BNL Home
November 2019
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1

  1. HET Lunch Discussion

    12:15 pm, Building 510, Room 2-160

    Hosted by: Peter Denton

2

  1. No events scheduled

3

  1. No events scheduled

4

  1. No events scheduled

5

  1. Physics Colloquium

    3:30 pm, Large Seminar Room, Bldg. 510

    Neutrinos are some of the most abundant–but elusive–constituents of matter in the universe. It has been firmly established that neutrinos can change flavor (or "oscillate"), as recognized by the 2015 Nobel Prize, and in recent years the field has moved beyond the "discovery" phase to focus on precise measurements of the parameters that determine neutrino oscillation. As our understanding improves, it opens doors to new discoveries about the nature of this little-understood particle. This is a very exciting time in neutrino physics there exists a wealth of fascinating questions to investigate, including recent tantalizing hints of large neutrino-sector CP violation, and we are rapidly developing the tools to answer them. As the United States HEP community leads the next generation of neutrino oscillation experiments, I will give an overview of the field: from the initial discovery of the neutrino, to the first evidence for oscillation, to the most recent results from current long-baseline oscillation experiments such as T2K and NOvA. I will finish by discussing the exciting future prospect of the Deep Underground Neutrino Experiment and the liquid argon time projection chamber technology that makes it possible, including recent results and examples from my own work on MicroBooNE, a liquid argon neutrino detector currently taking data at Fermilab

6

  1. No events scheduled

7

  1. CSI Q Seminar

    3 pm, Conference room 201, Bldg 734

    Hosted by: Layla Hormozi

    Over the past decade, quantum simulators based on ultracold atoms have emerged as a powerful tool to address open questions in strongly interacting systems and nonequilibrium quantum dynamics that have relevance in all areas of physics, from strongly correlated materials to cosmology. Today, quantum simulators based on ultracold dipolar molecules are within experimental reach, which exploit long-range dipole-dipole interactions and will give access to new classes of strongly correlated many-body systems. In this talk, I will present our efforts towards quantum simulation with ultracold dipolar molecules. In trailblazing experiments we have demonstrated the creation of ultracold molecules via atom-by-atom assembly, which yields complete control over the molecular degrees of freedom, including electronic, vibrational, rotational, and nuclear spin states. Exploiting this control, we have observed long nuclear spin coherence times in molecular ensembles, which makes ultracold molecules an interesting candidate for the realization of a long-lived quantum memory. In addition, the dipole-dipole interactions between molecules can be flexibly tuned via external electrostatic and microwave fields. This motivates our current work towards two-dimensional systems of strongly interacting molecules, which promises access to novel quantum phases, will enable high-speed simulation of quantum magnetism, and points towards potential quantum computing schemes based on ultracold molecules. In the end, I will briefly present our new project on enhancing quantum coherence by dissipation in programmable atomic arrays. For this effort we will develop a novel nanophotonic platform that will enable trapping of individual atoms in optical tweezer arrays with unprecedented accuracy and high-speed tunability.

  2. Particle Physics Seminar

    3 pm, Small Seminar Room, Bldg. 510

    Hosted by: Xin Qian

    MicroBooNE, the Micro Booster Neutrino Experiment at Fermilab, is an 85-ton active mass liquid argon time projection chamber (LArTPC) located in the Booster Neutrino Beam at Fermilab. The LArTPC technology with 3mm wire spacing enables high-precision imaging of neutrino interactions, which leads to high-efficiency, low-threshold measurements with full angular coverage. As the largest liquid argon detector worldwide taking neutrino beam data, MicroBooNE provides a unique opportunity to investigate neutrino interactions in neutrino-argon scattering at O(1 GeV) energies. These measurements are of broad interest to neutrino physicists because of their application to Fermilab Short Baseline Neutrino program and the Deep Underground Neutrino Experiment (which will both rely on LArTPC technology), as well as the possibility for new insights into A-dependent effects in neutrino scattering on heavier targets such as argon. In this seminar I will present the most recent cross-section results from MicroBooNE, including measurements of inclusive charged-current neutrino scattering, neutral pion production, and low-energy protons. Many of the results I will show represent the first measurements of these interactions on argon nuclei, as well as an exciting demonstration of the potential of LArTPC detector technology to improve our current understanding of neutrino scattering physics.

