Fermilab Scientists Find Evidence for Significant Matter-Antimatter Asymmetry
May 20, 2010
The following press release, distributed by the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, describes new physics results that might help answer one of nature’s most puzzling questions: why is there more matter than antimatter in the universe? The research was conducted at the DZero experiment, part of Fermilab’s Tevatron accelerator. Scientists from DOE’s Brookhaven National Laboratory built pieces of DZero and also made significant contributions to the experiment’s software, computing, and performance.
In addition, the following Brookhaven scientists were co-authors on the Physical Review D paper that announces the result: Michael Begel, Anatoli Evdokimov, Thomas Gadfort, Abid Patwa, Marc-Andre Pleier, Serban Protopopescu, Scott Snyder, and Kin Yip.
For more information about Brookhaven’s role in DZero, contact Kendra Snyder at 631-344-8191 or ksnyder@bnl.gov.
The DZero detector
Batavia, Ill. — Scientists of the DZero collaboration at the Department of Energy’s Fermi National Accelerator Laboratory announced Friday, May 14, that they have found evidence for significant violation of matter-antimatter symmetry in the behavior of particles containing bottom quarks beyond what is expected in the current theory, the Standard Model of particle physics. The new result, submitted for publication in Physical Review D by the DZero collaboration, an international team of 500 physicists, indicates a one percent difference between the production of pairs of muons and pairs of antimuons in the decay of B mesons produced in high-energy collisions at Fermilab’s Tevatron particle collider.
The dominance of matter that we observe in the universe is possible only if there are differences in the behavior of particles and antiparticles. Although physicists have observed such differences (called “CP violation") in particle behavior for decades, these known differences are much too small to explain the observed dominance of matter over antimatter in the universe and are fully consistent with the Standard Model. If confirmed by further observations and analysis, the effect seen by DZero physicists could represent another step towards understanding the observed matter dominance by pointing to new physics phenomena beyond what we know today.
Using unique features of their precision detector and newly developed analysis methods, the DZero scientists have shown that the probability that this measurement is consistent with any known effect is below 0.1 percent (3.2 standard deviations).
"This exciting new result provides evidence of deviations from the present theory in the decays of B mesons, in agreement with earlier hints," said Dmitri Denisov, co-spokesperson of the DZero experiment, one of two collider experiments at the Tevatron collider. Last year, physicists at both Tevatron experiments, DZero and CDF, observed such hints in studying particles made of a bottom quark and a strange quark.
When matter and anti-matter particles collide in high-energy collisions, they turn into energy and produce new particles and antiparticles. At the Fermilab proton-antiproton collider, scientists observe hundreds of millions every day. Similar processes occurring at the beginning of the universe should have left us with a universe with equal amounts of matter and anti-matter. But the world around is made of matter only and antiparticles can only be produced at colliders, in nuclear reactions or cosmic rays.
“What happened to the antimatter?” is one of the central questions of 21st–century particle physics.
To obtain the new result, the DZero physicists performed the data analysis "blind," to avoid any bias based on what they observe. Only after a long period of verification of the analysis tools, did the DZero physicists look at the full data set. Experimenters reversed the polarity of their detector’s magnetic field during data collection to cancel instrumental effects.
“Many of us felt goose bumps when we saw the result,” said Stefan Soldner-Rembold, co-spokesperson of DZero. “We knew we were seeing something beyond what we have seen before and beyond what current theories can explain.”
The precision of the DZero measurements is still limited by the number of collisions recorded so far by the experiment. Both CDF and DZero therefore continue to collect data and refine analyses to address this and many other fundamental questions.
“The Tevatron collider is operating extremely well, providing Fermilab scientists with unprecedented levels of data from high energy collisions to probe nature’s deepest secrets. This interesting result underlines the importance and scientific potential of the Tevatron program,” said Dennis Kovar, Associate Director for High Energy Physics in DOE’s Office of Science.
The DZero result is based on data collected over the last eight years by the DZero experiment: over 6 inverse femtobarns in total integrated luminosity, corresponding to hundreds of trillions of collisions between protons and antiprotons in the Tevatron collider.
“Tevatron collider experiments study high energy collisions in every detail, from searches for the Higgs boson, to precision measurement of particle properties, to searches for new and yet unknown laws of nature. I am delighted to see yet another exciting result from the Tevatron,” said Fermilab Director Pier Oddone.
DZero is an international experiment of about 500 physicists from 86 institutions in 19 countries. It is supported by the U.S. Department of Energy, the National Science Foundation and a number of international funding agencies.
Fermilab is a national laboratory funded by the Office of Science of the U.S. Department of Energy, operated under contract by Fermi Research Alliance, LLC.
Media Contact: Rhianna Wisniewski , Fermilab, +1-630-840-6733, rhianna@fnal.gov
2010-11139 | INT/EXT | Newsroom