General Lab Information

Motivation

This workshop is a virtual event and is not open to the public.

The RHIC isobar experiment introduced a well-controlled running mode leading to a new discovery tool for nuclear physics with unprecedented precision. Since the isobar nuclei have the same mass number, deviation of ratios of any observables from unity will flag a non-trivial physics origin. Recent measurements from collisions of 96/44Ru and 96/40Zr nuclei indeed reveal significant deviation of ratios of several bulk observables from unity, such as v2, v3, mean transverse momentum, and multiplicity.

These precision data can generate substantial impacts on constraining the structure of nuclei and their event-by-event shape fluctuations as the initial state of heavy-ion collision systems. Analyses of additional observables, including flow fluctuations and correlations, identified particle spectra and anisotropy, HBT radii, electromagnetic (EM) probes, and jet production are ongoing. Many exciting results are expected to be released by the next Quark Matter conference in April 2022.

Given such an opportunity, we deem that a workshop gathering experts from both experiments and the theory community to discuss analysis strategies and make theoretical predictions is timely and will advance our understanding of the physics potential of the isobar dataset.

The goal of this workshop is to 1) explore and identify interesting observables and associated physics, 2) understand the required experimental precision and identify possible backgrounds, 3) call for theoretical predictions, and 4) identify interesting isobar species for possible future experiments.

The topics of the workshop focus on ratios of observables from the RHIC isobar experiment, for which we can achieve good precision, including:

  • Hydrodynamical flow and geometrical response, with a focus on connection to nuclear structure
  • Chiral Magnetic Effect (CME), vorticity, and effects of strong EM field
  • Longitudinal fluctuations and correlations related to the transport of conserved charges
  • Nuclear PDF and transition from collective flow to jet quenching

Join the Event

The connection information will be provided via email to registrants prior to the event. Please do not give out this connection information. It is only for registered attendees. Contact the workshop coordinator if you have questions or having connection issues.

Important Dates

November 5, 2021 General registration opens
December 13, 2021 Additional guest registration for non-U.S. citizens closes
January 14, 2022 Registration closes

Workshop Information

Workshop Organizers

  • Jiangyong Jia (Stony Brook)
  • Chun Shen (RBRC/Wayne State)
  • Derek Teaney (Stony Brook)
  • Zhangbu Xu (BNL)