8

  1. NSLS-II Friday Lunchtime Seminar

    12 pm, NSLS-II Bldg. 743 Room 156

    Hosted by: Ignace Jarrige

    Nuclear energy provides about 30% of the world's low carbon electricity supply, from more than 450 civil nuclear reactors. The supporting nuclear fuel cycle comprises a suite of industrial processes, which transform uranium ore into nuclear fuel, and support reactor operations, decommissioning, waste management, and geological disposal. This seminar will highlight three case studies in the application of X-ray absorption spectroscopy (XAS) in the nuclear fuel cycle, embracing environmental contamination, nuclear forensics, and radioactive waste management. In addition to exploitation of state of the art micro-focus multi-modal beamlines at synchrotron light sources, I will also show how we are using new developments in laboratory based XAS instrumentation, to probe element speciation in nuclear materials.

  2. HET Lunch Discussion

    12:15 pm, Building 510, Room 2-160

    Hosted by: Peter Denton

9

  1. No events scheduled

10

  1. No events scheduled

11

  1. No events scheduled

12

  1. Condensed-Matter Physics & Materials Science Seminar

    1 pm, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    The topology of the band structure, which is determined by the lattice symmetries, has a strong influence on the transport properties. We consider an anisotropic honeycomb lattice and study the effect of a continuously deformed band structure on the conductivity and optical properties. We find a strong suppression of the conductivity in one direction and increment by several orders in another which leand to a considerable change of optical properties. We further study a gap generation in a two-dimensional Dirac fermion system which are coupled to in-plane phonons. At sufficiently strong electron-phonon interaction a gap appears in the spectrum of fermions. The structure of elementary excitations above the gap in the corresponding phase reveals the presence of scale invariant parity breaking terms which resemble Chern-Simons excitations. The Kubo formula remyields quantized Hall plateaux. References: EPL 119, 27001 (2017); PRB 97, 235411 (2018); PRB 93, 125112 (2016); Ann. Phys. 400, 262 (2018); arxiv:1908.00442.

13

  1. CSI Q Seminar

    11 am, Training Room, Bldg 725

    Hosted by: Layla Hormozi

    History of quantum information will be mentioned. Followed by comments on modern developments. Current projects of the speaker [spin chains and quantum search] will be briefly described.

  2. HET Seminar

    2:30 pm, Small Seminar Room, Bldg. 510

    The quantum link (or D-theory) formulation of lattice field theory, introduced 20 years ago by Brower-Chandrasekharan-Wiese, replaced all gauge and matter fields as single bit fermion operators for a Hamiltonian in an extra dimension. This can been recast as real time quantum evolution in Minkowski space ideally suited for Qubit quantum simulations. In addition a map from fermionic (anti-computing operators) to Pauli matrix Qubit has been found using pseudo-fermions and a local Jordan Wigner transformation in the group manifold, which is simpler than the Bravyi-Kitaev map due to local gauge invariance. With the trotter expansions the gauge invariant kernels for U(1) compact QED on triangular lattice are represented as Qubit circuit are ready to be tested on the IMB-Q.

14

  1. RIKEN Lunch Seminar

    12 pm, Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    During the spring of 2018, the Relativistic Heavy-Ion Collider carried out an isobar run consisting of Ru+Ru and Zr+Zr collisions at 200 GeV. The main objective of such experimental program was the unambiguous observation of a Chiral Magnetic Effect-driven charge separation. In this talk, I will demonstrate how an experimentally confirmed property of the nuclear structure of Zr, i.e. its neutron skin, significantly reduces the feasibility of such a finding. This study provides a much needed theoretical baseline to meaningfully interpret the recorded experimental data by combining state-of-the art nuclear structure techniques with a dynamical description of heavy-ion collisions in terms of a novel transport model, SMASH.

  2. Particle Physics Seminar

    1:30 pm, Small Seminar Room, Bldg. 510

    Hosted by: Steve Kettell

    The NA62 experiment at CERN dedicated to measurements of ultra-rare decays of the charged kaon with the decay-in-flight technique collected a large data set corresponding to 6*10^{12} kaon decays in 2016-2018. The first NA62 results based on parts this data set are presented, including the search for the K+—>pi+nunu decay, as well as searches for lepton number violation and production of heavy neutral leptons in kaon decays. Prospects for these and other measurements are discussed in view of the second NA62 run foreseen in 2021-2024.

