, arXiv:1505.06688 [hep-ph], to appear in Phys. Rev. D. [3] Perturbative formulae for relativistic interactions of effective particles, S. D. Glazek, Acta Phys. Pol. B43, 1843, 20p (2012). [4] Calculation of size for bound-state constituent

  2. SEP



    Nuclear Theory/RIKEN Seminar


    Presented by Michael Strickland, Kent State University

    2 pm, Small Seminar Room, Bldg. 510

    Friday, September 11, 2015, 2:00 pm

    Hosted by: Soeren Schlichting

RBRC partner logos