General Lab Information

Publications

2023

  1. Changxu, P. (2023). Structural Mechanism of Intracellular Autoregulation of Zinc Uptake in ZIP transporters. Nature Communications https://www.osti.gov/biblio/1983762
  2. Yang, J. & Shanklin, J. (2023). Microbiome differences in sugarcane and metabolically engineered oilcane accessions and their implications for bioenergy production. Biotechnol Biofuels https://dx.doi.org/10.1186/s13068-023-02302-6
  3. Schwender, J. (2023). Walking the 'design-build-test-learn' cycle: Flux analysis and genetic engineering reveal the pliability of plant central metabolism. New Phytologist https://www.osti.gov/biblio/1972469
  4. Yu, L. & Xu, C. (2023). A chloroplast diacylglycerol lipase modulates glycerolipid pathway balance in Arabidopsis. The Plant Journal https://dx.doi.org/10.1111/tpj.16228
  5. Blanc-Betes , E. & Schwender, J. (2023). Accelerating the development of a sustainable bioenergy portfolio through stable isotopes. GCB-Bioenergy https://www.osti.gov/biblio/1968827
  6. Sanders, B. & Kumaran, D. (2023). Potent and selective covalent inhibition of the papain-like protease from SARS-CoV-2. Nature Communications, 14(1), Article 1733 https://dx.doi.org/10.1038/s41467-023-37254-w
  7. Pasaribu, B. & Shanklin, J. (2023). Genomics of turions from the Greater Duckweed reveal its pathways for dormancy and re-emergence strategy. New Phytologist https://dx.doi.org/10.1101/2022.12.24.521731
  8. Zhao, J. & Liu, C. (2023). Arabidopsis ABCG14 forms a homodimeric transporter for multiple cytokinins and mediates long-distance transport of isopentenyladenine- type cytokinins. Plant Communications, 4(2) https://dx.doi.org/10.1016/j.xplc.2022.100468
  9. Chai , J. (2023). Structural Basis for Enzymatic Terminal C-H Bond Functionalization of Alkanes. Nature Structural & Molecular Biology https://www.osti.gov/biblio/1960267
  10. Karasawa, A. & Liu, Q. (2023). Crystallographic Characterization of Sodium Ions in a Bacterial Leucine/Sodium Symporter. Crystals, 13(2), 183 https://dx.doi.org/10.3390/cryst13020183
  11. Zhao, X. (2023). Tissue-preferential recruitment of electron transfer chains for cytochrome P450-catalyzed phenolic biosynthesis. Science Advances https://dx.doi.org/10.1126/sciadv.ade43
  12. Zhai, Z. (2023). CYCLIN-DEPENDENT KINASE 8 positively regulates oil synthesis by activating WRINKLED1 transcription. New Phytologist https://www.osti.gov/biblio/1913820
  13. Liu, D. & Xie, M. (2023). Agave REVEILLE1 regulates the onset and release of seasonal dormancy in Populus. Plant Physiology https://dx.doi.org/10.1093/plphys/kiac588