  3. Particle Physics Seminar

    3 pm, Small Seminar Room, Bldg. 510

    Hosted by: Thomas McClintock

  4. Brookhaven Women in Science Lecture

    4 pm, John Dunn Seminar Room, Bldg. 463

    The talk will discuss what interdisciplinary teams involving scientists, conservators, and art historians at The Met, together with colleagues in numerous other institutions including Brookhaven National Laboratory, have begun to unravel about the permanence of artistic materials in iconic works of art by Rembrandt van Rijn, Vincent van Gogh, Jan van Eyck, Adolph Gottlieb, Margareta Haverman, and others, by joining forces and combining different backgrounds, what the implications of these findings for the conservation and preservation of the works affected are, and the challenges that still lie ahead.

15

  1. HET Lunch Discussion

    12:15 pm, Building 510, Room 2-160

16

  1. No events scheduled

17

  1. No events scheduled

18

  1. No events scheduled

19

  1. NOV

    19

    Tuesday

    Nuclear Physics Seminar

    11 am, Building 510, CFNS Seminar Room 2-38

    Tuesday, November 19, 2019, 11:00 am

    Hosted by: Salvatore Fazio

  2. NOV

    19

    Tuesday

    Physics Colloquium

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, November 19, 2019, 3:30 pm

    Hosted by: Andrei Nomerotski

    Quantum information processing and quantum communication are novel protocols that originate from the very fundamental and philosophical questions on superposition and entanglement raised since the early days of quantum mechanics. Strikingly, these new protocols offer capabilities beyond communication task possible with classical physics. One very important example is the secure key exchange based on the transmission of individual quantum signals between communication partners. The big vision and frontier in the field of quantum communication research is the development of a Quantum Internet, which establishes entanglement between many different users and devices. The basic idea is that similar to today's internet, the Quantum Internet will readily transfer quantum bits, rather than today's classical bits, between users near and far and over multiple different channels and could be used for secure communications, quantum computer networks and metrological applications. I will discuss recent advances on implementations and tools useful for generating and distributing photonic quantum entanglement over robust channels including time-bin encoding and reference-frame-free protocols. I will also present an overview of the upcoming Canadian quantum communication satellite QEYSSAT.

20

  1. NOV

    20

    Wednesday

    CSI Q Seminar

    1:30 pm, Conference room 201, Bldg 734

    Wednesday, November 20, 2019, 1:30 pm

    Hosted by: Layla Hormozi

    In exchange-only quantum computation, qubits are encoded using three or more spin-1/2 particles and quantum gates can be performed by switching on and off, or "pulsing", the isotropic exchange interaction between spins. Finding efficient pulse sequences for realizing two-qubit gates in this way is complicated by the large search space in which they live, and has typically involved numerical brute force search. Here I will give a simple analytic derivation of the most efficient known exchange-pulse sequence for carrying out a controlled-NOT gate, originally found numerically by Fong and Wandzura. I will then show how the ideas behind this derivation can be used to analytically find new pulse sequences for two-qubit gates beyond controlled-NOT.

  2. NOV

    20

    Wednesday

    Physics Software and Computing Seminar

    1:30 pm, Small Seminar Room, Bldg. 510

    Wednesday, November 20, 2019, 1:30 pm

    Hosted by: Paul Laycock, Torre Wenaus

    Rucio is a Data Management system initially developed for the ATLAS collaboration. It includes many advanced features to allow managing data at the Exascale. During the past years, it has become more and more popular in the HEP and astro communities. Some collaborations are currently evaluating it whereas other ones already decided to use it as their production Data Management system. In the following talk, I will give a general introduction to Rucio, explaining its major concepts, as well as some of its most interesting functionalities. I will also detail the migration strategy that was used in ATLAS to migrate to Rucio in a transparent and non-disruptive way. This experience can be of interest for any communities considering this move in the near future. Blue jeans: https://bluejeans.com/426450169

  3. NOV

    20

    Wednesday

    HET Seminar

    2:30 pm, Small Seminar Room, Bldg. 510

    Wednesday, November 20, 2019, 2:30 pm

    Hosted by: Peter Denton

    I will quickly review the basics of the Standard Model Effective Field Theory (SMEFT) and mention various efforts to build up the foundation of the SMEFT. Next I review the current status of global fits to the open parameters of the SMEFT and motivate the need for precision calculations for the future of the LHC. With this motivation I will elaborate on my recent work on calculations of the Higgs width and the Ward identities in the SMEFT.

