General Lab Information

National Quantum Initiative

Quantum.gov is the home of the National Quantum Initiative and ongoing activities to explore and promote Quantum Information Science. The National Quantum Initiative Act, signed into law on December 21, 2018, ensures the continued leadership of the United States in quantum information science and its technology applications. It provides for a coordinated Federal program to accelerate quantum research and development for the economic and national security of the United States.

National Quantum Information Science Centers

Q-NEXT · Next Generation Quantum Science and Engineering

Director: David Awschalom Lead
Institution: Argonne National Laboratory

Q-NEXT will create a focused, connected ecosystem to deliver quantum interconnects, to establish national foundries, and to demonstrate communication links, networks of sensors, and simulation testbeds. In addition to enabling scientific innovation, Q-NEXT will build a quantum-smart workforce, create quantum standards by building a National Quantum Devices Database, and provide pathways to the practical commercialization of quantum technology by embedding industry in all aspects of its operations and incentivizing start-ups.

SQMS · Superconducting Quantum Materials and Systems Center

Director: Anna Grassellino
Lead Institution: Fermi National Accelerator Laboratory

The primary mission of SQMS is to achieve transformational advances in the major crosscutting challenge of understanding and eliminating the decoherence mechanisms in superconducting 2D and 3D devices, with the goal of enabling construction and deployment of superior quantum systems for computing and sensing. In addition to the scientific advances, SQMS will target tangible deliverables in the form of unique foundry capabilities and quantum testbeds for materials, physics, algorithms, and simulations that could broadly serve the national QIS ecosystem.

QSA · Quantum Systems Accelerator

Director: Irfan Siddiqi
Lead Institution: Lawrence Berkeley National Laboratory

QSA aims to co-design the algorithms, quantum devices, and engineering solutions needed to deliver certified quantum advantage in scientific applications. QSA’s multi-disciplinary team will pair advanced quantum prototypes—based on neutral atoms, trapped ions, and superconducting circuits—with algorithms specifically constructed for imperfect hardware to demonstrate optimal applications for each platform in scientific computing, materials science, and fundamental physics. The QSA will deliver a series of prototypes to broadly explore the quantum technology trade-space, laying the basic science foundation to accelerate the maturation of commercial technologies.

QSC · The Quantum Science Center

Director: David Dean
Lead Institution: Oak Ridge National Laboratory

QSC is dedicated to overcoming key roadblocks in quantum state resilience, controllability, and ultimately scalability of quantum technologies. This goal will be achieved through integration of the discovery, design, and demonstration of revolutionary topological quantum materials, algorithms, and sensors, catalyzing development of disruptive technologies. In addition to the scientific goals, integral to the activities of the QSC are development of the next generation of QIS workforce by creating a rich environment for professional development and close coordination with industry to transition new QIS applications to the private sector.

C2QA · Co-design Center for Quantum Advantage

Director: Steve Girvin
Lead Institution: Brookhaven National Laboratory

C2QA aims to overcome the limitations of today’s noisy intermediate scale quantum (NISQ) computer systems to achieve quantum advantage for scientific computations in high-energy, nuclear, chemical and condensed matter physics. The integrated five-year goal of C2QA is to deliver a factor of 10 improvement in each of software optimization, underlying materials and device properties, and quantum error correction, and to ensure these improvements combine to provide a factor of 1,000 improvement in appropriate computation metrics.