2022

  1. Cai, Y. & Shanklin, J. (2022). A toolkit for plant lipid engineering: surveying the efficacies of lipogenic factors for accumulating specialty lipids. Frontiers In Plant Science https://www.osti.gov/biblio/1900388
  2. Liang, Y. (2022). Engineering Triacylglycerol Accumulation in Duckweed (Lemna japonica). Plant Biotechnology Journal https://dx.doi.org/10.1111/pbi.13943
  3. Karasawa, A. & Liu, Q. (2022). Multi-crystal native-SAD phasing at 5 keV with a helium environment. Iucrj https://www.osti.gov/biblio/1893759
  4. Liu, C. (2022). Cytochrome b5: A versatile electron carrier and regulator for plant metabolism. Frontiers In Plant Science, 13 https://dx.doi.org/10.3389/fpls.2022.984174
  5. Liu, H. & Liu, Q. (2022). Plant metacaspase: a case study of microcrystal structure determination and analysis. Methods in Enzymology https://dx.doi.org/10.1016/bs.mie.2022.07.026
  6. Ebrahim, A. & Kumaran, D. (2022). The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (M-pro). Iucrj, (9) https://dx.doi.org/10.1107/S2052252522007497
  7. Luo, G. & Shanklin, J. (2022). Metabolic engineering of energycane to hyperaccumulate lipids in vegetative biomass. BMC Biotechnology https://www.osti.gov/biblio/1885808
  8. Kaunitz, J. & Fowler, J. (2022). It's Not What You Take Up, It's What You Keep: How Discoveries from Diverse Disciplines Directed the Development of the FDG PET/CT Scan. Digestive Diseases and Sciences, 101 https://dx.doi.org/10.1007/s10620-022-07615-4
  9. Kuczynski, C. (2022). An Expanded Role for the Transcription Factor WRINKLED1 in the Biosynthesis of Triacylglycerols during Seed Development. Frontiers In Plant Science https://www.osti.gov/biblio/1878302
  10. Gan , L. & Shanklin, J. (2022). Primary Classification: Biological Sciences Secondary Classification: Plant Biology Divergent Evolution of Extreme Production of Variant Plant Monounsaturated Fatty Acids. Pnas https://www.osti.gov/biblio/1877092
  11. Cai, Y. (2022). Purple acid phosphatase2 stimulates a futile cycle of lipid synthesis and degradation and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. New Phytologist https://www.osti.gov/biblio/1878300
  12. Pasquini, M. & Blaby-Haas, C. (2022). Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cells Reports https://www.osti.gov/biblio/1868509
  13. Cesarin, I. & Xie, M. (2022). Editorial: Phenylpropanoid Systems Biology and Biotechnology. Frontiers In Plant Science, 13 https://dx.doi.org/10.3389/fpls.2022.866164
  14. Blaby-Haas, C. (2022). Polar algae flaunt their zinc assets. Nature Ecology and Evolution https://www.osti.gov/biblio/1855085
  15. Blaby-Haas, C. (2022). The Mosaic Landscape of Algal Metal Transport and Usage. Microbial Metabolism of Metals and Metalloids https://dx.doi.org/10.1007/978-3-030-97185-4
  16. Liu, W. & Liu, Q. (2022). Cryo-EM Structure of Transmembrane AAA+ Protease FtsH in the ADP State. Communications Biology https://www.osti.gov/biblio/1855083
  17. Lian, R. & Liu, Q. (2022). End-to-end orientation estimation from 2D cryo-EM 2 images. Acta Crystallographica Section D. https://www.osti.gov/biblio/1855081
  18. Schwechheimer, C. & Blaby-Haas, C. (2022). PLANT GATA FACTORS - THEIR BIOLOGY, PHYLOGENY AND PHYLOGENOMICs. Annual Reviews in Plant Biology https://www.osti.gov/biblio/1846359
  19. Clark, T. (2022). Elucidation of triacylglycerol overproduction in the C4 bioenergy crop Sorghum bicolor by constraint-based analysis. Frontiers In Plant Science, 13, Article 787265 https://dx.doi.org/10.3389/fpls.2022.787265
  20. Paape, T. (2022). Genome-Wide Association Study Reveals Complex Genetic Architecture of Cadmium and Mercury Accumulation and Tolerance Traits in Medicago truncatula. Frontiers in Plant Science https://dx.doi.org/10.3389/fpls.2021.806949
  21. Xu, C. (2022). Links between autophagy and lipid droplet dynamics. Journal of Experimental Botany https://dx.doi.org/10.1093/jxb/erac003

