BNL Home

Our Areas of Research

Physics Fellowship Program

The RIKEN BNL Research Center offers a Fellow system at Brookhaven's Relativistic Heavy Ion Collider (RHIC) allowing joint appointments with universities and research laboratories throughout the world, enabling talented researchers to hold tenure track positions at their home institution as well as a Fellow position with the Center.

This system was established to increase the research potential of the Center and to disseminate its research activities and results. To date, nine RHIC Physics Fellows have received the U.S. Department of Energy Outstanding Junior Investigator Award and over 50 Fellows have received tenure at their home institutions since the inception of the program.

Institutions interested in initiating a new RHIC Physics Fellow position may obtain details on how to proceed by contacting Pam Esposito, 1-631-344-3097.


RBRC Research Groups

Kharzeev
Theory

D. Kharzeev, Group Leader

This group conducts QCD related research that includes heavy ion physics, the quark gluon plasma, color glass condensate and hard QCD/spin physics.

Izubuchi
Computing

T. Izubuchi, Group Leader

This group's mission is to solve the dynamics of QCD from first principle lattice simulations using in-house computer resources.

Akiba
Experimental

Y. Akiba, Group Leader

This group studies the spin structure of the proton via polarized p+p collisions at RHIC as well as the properties of quark gluon plasma.

The RIKEN BNL Research Center is part of Brookhaven's Nuclear & Particle Physics Directorate.

There are no conferences scheduled at this time.

  1. OCT

    19

    Thursday

    RIKEN Lunch Seminar

    "Lattice QCD and Neutrino Physics"

    Presented by Aaron Meyer, HET Group

    12:30 pm, Building 510, Room 2-160

    Thursday, October 19, 2017, 12:30 pm

    Hosted by: 'Enrico Rinaldi'

    The nucleon axial form factor is a dominant contribution to systematic uncertainties in neutrino oscillation studies. The most commonly used model parametrization of the axial form factor has uncontrolled and underestimated systematic errors. First-principles computations from lattice QCD have the potential to control theory errors by disentangling the effects of nuclear corrections from the nucleon amplitudes. In this talk, I discuss fits to the axial form factor with deuterium bubble chamber data using the model-independent $z$ expansion parameterization. I then present preliminary results for a blinded lattice QCD calculation of the nucleon axial charge $g_A$ with physical light quark masses. This calculation is being done with the Highly Improved Staggered Quark (HISQ) action and 2+1+1 flavors of sea quarks.

  2. OCT

    20

    Friday

    Nuclear Theory/RIKEN Seminar

    "Quantization of three-body scattering amplitude in isobar formulation"

    Presented by Maxim Mai, George Washington University

    2 pm, Small Seminar Room, Bldg. 510

    Friday, October 20, 2017, 2:00 pm

    Hosted by: ''Chun Shen''

    In the so-called isobar parametrization the three-particle states are populated via an interacting two-particle system (resonant or non-resonant), and a spectator. Using this parametrization, we derive the isobar-spectator interaction such that the three-body Unitarity is ensured exactly. In the first part of my talk I will show the major steps of this derivation. (arXiv:1706.06118) The second part of the talk will be dedicated to the finite-volume implementation of the framework (arXiv:1709.08222). Imaginary parts in the infinite volume, dictated by Unitarity, determine the dominant power-law finite volume effects to ensure the correct 3-body quantization condition. Furthermore, various building blocks of the 3->3 amplitude in the finite volume can become singular. However, when all contributions are summed-up, only genuine 3-body singularities remain. I will demonstrate the corresponding cancellation mechanisms explicitly for the simplified case of only one S-wave isobar.

RBRC partner logos