BNL Home

Our Areas of Research

Physics Fellowship Program

The RIKEN BNL Research Center offers a Fellow system at Brookhaven's Relativistic Heavy Ion Collider (RHIC) allowing joint appointments with universities and research laboratories throughout the world, enabling talented researchers to hold tenure track positions at their home institution as well as a Fellow position with the Center.

This system was established to increase the research potential of the Center and to disseminate its research activities and results. To date, nine RHIC Physics Fellows have received the U.S. Department of Energy Outstanding Junior Investigator Award and over 50 Fellows have received tenure at their home institutions since the inception of the program.

Institutions interested in initiating a new RHIC Physics Fellow position may obtain details on how to proceed by contacting Colleen Michael, 1-631-344-4919.

RBRC Research Groups


D. Kharzeev, Group Leader

This group conducts QCD related research that includes heavy ion physics, the quark gluon plasma, color glass condensate and hard QCD/spin physics.


T. Izubuchi, Group Leader

This group's mission is to solve the dynamics of QCD from first principle lattice simulations using in-house computer resources.


Y. Akiba, Group Leader

This group studies the spin structure of the proton via polarized p+p collisions at RHIC as well as the properties of quark gluon plasma.

The RIKEN BNL Research Center is part of Brookhaven's Nuclear & Particle Physics Directorate.

  1. APR



    RIKEN BNL Research Center Workshop

    Saturation: Recent Developments, New Ideas and Measurements

    April 26-28, 2017

  2. JUN



    RIKEN BNL Research Center Workshop

    Synergies of pp and pA Collisions with an Electron-Ion Collider

    June 26-28, 2017

  1. APR



    Nuclear Theory/RIKEN Seminar

    "Analyticity in Spin and Causality in Conformal Theories"

    Presented by Simon Caron-Huot, McGill

    2 pm, Small Seminar Room, Bldg. 510

    Friday, April 28, 2017, 2:00 pm

    Hosted by: 'Heikki Mantysaari'

    The conformal bootstrap aims to calculate scaling dimensions and correlation functions in various theories, starting from general principles such as unitarity and crossing symmetry. I will explain that local operators are not independent of each other but organize into analytic functions of spin, and I will present a formula, extending a classic one due to Froissart and Gribov in the early days of Regge theory, which quantifies the consequences of this fact. Applications will include a new way to solve crossing symmetry at large spin, as well as new bounds encoding bulk locality in theories with a gravity dual. Based on 1703.00278.

  2. MAY



    Nuclear Theory/RIKEN Seminar

    "Probing nucleon substructure with Bayesian parameter estimation"

    Presented by Scott Moreland, Duke

    2 pm, Small Seminar Room, Bldg. 510

    Friday, May 5, 2017, 2:00 pm

    Hosted by: 'Heikki Mantysaari'

    Multi-particle correlations observed in small collision systems at top LHC energies exhibit signatures which are similar to those observed in large collision systems and generally attributed to the formation of a deconfined quark-gluon plasma (QGP). This suggests that even proton-proton and proton-lead collisions may produce small droplets of QGP which translate spatial inhomogeneities into final-state momentum anisotropies. A primary challenge in testing hydrodynamic descriptions of small collision systems is in modeling the initial stages of the collision. In this talk, I discuss recent efforts to apply Bayesian methodology to parametric descriptions of initial state physics. I show that such methods can be extended to smaller length scales which include partonic degrees of freedom and glean information regarding the fluctuating nature of the proton.

RBRC partner logos