2021

  1. Bennett, P. (2021). Dose-Rate Effects of Protons and Light Ions for DNA Damage Induction, Survival and Transformation in Apparently Normal Primary Human Fibroblasts. Radiation Research https://dx.doi.org/10.1667/rade-21-00138.1
  2. Zhao, Y. (2021). The inducible accumulation of cell wall-bound p-hydroxybenzoates is involved in the regulation of gravitropic response of poplar. Frontiers In Plant Science, 12, Article 755576 https://dx.doi.org/10.3389/fpls.2021.755576
  3. Bruni, R. & Liu, Q. (2021). High-throughput Cell-free Screening of Eukaryotic Membrane Protein Expression. Protein Science https://www.osti.gov/biblio/1837204
  4. Guy, J. & Shanklin, J. (2021). Regioselectivity mechanism of the Thunbergia alata Δ6 2 -16:0-acyl carrier protein desaturase. Plant Physiology https://dx.doi.org/10.1093/plphys/kiab577
  5. Lian, R. & Liu, Q. (2021). End-to-end orientation estimation from 2D cryo-EM1images. Acta Crystallographica https://www.osti.gov/biblio/1835111
  6. Cai, Y. (2021). Sugar traffic jam: Impaired cellulose deposition in the phloem retards long-distance sucrose transport. Plant Cell, 3187-3188 https://dx.doi.org/10.1093/plcell/koab195
  7. Chai, L. & Liu, Q. (2021). AlphaFold Protein Structure Database for Sequence-Independent Molecular Replacement. Crystals https://dx.doi.org/10.3390/cryst11101227
  8. Ng, K. & Paape, T. (2021). The genome of Shorea leprosula (Dipterocarpaceae) highlights the ecological relevance of drought in aseasonal tropical rainforests. Communications Biology, Article 1166 https://dx.doi.org/10.1038/s42003-021-02682-1
  9. Öztürk, Y. & Blaby-Haas, C. (2021). Maturation of Rhodobacter capsulatus Multicopper Oxidase CutO Depends on the CopA Copper Efflux Pathway and Requires the cutF Product. Frontiers in Microbiology https://dx.doi.org/10.3389/fmicb.2021.720644
  10. Yu, L. (2021). Sterols are required for the coordinated assembly of lipid droplets in developing seeds. Nature Communications https://www.osti.gov/biblio/1821211
  11. Halstead-Nussloch , G. & Paape, T. (2021). Multiple Wheat Genomes Reveal Novel Gli-2 Sublocus Location and Variation of Celiac Disease Epitopes in Duplicated α-Gliadin Genes. Frontiers in Plant Science https://dx.doi.org/10.3389/fpls.2021.715985
  12. Wang, W. (2021). Conformational Equilibria in Allosteric Control of Hsp70 Chaperones. Molecular Cell https://www.osti.gov/biblio/1822850
  13. Johnson, A. & Bennett, P. (2021). Evaluation of Histone Deacetylase Inhibitors as Radiosensitizers for Proton and Light Ion Radiotherapy. Frontiers in Oncology, 11, Article 735940 https://dx.doi.org/10.3389/fonc.2021.735940
  14. Singh, R. & Shanklin, J. (2021). Hydrothermal Pretreatment for Valorization of Genetically Engineered Bioenergy Crop for Lipid and Cellulosic Sugar Recovery. Bioresource Technology https://dx.doi.org/10.1016/j.biortech.2021.125817
  15. Zhao, Y. (2021). Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nature Plants https://dx.doi.org/10.1038/s41477-021-00975-1
  16. Zhao, J. & Liu, C. (2021). Phloem unloading via the apoplastic pathway is essential for shoot distribution of root-synthesized cytokinins. Plant Physiology, 186(4), 2111-2123 https://dx.doi.org/10.1093/plphys/kiab188
  17. Yao, T. & Xie, M. (2021). Phylogenetic occurrence of the phenylpropanoid pathway and lignin biosynthesis in plants. Frontiers in Plant Science https://www.osti.gov/biblio/1811455
  18. Anaokar, S. (2021). Mobilizing vacuolar sugar increases vegetative triacylglycerol accumulation. Frontiers in Plant Science https://www.osti.gov/biblio/1807933
  19. Cai, Y. (2021). Leading the way out: How a plant myosin facilitates vesicle tethering during exocytosis. Plant Cell, 33(7), 2104-2105 https://dx.doi.org/10.1093/plcell/koab111
  20. Wang, S. & Gang, O. (2021). Designed and biologically active protein lattices. Nature Communications, 12, Article 3702 https://dx.doi.org/10.1038/s41467-021-23966-4
  21. Chai , J. (2021). Structural Basis for SARS-CoV-2 Envelope Protein Recognition of Human Cell Junction Protein PALS1. Nature Communications https://www.osti.gov/biblio/1784492
  22. Voshall, A. & Shanklin, J. (2021). A consensus-based ensemble approach to improve transcriptome assembly. BioRxiv https://dx.doi.org/10.1101/2020.06.08.139964
  23. Joshi, A. & Sivertz, M. (2021). In-situ Proton Radiation Testing of 2.4 Micron Wavelength Extended InGaAs Photodiodes at Dry Ice and Room Temperatures. Proceedings of SPIE, 11744, Article 11740C https://dx.doi.org/10.1117/12.2587103
  24. Yu, L. (2021). Mechanisms and functions of membrane lipid remodeling in plants. The Plant Journal https://www.osti.gov/biblio/1777423
  25. Cai, Y. (2021). Knocksideways in Plants: An Inducible System for In Planta Visualization of Protein Interactions. Plant Cell, 33(4), 1085-1086 https://dx.doi.org/10.1093/plcell/koab002
  26. Zhai, Z. (2021). Expression of a Bacterial Trehalose-6-phosphate Synthase otsA Increases Oil Accumulation in Plant Seeds and Vegetative Tissues. Frontiers In Plant Science, 12, Article 656962 https://dx.doi.org/10.3389/fpls.2021.656962
  27. Zhai, Z. (2021). Ectopic expression of OLEOSIN 1 and inactivation of GBSS1 have a synergistic effect on oil accumulation in plant leaves. Plants-Basel, 10 https://dx.doi.org/10.3390/plants10030513
  28. Zhai, Z. (2021). The role of sugar signaling in regulating plant fatty acid synthesis. Frontiers in Plant Science https://www.osti.gov/biblio/1766779
  29. Yu, L. (2021). Using 14C-acetate Pulse-chase Labeling to Study Fatty Acid and Glycerolipid Metabolism in Plant Leaves. Bio-Protocol https://dx.doi.org/10.21769/bioprotoc.3900
  30. Blaby-Haas, C. (2021). Cyanobacteria provide a new paradigm in the regulation of cofactor dependence. Proceedings of the National Academy of Sciences of the United States of America https://www.osti.gov/biblio/1763995
  31. Arregui, G. & Paape, T. (2021). Mercury-Tolerant Ensifer medicae Strains Display High Mercuric Reductase Activity and a Protective Effect on Nitrogen Fixation in Medicago truncatula Nodules Under Mercury Stress. Frontiers in Plant Science https://dx.doi.org/10.3389/fpls.2020.560768
  32. Gallaher, S. & Blaby-Haas, C. (2021). Widespread polycistronic gene expression in green algae. Pnas https://www.osti.gov/biblio/1756294