21

  1. NOV

    21

    Thursday

    RIKEN Lunch Seminar

    12 pm, Building 510, Room 2-160

    Thursday, November 21, 2019, 12:00 pm

    Hosted by: Yuta Kikuchi

    Photons and dileptons offer themselves as 'clean' probes of the quark-gluon plasma because they are unlikely to reinteract once produced. Their emission rates are given via the vector channel spectral function, an object that can ultimately be reconstructed by analytic continuation of lattice data. To confront perturbative results with that data, the NLO corrections are needed in all domains that affect the associated imaginary-time correlator, namely for energies above, below and in the vicinity of the light cone. We summarize recent progress here and, to control an unavoidable snag, we also determine these corrections for the transverse and longitudinal polarizations separately. Our results should help to scrutinize direct spectral reconstruction attempts from lattice QCD.

  2. NOV

    21

    Thursday

    Particle Physics Seminar

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, November 21, 2019, 3:00 pm

    Hosted by: Viviana Cavaliere

    "After the discovery of the Higgs Boson, the predictions of the Standard Model of particle physics can be extrapolated without inconsistencies all the way up to the Planck mass. Despite this tremendous success, we still remain in the dark about many open puzzles. Why is the weak interaction much stronger than gravity? What is the nature of Dark Matter? Are the strong, weak and electromagnetic forces a lower-energy manifestation of one single fundamental interaction? A possible solution to these questions is provided by Supersymmetry. The key assumption behind many natural supersymmetric models is that the masses of the gluinos, the top squarks and the higgsinos are near the TeV scale, thus within the LHC reach. In this presentation, I will introduce some of the theoretical and phenomenological arguments that motivate the quest for Supersymmetry. I will then outline how I searched for the above-mentioned particles using LHC Run-2 data collected by the ATLAS experiment. Finally, I will focus on my vision of the future and my research plans in high-energy experimental physics."

22

  1. NOV

    22

    Friday

    HET Lunch Discussion

    12:15 pm, Building 510, Room 2-160

    Friday, November 22, 2019, 12:15 pm

  2. NOV

    22

    Friday

    NT/RIKEN Seminar

    2 pm, Building 510, CFNS Seminar Room 2-38

    Friday, November 22, 2019, 2:00 pm

    Hosted by: Niklas Karthik

23

  1. No events scheduled

24

  1. No events scheduled

25

  1. No events scheduled

26

  1. NOV

    26

    Tuesday

    Physics Colloquium

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, November 26, 2019, 3:30 pm

    Hosted by: Dmitri Denisov / George Redlinger

    I will present an alternative approach for a high-energy high-luminosity electron-positron collider. Present designs for high-energy electron-positron colliders are either based on two storage rings with 100 km circumference with a maximum CM energy of 365 GeV or two large linear accelerators with a high energy reach but lower luminosity, especially at the lower initial CM energies. A collider based on storage rings has a high electric power consumption required to compensate for the beam energy losses from the 100 MW of synchrotron radiation power. Using an Energy Recovery Linac (ERL) located in the same-size 100 km tunnel would greatly reduce the beam energy losses while providing higher luminosity in this high-energy collider. Furthermore, this approach could allow for colliding fully polarized electron and positron beams and for extending the CM energy to 600 GeV, which would enable double-Higgs production and the production and measurements of the top Yukawa coupling.

27

  1. No events scheduled

28

  1. No events scheduled

29

30

  1. No events scheduled

  1. NOV

    19

    Tuesday

    Nuclear Physics Seminar

    "Polarized Positron Beams at the Electron-Ion Collider - What physics can be done"

    Presented by Dr. Eric Voutier, Institut de Physique Nucléaire, CNRS/IN2P3 Université Paris-Sud & Université Paris-Saclay

    11 am, Building 510, CFNS Seminar Room 2-38

    Tuesday, November 19, 2019, 11:00 am

    Hosted by: Salvatore Fazio

  2. NOV

    19

    Tuesday

    Physics Colloquium

    "Towards a quantum internet, and its applications"

    Presented by Thomas Jennewein, University of Waterloo

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, November 19, 2019, 3:30 pm

