BNL Home
Org Chart

Our Research Mission

Scientists in Brookhaven's Condensed Matter Physics & Materials Science Department study basic, theoretical and applied aspects of materials, their utilization, and their electronic, physical, mechanical, and chemical properties in relation to their structure. 

The field of Condensed Matter Physics and Materials Science integrates the knowledge and tools of chemistry and physics with the principles of engineering to understand and optimize the behavior of materials, as well as to create new and improved materials to help fulfill the missions of the Department of Energy.

  1. JUL



    Condensed-Matter Physics & Materials Science Seminar

    "Electron beam effects on organic ices"

    Presented by Marco Beleggia, Technical University of Denmark, Denmark

    11 am, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Monday, July 22, 2019, 11:00 am

    Hosted by: Yimei Zhu

    While beam damage is often considered detrimental to our quantitative imaging capabilities, the energy and charge injected into the sample as a result of inelastic scattering can be exploited beneficially. This is especially true in radiation-chemistry-type experimental setups in the electron microscope where the beam promotes local wanted chemical reactions. We have observed that by exposing to the electron beam a layer of small volatile organic molecules condensed over a cold substrate results in the formation of a solid product. Evidence suggests that the exposure mechanism driving the formation of a solid product is partial dehydrogenation of the molecules, removal of H2, and progressive increase of the average molecular weight. Contrary to focused electron beam induced deposition, that relies on surface absorption followed by aggregation of mobile species, at cryogenic temperature organic ice molecules are largely immobilized, and act as targets for the incoming electrons throughout the entire thickness of the layer. Therefore, the exposure occurs throughout the volume of the frozen precursor, and the features are essentially determined by the electron distribution, with diffusion/transport parameters bearing little or no relevance. Since larger molecules are less volatile, if the molecular weight increases sufficiently, upon raising the temperature the unexposed areas leave the sample, while the exposed molecules assemble into a solid product in the form of hydrogenated amorphous carbon.

Condensed Matter Theory

Conducts basic research over a wide swath of theoretical physics, ranging from strongly correlated electrons to first principle electronic structure theory.  

Neutron Scattering

Studies the role of antiferromagnetism in high-temperature superconductors.  The interaction of charge carriers with magnetic moments is of critical importance but remains a challenge to understand. .

X-Ray Scattering

Carries out basic studies of the structural, electronic and magnetic properties of condensed matter systems using synchrotron-based x-ray scattering techniques. .

comscope logo

The Center for Computational Material Spectroscopy and Design develops, advances, and shares a powerful and user-friendly software suite called Comsuite to accelerate the discovery, analysis, and design of functional strongly correlated materials—the basis for next generation technologies.

Electron Microscopy and Nanostructure

Utilizes advanced electron microscopy techniques to study nanoscale structure and defects that determine the utility of functional materials, such as superconductors, multiferroics, and other energy related systems including thermoelectrics, photovoltaics, and batteries.

Oxide Molecular Beam Epitaxy

Addresses key open questions in HTS physics such as the dimensionality of the HTS phenomenon, the spin and charge of free carriers, the nature of the superconducting transition, the role of charge stripes (if any) in the HTS state, the nature of the overdoped metallic state, and more.

Spectroscopic Imaging

Span a wide range of quantum matter systems, including superconductors, superfluids, supersolids, electronic liquid crystals, topological insulators superconductors & superfluids, heavy fermions, and spin liquids. Throughout, the focus is on development of innovative techniques and approaches to each problem.

Advanced Energy Materials

Studies both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies

Electron Spectroscopy

Explores the electronic structure and electrodynamics of topological insulators and strongly correlated electron systems, with particular attention to emergent phenomena, such as superconductivity and magnetism, using angle-resolved photoemission (ARPES) and optical spectroscopy.

The Condensed Matter Physics and Materials Science Department is part of Brookhaven National Laboratory's Energy Sciences Directorate.