2020

  1. Douglas, G. & Guida, P. (2020). Impact of Galactic Cosmic Ray Simulation on Nutritional Content of Foods. Life Sciences in Space Research https://www.osti.gov/biblio/1749894
  2. Takemarua, L. & Guo, G. (2020). PyMDA: microcrystal data assembly using Python. Journal of Applied Crystallography, 277-281 https://dx.doi.org/10.1107/S160057671901673X
  3. Wang, B. & Liu, C. (2020). Arabidopsis SnRK1 negatively regulates phenylpropanoid metabolism via Kelch domain-containing F-box proteins. New Phytologist https://www.osti.gov/biblio/1763342
  4. Li, D. & Liu, C. (2020). Molecular basis for chemical 13 evolution of flavones to flavonols and anthocyanins. Plant Physiology, 184(4), 1731-1743 https://dx.doi.org/10.1104/pp.20.01185
  5. Yu, L. (2020). Effect of Light Intensity on Chloroplast Lipid Biosynthesis in Arabidopsis. Plant Physiology https://www.osti.gov/biblio/1785110
  6. Yu, L. (2020). Effect of Light Intensity on Chloroplast Lipid Biosynthesis in Arabidopsis. Plant Physiology https://www.osti.gov/biblio/1784481
  7. Yu, X. & Shanklin, J. (2020). Biotin Attachment Domain-Containing Proteins mediate hydroxy fatty acid-dependent inhibition of Acetyl CoA Carboxylase. Plant Physiology https://www.osti.gov/biblio/1717904
  8. Xu, C. (2020). Metabolic and Functional Connections between Cytoplasmic and Chloroplast Triacylglycerol Storage. Progress in Lipid Research https://www.osti.gov/biblio/1706607
  9. Yu, L. (2020). Effect of Light Intensity on Chloroplast Lipid Biosynthesis in Arabidopsis. Plant Physiology https://www.osti.gov/biblio/1706605
  10. Foflonker, F. & Blaby-Haas, C. (2020). Co-locality to co-functionality: Eukaryotic gene neighborhoods as a resource for function. Molecular Biology and Evolution https://www.osti.gov/biblio/1659687
  11. Yan, C. & Keereetaweep, J. (2020). An Intact G-Protein Complex is Required for the N-Linolenoylethanolamine Require Intact G-Protein Complexes. Plant Physiology, 184(1), 459-477 https://dx.doi.org/10.1104/pp.19.01552
  12. Yan, C. & Keereetaweep, J. (2020). Seedling Chloroplast Responses Induced by N-Linolenoylethanolamine Require Intact G-Protein Complexes. Plant Physiology, 184(1), 459-477 https://dx.doi.org/10.1104/pp.19.01552
  13. Xie, M. (2020). Arabidopsis C-terminal binding protein ANGUSTIFOLIA. New Phytologist https://www.osti.gov/biblio/1649989
  14. Merchant, S. & Blaby-Haas, C. (2020). From economy to luxury copper homeostasis in Chlamydomonas and other algae. Biochimica et Biophysica Acta - Molecular Cell Research https://dx.doi.org/10.1016/j.bbamcr.2020.118822
  15. Grosjean, N. (2020). Leveraging computational genomics to understand the molecular basis of metal homeostasis. New Phytologist https://dx.doi.org/10.1111/nph.16820
  16. Yu, X. & Shanklin, J. (2020). Solving a furan fatty acid biosynthesis puzzle. Journal of Biological Chemistry https://www.osti.gov/biblio/1633031
  17. McSweeney, D. & Liu, Q. (2020). A Self-Supervised Workflow for Particle Picking in Cryo-EM. IUCrJ https://www.osti.gov/biblio/1633026
  18. Yu, X. & Zhu, P. (2020). Structural Basis for Ca2+-Dependent Activation of a Plant Metacaspase. Nature Communications https://www.osti.gov/biblio/1615772
  19. Cai, Y. & Shanklin, J. (2020). A conserved evolutionary mechanism permits Δ9 desaturation of very long chain fatty acyl lipids. Journal of Biological Chemistry https://www.osti.gov/biblio/1631940
  20. Simonsen, L. & Guida, P. (2020). NASA's first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research. PLOS Biology https://dx.doi.org/10.1371/journal.pbio.3000669
  21. Parajuli, S. & Shanklin, J. (2020). Towards oilcane: engineering hyperaccumulation of triacylglycerol into sugarcane stems. Global Change Biology https://dx.doi.org/10.1111/gcbb.12684
  22. Rolletschek, H. & Schwender, J. (2020). Cellular Plasticity in Response to Suppression of Storage Proteins in the Brassica napus Embryo. Plant Cell https://dx.doi.org/10.1105/tpc.19.00879
  23. Royer, J. & Shanklin, J. (2020). Rhodoxanthin synthase from honeysuckle; a membrane diiron enzyme catalyzes the 1 multi-step conversation of β-carotene to rhodoxanthin. Science Advances https://www.osti.gov/biblio/1615590
  24. Selamoglu, N. & Blaby-Haas, C. (2020). Comparative Differential Cuproproteomes of Rhodobacter capsulatus Reveal Novel Copper. Metallomics, 572-591 https://dx.doi.org/10.1039/C9MT00314B
  25. Clark, T. (2020). Modeling Plant Metabolism: From Network Reconstruction to Mechanistic Models. Annual Review of Plant Biology https://dx.doi.org/10.1146/annurev-arplant-050718-100221