    Hosted by: Andrei Nomerotski

    Quantum information processing and quantum communication are novel protocols that originate from the very fundamental and philosophical questions on superposition and entanglement raised since the early days of quantum mechanics. Strikingly, these new protocols offer capabilities beyond communication task possible with classical physics. One very important example is the secure key exchange based on the transmission of individual quantum signals between communication partners. The big vision and frontier in the field of quantum communication research is the development of a Quantum Internet, which establishes entanglement between many different users and devices. The basic idea is that similar to today's internet, the Quantum Internet will readily transfer quantum bits, rather than today's classical bits, between users near and far and over multiple different channels and could be used for secure communications, quantum computer networks and metrological applications. I will discuss recent advances on implementations and tools useful for generating and distributing photonic quantum entanglement over robust channels including time-bin encoding and reference-frame-free protocols. I will also present an overview of the upcoming Canadian quantum communication satellite QEYSSAT.

  3. NOV

    20

    Wednesday

    Physics Software and Computing Seminar

    "The Rucio Data Management System"

    Presented by Cedric Serfon, BNL

    1:30 pm, Small Seminar Room, Bldg. 510

    Wednesday, November 20, 2019, 1:30 pm

    Hosted by: Paul Laycock, Torre Wenaus

    Rucio is a Data Management system initially developed for the ATLAS collaboration. It includes many advanced features to allow managing data at the Exascale. During the past years, it has become more and more popular in the HEP and astro communities. Some collaborations are currently evaluating it whereas other ones already decided to use it as their production Data Management system. In the following talk, I will give a general introduction to Rucio, explaining its major concepts, as well as some of its most interesting functionalities. I will also detail the migration strategy that was used in ATLAS to migrate to Rucio in a transparent and non-disruptive way. This experience can be of interest for any communities considering this move in the near future. Blue jeans: https://bluejeans.com/426450169

  4. NOV

    20

    Wednesday

    CSI Q Seminar

    "Designing Two-Qubit Gates for Exchange-Only Quantum Computation"

    Presented by Nick Bonesteel, Florida State University and NHMFL

    1:30 pm, Conference room 201, Bldg 734

    Wednesday, November 20, 2019, 1:30 pm

    Hosted by: Layla Hormozi

    In exchange-only quantum computation, qubits are encoded using three or more spin-1/2 particles and quantum gates can be performed by switching on and off, or "pulsing", the isotropic exchange interaction between spins. Finding efficient pulse sequences for realizing two-qubit gates in this way is complicated by the large search space in which they live, and has typically involved numerical brute force search. Here I will give a simple analytic derivation of the most efficient known exchange-pulse sequence for carrying out a controlled-NOT gate, originally found numerically by Fong and Wandzura. I will then show how the ideas behind this derivation can be used to analytically find new pulse sequences for two-qubit gates beyond controlled-NOT.

  5. NOV

    20

    Wednesday

    HET Seminar

    "Precision Era of the SMEFT: the Higgs and Electroweak Sectors"

    Presented by Tyler Corbett, NBI

    2:30 pm, Small Seminar Room, Bldg. 510

    Wednesday, November 20, 2019, 2:30 pm

    Hosted by: Peter Denton

    I will quickly review the basics of the Standard Model Effective Field Theory (SMEFT) and mention various efforts to build up the foundation of the SMEFT. Next I review the current status of global fits to the open parameters of the SMEFT and motivate the need for precision calculations for the future of the LHC. With this motivation I will elaborate on my recent work on calculations of the Higgs width and the Ward identities in the SMEFT.

  6. NOV

    21

    Thursday

    RIKEN Lunch Seminar

    "Shedding light on photon and dilepton spectral functions"

    Presented by Greg Jackson, University of Bern

    12 pm, Building 510, Room 2-160

    Thursday, November 21, 2019, 12:00 pm

    Hosted by: Yuta Kikuchi

    Photons and dileptons offer themselves as 'clean' probes of the quark-gluon plasma because they are unlikely to reinteract once produced. Their emission rates are given via the vector channel spectral function, an object that can ultimately be reconstructed by analytic continuation of lattice data. To confront perturbative results with that data, the NLO corrections are needed in all domains that affect the associated imaginary-time correlator, namely for energies above, below and in the vicinity of the light cone. We summarize recent progress here and, to control an unavoidable snag, we also determine these corrections for the transverse and longitudinal polarizations separately. Our results should help to scrutinize direct spectral reconstruction attempts from lattice QCD.

