BNL Home
Org Chart

Our Research Mission

Scientists in Brookhaven's Condensed Matter Physics & Materials Science Department study basic, theoretical and applied aspects of materials, their utilization, and their electronic, physical, mechanical, and chemical properties in relation to their structure. 

The field of Condensed Matter Physics and Materials Science integrates the knowledge and tools of chemistry and physics with the principles of engineering to understand and optimize the behavior of materials, as well as to create new and improved materials to help fulfill the missions of the Department of Energy.

  1. JAN



    Condensed-Matter Physics & Materials Science Seminar

    ""In situ characterization of the phase behavior of metal oxides at extreme conditions""

    Presented by Leighanne Gallington, Argonne National Laboratory

    11 am, ISB Bldg. 734 Conf. Room 201 (upstairs)

    Wednesday, January 17, 2018, 11:00 am

    Hosted by: 'Ian Robinson'

    In situ characterization of the phase behavior of materials in the lab is complicated by the difficulty of designing compatible sample environments as well as the long time scales required to acquire diffraction data with sufficient counting statistics for crystallographic analyses. The high energy x-rays available at synchrotron sources allow for penetration of most sample environments, while high flux allows for rapid acquisition of diffraction patterns, thereby allowing construction of detailed phase diagrams. Low and negative thermal expansion (NTE) materials have been studied extensively, as they can potentially be used to create composites with finely controlled thermal expansion characteristics, improved resistance to thermal shock, and a broader range of operating temperatures.1-4 While the thermal expansion behavior of the NTE materials ZrW2O8 and HfW2O8 was well-described at ambient pressures,4-6 knowledge of the effects of stress on their thermal expansion was limited.7 In situ synchrotron powder diffraction was utilized to explore the role of orientational disorder in determining both the phase behavior and the thermoelastic properties of these materials. An especially designed pressure cell allowed for simultaneous sampling of temperatures up to 513 K and pressures up to 414 MPa.8 Reversible compression-induced orientational disordering of MO4 tetrahedra occurred concomitantly with elastic softening on heating and enhanced negative thermal expansion upon compression in ZrW2O8 and HfW2O8, but only in the ordered phase.9, 10 In light of the comparatively recent nuclear disaster in Fukushima, understanding interactions and phase behavior in nuclear fuels under severe accident conditions is of paramount interest. While diffraction measurements have been performed on materials recovered from melts of corium (UO2-ZrO2), there is a lack of in situ characterization of this material at elevated temperatures. Achieving the extreme temperatures required

Electron Spectroscopy

Explores the electronic structure and electrodynamics of topological insulators and strongly correlated electron systems, with particular attention to emergent phenomena, such as superconductivity and magnetism, using angle-resolved photoemission (ARPES) and optical spectroscopy.

Neutron Scattering

Studies the role of antiferromagnetism in high-temperature superconductors.  The interaction of charge carriers with magnetic moments is of critical importance but remains a challenge to understand. .

X-Ray Scattering

Carries out basic studies of the structural, electronic and magnetic properties of condensed matter systems using synchrotron-based x-ray scattering techniques. .

Condensed Matter Theory

Conducts basic research over a wide swath of theoretical physics, ranging from strongly correlated electrons to first principle electronic structure theory.  

Advanced Energy Materials

Studies both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies

Oxide Molecular Beam Epitaxy

Addresses key open questions in HTS physics such as the dimensionality of the HTS phenomenon, the spin and charge of free carriers, the nature of the superconducting transition, the role of charge stripes (if any) in the HTS state, the nature of the overdoped metallic state, and more.

Spectroscopic Imaging

Span a wide range of quantum matter systems, including superconductors, superfluids, supersolids, electronic liquid crystals, topological insulators superconductors & superfluids, heavy fermions, and spin liquids. Throughout, the focus is on development of innovative techniques and approaches to each problem.

Electron Microscopy and Nanostructure

Utilizes advanced electron microscopy techniques to study nanoscale structure and defects that determine the utility of functional materials, such as superconductors, multiferroics, and other energy related systems including thermoelectrics, photovoltaics, and batteries.

The Condensed Matter Physics and Materials Science Department is part of Brookhaven National Laboratory's Energy Sciences Directorate.