2019

  1. Nguyen, N. & Blaby, I. (2019). ManiNetCluster: a novel manifold learning approach to reveal the functional links between gene networks. BMC Genomics, 20, Article 1003 https://dx.doi.org/10.1186/s12864-019-6329-2
  2. Takemaru, L. & Liu, Q. (2019). PyMDA: Microcrystal Data Assembly Using Python. Journal of Applied Crystallography https://www.osti.gov/biblio/1579902
  3. Whittle, E. & Shanklin, J. (2019). Castor Stearoyl-ACP Desaturase Can Synthesize a Vicinal Diol by Dioxygenase Chemistry. Plant Physiology https://dx.doi.org/10.1104/pp.19.01111
  4. Marckmann, D. & Blaby-Haas, C. (2019). The cbb3-type cytochrome oxidase assembly factor CcoG is a widely-distributed novel cupric reductase. Pnas, 21166-21175 https://dx.doi.org/10.1073/pnas.1913803116
  5. Andi, B. (2019). Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant. Acta Crystallographica Section F, 75, 616-624 https://www.osti.gov/biblio/1561244
  6. Blaby-Haas, C. (2019). Comparative and Functional Algal Genomics. Annual Review of Plant Biology https://www.osti.gov/biblio/1502797
  7. Fan, J. (2019). Diversion of Carbon Flux from Sugars to Lipids Improves the Growth of an Arabidopsis Starchless Mutant. Plants, 8(7) https://www.osti.gov/biblio/1556883
  8. Fan, J. (2019). Dual Role for Autophagy in Lipid Metabolism in Arabidopsis. Plant Cell, 31(7), 1598-1613 https://dx.doi.org/10.1105/tpc.19.00170
  9. Liu, H. (2019). BIOTIN ATTACHMENT DOMAIN-CONTAINING proteins, inhibitors of ACCase, are regulated by WRINKLED1. Plant Physiology https://www.osti.gov/biblio/1525402
  10. Liu, C. (2019). Cytokinin Transporters: Multisite players in cytokinin homeostasis and signal distribution. Frontiers In Plant Science , 10, Article 693 https://dx.doi.org/10.3389/fpls.2019.00693
  11. Hughes, S. & Wall, J. (2019). Ambidextrous Helical Nanotubes from Self-Assembly of Designed Helical Hairpin Motifs. Proceedings of the National Academy of Sciences https://www.osti.gov/biblio/1525381
  12. Gou, M. & Liu, C. (2019). Cytochrome b5 is an Obligate Electron Shuttle Protein for Syringyl Lignin Biosynthesis in Arabidopsis. The Plant Cell https://www.osti.gov/biblio/1515153
  13. Tsui, H. & Blaby-Haas, C. (2019). Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. Journal of Lipid Research https://dx.doi.org/10.1194/jlr.M093534
  14. Yu, X. & Shanklin, J. (2019). Expression of a Lychee PDCT with E. coli CPS Enhances Cyclopropane Fatty Acid in Camelina Seeds. Plant Physiology https://www.osti.gov/biblio/1512697
  15. Gou, G. (2019). Synchrotron Microcrystal Native-SAD Phasing at a Low Energy. IUCrJ https://www.osti.gov/biblio/1504882
  16. Gou, G. & Liu, Q. (2019). Ion and pH Sensitivity of a TMBIM Ca2+ Channel. Structure https://dx.doi.org/10.1016/j.str.2019.03.003
  17. Wang, X. & Liu, Q. (2019). Structural basis for activity of TRIC counter-ion channels in calcium release. Pnas https://www.osti.gov/biblio/1498857
  18. Roth, M. & Blaby-Haas, C. (2019). Regulation of Oxygenic Photosynthesis during Trophic Transitions in the Green Alga Chromochloris zonfingiensis. Plant Cell https://www.osti.gov/biblio/1547018
  19. Zhang, Y. & Blaby-Haas, C. (2019). Cu Transport by the Extended Family of CcoA-like Transporters (CalT) in Proteobacteria. Scientific Reports, 9, Article 1208 https://dx.doi.org/10.1038/s41598-018-37988-4
  20. Fan, J. (2019). Peroxisomal Fatty Acid β-oxidation negatively impacts plant survival under salt stress. Plant Signaling & Behavior https://www.osti.gov/biblio/1489741
  21. Sturtevant, D. & Shanklin, J. (2019). Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds. Metabolomics, 15(1), Article 6 https://dx.doi.org/10.1007/s11306-018-1464-3