  7. NOV

    21

    Thursday

    Particle Physics Seminar

    Presented by Stefano Zambito, Harvard University

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, November 21, 2019, 3:00 pm

    Hosted by: Viviana Cavaliere

    "After the discovery of the Higgs Boson, the predictions of the Standard Model of particle physics can be extrapolated without inconsistencies all the way up to the Planck mass. Despite this tremendous success, we still remain in the dark about many open puzzles. Why is the weak interaction much stronger than gravity? What is the nature of Dark Matter? Are the strong, weak and electromagnetic forces a lower-energy manifestation of one single fundamental interaction? A possible solution to these questions is provided by Supersymmetry. The key assumption behind many natural supersymmetric models is that the masses of the gluinos, the top squarks and the higgsinos are near the TeV scale, thus within the LHC reach. In this presentation, I will introduce some of the theoretical and phenomenological arguments that motivate the quest for Supersymmetry. I will then outline how I searched for the above-mentioned particles using LHC Run-2 data collected by the ATLAS experiment. Finally, I will focus on my vision of the future and my research plans in high-energy experimental physics."

  8. NOV

    22

    Friday

    HET Lunch Discussion

    "SBN/MicroBooNE"

    Presented by Hanyu Wei, Brookhaven National Laboratory

    12:15 pm, Building 510, Room 2-160

    Friday, November 22, 2019, 12:15 pm

  9. NOV

    22

    Friday

    NT/RIKEN Seminar

    "Critical gravitational collapse and thermalization in small systems"

    Presented by Paul Chesler, Harvard University

    2 pm, Building 510, CFNS Seminar Room 2-38

    Friday, November 22, 2019, 2:00 pm

    Hosted by: Niklas Karthik

  10. NOV

    26

    Tuesday

    Physics Colloquium

    "A High Energy High-Luminosity Electron-Positron Collider using Energy Recovery Linacs"

    Presented by Thomas Roser, Brookhaven National Laboratory

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, November 26, 2019, 3:30 pm

    Hosted by: Dmitri Denisov / George Redlinger

    I will present an alternative approach for a high-energy high-luminosity electron-positron collider. Present designs for high-energy electron-positron colliders are either based on two storage rings with 100 km circumference with a maximum CM energy of 365 GeV or two large linear accelerators with a high energy reach but lower luminosity, especially at the lower initial CM energies. A collider based on storage rings has a high electric power consumption required to compensate for the beam energy losses from the 100 MW of synchrotron radiation power. Using an Energy Recovery Linac (ERL) located in the same-size 100 km tunnel would greatly reduce the beam energy losses while providing higher luminosity in this high-energy collider. Furthermore, this approach could allow for colliding fully polarized electron and positron beams and for extending the CM energy to 600 GeV, which would enable double-Higgs production and the production and measurements of the top Yukawa coupling.

  11. DEC

    2

    Monday

    Special Physics Colloquium

    "FCC-ee at CERN: High Precision and High Luminosity at the Electroweak Scale"

    Presented by Alain Blondel, CERN and University of Geneva

    3:30 pm, Large Seminar Room, Bldg. 510

    Monday, December 2, 2019, 3:30 pm

    Hosted by: George Redlinger

    The discovery of the Higgs boson competed the Standard model. Particle physics enters a new era, in which new phenomena are required, but at unknown energy scale and coupling strength. This requires a broad program of searches. The broadest program is offered by the Future Circular Collider (FCC) project at CERN, with a ultimate goal of reaching > 100 TeV in pp collisions. The first step of this program is a circular e+e- collider, offering unprecedented levels or precision and sensitivity to feebly coupled particles.

  12. DEC

    3

    Tuesday

    Physics Colloquium

    "The First Stage of the International Linear Collider"

    Presented by James Brau, University of Oregon

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, December 3, 2019, 3:30 pm

    Hosted by: George Redlinger

    The International Linear Collider is now proposed to begin with a first stage at 250 GeV with an initial integrated luminosity goal of 2 ab−1. I will review the plan for the collider and detectors, the key physics expectations, and recent international discussions. The key physics goal of the ILC250 is precision measurements of the Higgs boson couplings. The exceptional precision of model-independent measurements of all major decay modes makes this program sensitive to possible anomalies due to new physics beyond the Standard Model. Other physics goals will be addressed briefly. The ILC250 infrastructure will support an upgrade future of experiments with e+e− collisions at higher energy up to 1 TeV, building on the success of the first 250 GeV stage.

