Meng Li
Staff Scientist, CFN Management, Center for Functional Nanomaterials

Brookhaven National Laboratory
Center for Functional Nanomaterials
Bldg. 735, Room 1022
P.O. Box 5000
Upton, NY 11973-5000
(631) 344-7099
(631) 344-7099
mli4@bnl.gov
Pronouns: she
Expertise | Research | Education | Appointments | Publications
Expertise
- In-situ environmental Transmission Electron Microscopy (E-TEM)
- Operando Gas-cell TEM
- Operando Liquid-cell TEM for electrocatalysis
- Other In situ TEM applications: Heating, nanomechanics, electrical biasing, electo-mechanical testing...
- Data analysis tools for in situ TEM
- MEMS device development for in situ TEM
- Analytical (S)TEM
Research Activities
My reserach mainly focus on developing in situ TEM hardward and softwrare pipelines for understanding atomic scale mechnisms for gas-solid reactions in catalysts and corrosion. Particular interest includes advancing in situ and operando environmental tranmission electron microscopy, developing MEMS based holders for in situ TEM, and developing data analysis software tools for in situ TEM, for research in nanomaterials for applications in catalysis, corrosion, energy.
Education
- Ph.D. : Xi'an Jiaotong Unviersity, P. R. China
- Major: Materials science and engineering
- B.E.: Xi'an JiaoTong University, P. R. China
- Major: Mechanical Engineering
Professional Appointments
- Postdoctoral reserach : University of Pittsburgh, USA
- Projects: in situ ETEM on initial oxidation of Cu an Cu alloy; in situ ETEM on catalytic readction mechanism of Cu catalysts.
Selected Publications
- Wisesa P, Li M, Curnan MT, et al (2025) Cu–Ni Oxidation Mechanism Unveiled: A Machine Learning-Accelerated First-Principles and in Situ TEM Study. Nano Letters 25:1329–1335. https://doi.org/10.1021/acs.nanolett.4c04648
- Han Y, Chen H, Sun Y, et al (2024) Ubiquitous short-range order in multi-principal element alloys. Nature Communications 15:. https://doi.org/10.1038/s41467-024-49606-1
- Li M, Curnan MT, House SD, et al (2024) Temperature Dependent Early-Stage Oxidation Dynamics of Cu(100) Film with Faceted Holes. High Temperature Corrosion of Materials 101:1237–1248. https://doi.org/10.1007/s11085-024-10274-7
- Liu A, Xi Z, Li M, et al (2024) Influence of excess silicon on polytype selection during metal-mediated epitaxy of GaN nanowires. Applied Physics Letters 125:. https://doi.org/10.1063/5.0210669
- Wang Y, Tian L, Li M, Shan Z (2023) Significant "smaller is softer" in amorphous silicon via irradiation-mediated surface modification. Journal of Materials Science & Technology 166:106–112. https://doi.org/10.1016/j.jmst.2023.04.062
- Sun X, Wu D, Saidi WA, et al (2023) Atomic Dynamics of Multi-Interfacial Migration and Transformations. Small 20:. https://doi.org/10.1002/smll.202305746
- Sun X, Wu D, Zou L, et al (2022) Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607:708–713. https://doi.org/10.1038/s41586-022-04880-1
- Li M, Curnan MT, Saidi WA, Yang JC (2022) Uneven Oxidation and Surface Reconstructions on Stepped Cu(100) and Cu(110). Nano Letters 22:1075–1082. https://doi.org/10.1021/acs.nanolett.1c04124
- Wang Y, Ding J, Fan Z, et al (2021) Tension–compression asymmetry in amorphous silicon. Nature Materials 20:1371–1377. https://doi.org/10.1038/s41563-021-01017-z
- Li M, Xie D-G, Zhang X-X, et al (2021) Quantifying Real-Time Sample Temperature Under the Gas Environment in the Transmission Electron Microscope Using a Novel MEMS Heater. Microscopy and Microanalysis 27:758–766. https://doi.org/10.1017/s1431927621000489
- Li M, Curnan MT, Gresh-Sill MA, et al (2021) Unusual layer-by-layer growth of epitaxial oxide islands during Cu oxidation. Nature Communications 12:. https://doi.org/10.1038/s41467-021-23043-w
- Chi H, Curnan MT, Li M, et al (2020) In situ environmental TEM observation of two-stage shrinking of Cu2O islands on Cu(100) during methanol reduction. Physical Chemistry Chemical Physics 22:2738–2742. https://doi.org/10.1039/c9cp05831a
- Wang Z, Tang Y, Zhang L, et al (2020) In Situ TEM Observations of Discharging/Charging of Solid-State Lithium-Sulfur Batteries at High Temperatures. Small 16:. https://doi.org/10.1002/smll.202001899
- Wang Y, Li M, Yang Y, et al (2020) In-situ surface transformation of magnesium to protect against oxidation at elevated temperatures. Journal of Materials Science & Technology 44:48–53. https://doi.org/10.1016/j.jmst.2019.10.018
- Curnan MT, Andolina CM, Li M, et al (2018) Connecting Oxide Nucleation and Growth to Oxygen Diffusion Energetics on Stepped Cu(011) Surfaces: An Experimental and Theoretical Study. The Journal of Physical Chemistry C 123:452–463. https://doi.org/10.1021/acs.jpcc.8b08944
- Li M, Xie D-G, Ma E, et al (2017) Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures. Nature Communications 8:. https://doi.org/10.1038/ncomms14564
- Xie D, Li S, Li M, et al (2016) Hydrogenated vacancies lock dislocations in aluminium. Nature Communications 7:. https://doi.org/10.1038/ncomms13341

Brookhaven National Laboratory
Center for Functional Nanomaterials
Bldg. 735, Room 1022
P.O. Box 5000
Upton, NY 11973-5000
(631) 344-7099
(631) 344-7099
mli4@bnl.gov