2018

  1. Cai, Y. & Shanklin, J. (2018). Two Clusters of Residues Contribute to the Activity and Substrate Specificity of Fm1, a Bifunctional Oleate and Linoleate Desaturase of Fungal Origin. Journal of Biological Chemistry https://www.osti.gov/biblio/1478479
  2. Luxmi, R. & Blaby-Haas, C. (2018). Proteases Shape the Chlamydomonas Secretome: Comparison to Classical Neuropeptide Processing Machinery. Proteomes https://www.osti.gov/biblio/1473636
  3. Zhai, Z. (2018). Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. Plant Cell https://www.osti.gov/biblio/1467850
  4. Schluter, U. & Schwender, J. (2018). The role of alanine and aspartate aminotransferases in C4 photosynthesis. Plant Biology https://dx.doi.org/10.1111/plb.12904
  5. Yu, L. (2018). Starch Deficiency Enhances Lipid Synthesis and Turnover in Arabidopsis Leaves. Plant Physiology https://dx.doi.org/10.1104/pp.18.00539
  6. Studier, W. (2018). T7 Expression Systems for Inducible Production of Proteins from Cloned Genes in E. coli. Current Protocols in Molecular Biology https://dx.doi.org/10.1002/cpmb.63
  7. Schlüter, U. & Schwender, J. (2018). The role of alanine and aspartate aminotransferases in C4 photosynthesis. Plant Biology https://www.osti.gov/biblio/1469788
  8. Samanovic, M. & Xu, C. (2018). Cytokinin Signaling in Mycobacterium Tuberculosis. Mbio, 9(3), Article e00989-18 https://dx.doi.org/10.1128/mBio.00989-18
  9. Sanghai, Z. & Liu, Q. (2018). Structure-based analysis of CysZ-mediated 1 cellular uptake of sulfate. eLIFE https://dx.doi.org/10.7554/eLife.27829
  10. Qu, W. & Fowler, J. (2018). Synthesis of L-[4-C-11]Asparagine by Ring-Opening Nucleophilic C-11-Cyanation Reaction of a Chiral Cyclic Sulfamidate Precursor. Chemistry - A European Journal, 24(26) https://dx.doi.org/10.1002/chem.201801029
  11. Gou, M. & Liu, C. (2018). The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Natural Plants, 4(5), 299-310 https://dx.doi.org/10.1038/s41477-018-0142-9
  12. Gou, G. (2018). Sample Manipulation and Data Assembly for Robust Microcrystal Synchrotron Crystallography. IUCrJ, 5 https://dx.doi.org/10.1107/S2052252518005389
  13. Keereetaweep, J. (2018). Biotin Attachment Domain-Containing Proteins Irreversibly Inhibit Acetyl CoA Carboxylase. Plant Physiology https://www.osti.gov/biblio/1435159
  14. Almeida-Porada, G. & Guida, P. (2018). Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis. Stem Cells and Development https://www.osti.gov/biblio/1430862
  15. Vieni, C. & Swaminathan, S. (2018). Structure Based Discovery of Pan Active Botulinum Neurotoxin Inhibitors. Journal of Infectious Diseases and Therapy https://www.osti.gov/biblio/1425108
  16. Khalfaoui-Hassani, B. & Blaby-Haas, C. (2018). Widespread Distribution and Functional Specificity of the Copper Importer CcoA: Distinct Cu Uptake Routes for Bacterial Cytochrome c Oxidases. mBio https://www.osti.gov/biblio/1426445
  17. Brownstein, J. & Guida, P. (2018). Characterizing The Potency and Impact Of Carbon Ion Therapy in a Primary Mouse Model of Soft Tissue Sarcoma. Journal Molecular Cancer Therapeutics https://www.osti.gov/biblio/1425188

2017

  1. Zhang, Y. & Liu, C. (2017). S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis. The Plant Physiology https://www.osti.gov/biblio/1412669
  2. Cheng, A. & Liu, C. (2017). Identification of Chalcone Isomerase in the Basal Land Plants Reveals an Ancient Evolution of Enzymatic Cyclization Activity for Synthesis of Flavonoids. New Phytologist https://www.osti.gov/biblio/1412668
  3. Blaby, C. (2017). Regulating Cellular Trace Metal Economy in Algae. https://www.osti.gov/biblio/1372451
  4. Sutherland, J. (2017). Measuring Fluorescence Polarization with a Dichrometer. Anal Biochem, 532, 9-11 https://dx.doi.org/10.1016/j.ab.2017.04.001
  5. Yu, X. & Yu, X. (2017). Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Plant Biotechnology Journal https://www.osti.gov/biblio/1412647
  6. Zhai, Z. & Zhai, Z. (2017). Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation. https://www.osti.gov/biblio/1413916
  7. Zinke, M. & Wall, J. (2017). Bacteriophage Tail Tube Assembly Studied by Proton-Detected 4D Solid-State NMR. https://www.osti.gov/biblio/1376150
  8. Brawley, S. (2017). Thriving in a tough environment: Insights into the red algae from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Pnas https://www.osti.gov/biblio/1376126
  9. Fan, J. & Fan, J. (2017). A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid ?-Oxidation and Plant Survival under Extended Darkness. Plant Physiology https://dx.doi.org/10.1104/pp.17.00653
  10. Liu, Q. & Liu, Q. (2017). TMBIM-Mediated Ca2+ Homeostasis and Cell Death. Biochimica Et Biophysica Acta-Molecular Cell Research https://dx.doi.org/10.1016/j.bbamcr.2016.12.023
  11. Zhang, X. (2017). A Proteolytic Regulator Controlling Chalcone Synthase Stability and Flavonoid Biosynthesis in Arabidopsis. https://www.osti.gov/biblio/1389244
  12. Sutherland, J. (2017). Linear dichroism of DNA: characterization of the orientation distribution function caused by hydrodynamic shear. Anal Biochem, 523, 24-31 https://dx.doi.org/10.1016/j.ab.2017.01.016
  13. Blaby, I. & Blaby, I. (2017). Genomics and functional genomics in Chlamydomonas reinhardtii. Microbiology Monographs https://www.osti.gov/biblio/1351725
  14. Zhai, Z. & Zhai, Z. (2017). Phosphorylation of WRINKLED1 by KIN10 Results in its Proteasomal Degradation; Providing a Link Between Energy Homeostasis and Lipid Synthesis. Plant Cell https://www.osti.gov/biblio/1348294
  15. Blaby, I. & Blaby, I. (2017). Gene expression analysis by arylsulfatase assays in the green alga Chlamydomonas reinhardtii. Molecular Biology https://www.osti.gov/biblio/1351730

2016

  1. Magnotti, E. & Wall, J. (2016). Self-assembly of an α-Helical Peptide into a Crystalline Two-Dimensional Nanoporous Framework. https://www.osti.gov/biblio/1351722
  2. Gou, M. (2016). The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis. https://www.osti.gov/biblio/1347288
  3. Hu, M. & Liu, Q. (2016). Structural Basis for Human PECAM-1-Mediated Trans-homophilic Cell Adhesion. https://www.osti.gov/biblio/1347367
  4. Templin, T. & Guida, P. (2016). Short-Term Effects of Low-LET Radiation on the Endothelial Barrier: Uncoupling of PECAM-1 and the Production of Endothelial Microparticles. https://www.osti.gov/biblio/1349565
  5. Rodman, C. & Guida, P. (2016). In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. https://www.osti.gov/biblio/1389216
  6. Zhou, Y. & Swaminathan, S. (2016). Identification of small molecule inhibitors of botulinum neurotoxin serotype E via footprint similarity. Bioorganic & Medicinal Chemistry https://dx.doi.org/10.1016/j.bmc.2016.07.031
  7. Xu, Y. & Fowler, J. (2016). A mild, rapid synthesis of freebase [11C]nicotine from [11C]methyl triflate. https://www.osti.gov/biblio/1340399
  8. Walti, M. & Wall, J. (2016). Atomic resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. https://www.osti.gov/biblio/1351799
  9. Huang, L. & Shanklin, J. (2016). A family of metal-dependent phosphatases implicated in metabolite damage-control. https://www.osti.gov/biblio/1341633
  10. Sutherland, J. & Sutherland, J. (2016). Calibration of Photoelastic Modulator Based Dichrometers: Maintaining Constant Phase Across the Spectrum. https://www.osti.gov/biblio/1349559
  11. Yu, H. & Liu, Q. (2016). Structural Analysis of Notch-Regulating Rumi reveals basis for pathogenic mutations. https://www.osti.gov/biblio/1347286
  12. Cai, Y. & Cai, Y. (2016). Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase. https://www.osti.gov/biblio/1341631
  13. Kumar, G. (2016). Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E: structure-activity relationship and a pharmacophore model. Bioorganic & Medical Chemistry https://dx.doi.org/10.1016/j.bmc.2016.06.036
  14. He, F. (2016). Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis. Plant Journal https://dx.doi.org/10.1111/tpj.13175
  15. Blaby-Haas, C. (2016). Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cudeficiency responses in Chlamydomonas reinhardtii. Metallomics, 679-691 https://dx.doi.org/10.1039/C6MT00063K
  16. Sedeek, K. (2016). Amino acid change in an orchid desaturase enables mimicry of the pollinator"s sex pheromone. Current Biology https://www.osti.gov/biblio/1335436
  17. Xu, C. (2016). Triacylglycerol Metabolism, Function and Accumulation in Plant Vegetative Tissues. Annual Reviews https://dx.doi.org/10.1146/annurev-arplant-043015-111641
  18. Bai, L. (2016). Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis. https://www.osti.gov/biblio/1257964
  19. Turkin, A. (2016). Speeding up Standard PCR Reactions with a Molecular Peptide Sled. PMC US National Library of Medicine National Institutes of Health https://www.osti.gov/biblio/1260167
  20. Yuan, Z. (2016). Structure of the Eukaryotic Replicative CMG Helicase and Pumpjack Motion. Nature Structural & Molecular Biology, 217-224 https://dx.doi.org/10.1038/nsmb.3170
  21. Shi, H. (2016). Mathematical models of plant metabolism. https://www.osti.gov/biblio/1239795
  22. McGillick, B. (2016). beta-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Francisella tularensis and Yersinia pestis: Structure Determination, Enzymatic Characterization, and Cross Inhibition Studies. Biochemistry https://www.osti.gov/biblio/1335393

2015

  1. Blaby, I. & Blaby, I. (2015). Genome-wide analysis on Chlamydomonas reinhardtii reveals impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes. Plant Journal https://dx.doi.org/10.1111/tpj.13053
  2. Eswaramoorthy, S. (2015). Molecular Assembly of Clostridium botulinum progenitor M complex of type E. https://www.osti.gov/biblio/1235881
  3. Dearborn, A. (2015). Alpha-Synuclein Amyloid Fibrils with Two Entwined, Asymmetrically Associated, Protofibrils and Axially Stacked Metal Binding Sites.. The Journal of Biological Chemistry, 2310-2318 https://dx.doi.org/10.1074/jbc.M115.698787
  4. Yu, H. & Yu, H. (2015). Notch-modifying xylosyltransferase-substrate complexes support an SNi-like retaining mechanism. https://www.osti.gov/biblio/1234375
  5. Kumaran, D. & Swaminathan, S. (2015). Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: insights from x-ray crystallography. https://www.osti.gov/biblio/1232693
  6. Sun, J. (2015). The Architecture of a Eukaryotic Replisome. Nature Structural & Molecular Biology , 976-982 https://dx.doi.org/10.1038/nsmb.3113
  7. Wang, H. & Fowler, J. (2015). Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase. https://www.osti.gov/biblio/1239783
  8. Volkow, N. & Fowler, J. (2015). Recovery of Dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release. https://www.osti.gov/biblio/1239786
  9. Provart, N. (2015). 50 Years of Arabidopsis Research: Highlights and Future Directions. https://www.osti.gov/biblio/1335407
  10. Fan, J. & Fan, J. (2015). The Arabidopsis TriGalactosylDiacylglycerol 5 Interacts with TGD1, TGD2 and TGD4 to Facilitate Lipid Transfer from the Endoplasmic Reticulum to the Plastid. https://www.osti.gov/biblio/1341526
  11. Lee, S. & Fowler, J. (2015). An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY? Nickel catalyzed reductive cyclization. https://www.osti.gov/biblio/1239796
  12. Cai, Y. & Cai, Y. (2015). Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alchohol. Journal of Biological Chemistry https://dx.doi.org/10.1074/jbc.M115.684217
  13. Keereetaweep, J. & Keereetaweep, J. (2015). Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification. https://www.osti.gov/biblio/1335430
  14. Teng, Y. (2015). Computer-aided identification, synthesis, and biological evaluation of novel inhibitors for botulinum neurotoxin serotype A. https://www.osti.gov/biblio/1232690
  15. Zhang, M. & Yu, H. (2015). A novel approach to make homogeneous protease-stable monovalent streptavidin. https://www.osti.gov/biblio/1232691
  16. Volkow, N. (2015). Caffeine Increases Striatal Dophamine D2/D3 Receptor Availability in the Human Brain.. Translational Psychiatry https://dx.doi.org/10.1038/tp.2015.46