  13. DEC

    4

    Wednesday

    CSI Q Seminar

    "Quantum supremacy using a programmable superconducting processor"

    Presented by Pedram Roushan, Google

    3 pm, Training Room, Bldg 725

    Wednesday, December 4, 2019, 3:00 pm

    Hosted by: Layla Hormozi

    The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2^53. Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy for this specific computational task, heralding a much-anticipated computing paradigm.

  14. DEC

    5

    Thursday

    RIKEN Lunch Seminar

    "TBA"

    Presented by Nicolas Wink, Heidelberg

    12 pm, Building 510, Room 3-191

    Thursday, December 5, 2019, 12:00 pm

    Hosted by: Yuta Kikuchi

  15. DEC

    5

    Thursday

    Particle Physics Seminar

    "A New Paradigm for Dark Matter Search at the LHC"

    Presented by Yangyang Cheng, Cornell University

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, December 5, 2019, 3:00 pm

    Hosted by: Viviana Cavaliere

    The existence of dark matter (DM), through astrophysical and cosmological observations, presents some of the most striking evidence of physics beyond the Standard Model. Stringent limits have been placed on DM as a Weakly Interacting Massive Particle (WIMP) from direct and indirection detection as well as collider experiments. If instead of one type of DM particle, nature contains a complex dark sector, the new hidden particles can evade existing DM limits and most direct detection experiments, but may be produced at high-energy colliders like the LHC. Many dark sector models predict long-lived particles with striking collider signature, opening an exciting new paradigm for dark matter search. This talk overviews the landscape for dark matter search, and introduces the physics motivation for a complex dark sector with long-lived particles. It then describes two types of signature-driven dark sector searches at the CMS experiment, for a dark shower and for displaced lepton jets. Finally, the talk discusses prospects for dark sector searches at the High-Luminosity LHC with detector and trigger upgrades, in particular how the new forward detectors and enhanced timing capabilities can reach new phase spaces and sensitivities.

  16. DEC

    5

    Thursday

    Particle Physics Seminar

    "A New Paradigm for Dark Matter Search at the LHC"

    Presented by Yangyang Cheng, Cornell University

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, December 5, 2019, 3:00 pm

    Hosted by: Alessandro Tricoli

  17. DEC

    6

    Friday

    NT/RIKEN Seminar

    "TBA"

    Presented by Amit Kumar

    2 pm, Building 510, CFNS Seminar Room 2-38

    Friday, December 6, 2019, 2:00 pm

    Hosted by: Niklas Mueller

  18. DEC

    11

    Wednesday

    CSI Q Seminar

    "TBA"

    Presented by Olli Saira, BNL

    3 pm, Training Room, Bldg 725

    Wednesday, December 11, 2019, 3:00 pm

    Hosted by: Layla Hormozi

  19. DEC

    13

    Friday

    RIKEN Lunch Seminar

    "TBA"

    Presented by Yong Zhao, BNL

    12 pm, Building 510, Room 2-160

    Friday, December 13, 2019, 12:00 pm

    Hosted by: Yuta Kikuchi

  20. DEC

    13

    Friday

    NT/RIKEN Seminar

    "Helicity-dependent generalization of the JIMWLK evolution and MV model"

    Presented by Florian Cougoulic

    2 pm, Building 510, CFNS Seminar Room 2-38

    Friday, December 13, 2019, 2:00 pm

    Hosted by: Nikhil Karthik

  21. DEC

    13

    Friday

    NT/RIKEN Seminar

    "TBA"

    3 pm, Building 510, CFNS seminar room 2-38

    Friday, December 13, 2019, 3:00 pm

    Hosted by: Niklas Mueller

  22. DEC

    18

    Wednesday

    CSI Q Seminar

    "Probing quantum entanglement at the Electron Ion Collider"

    Presented by Dmitri Kharzeev, Stony Brook University and BNL

    3 pm, Training Room, Bldg 725

    Wednesday, December 18, 2019, 3:00 pm

    Hosted by: Layla Hormozi

    The structure functions measured in deep-inelastic scattering are related to the entropy of entanglement between the region probed by the virtual photon and the rest of the hadron. This opens new possibilities for experimental and theoretical studies using the Electron Ion Collider. The real-time evolution of the final state in deep-inelastic scattering can be addressed with quantum simulations using the duality between high energy QCD and the Heisenberg spin chain.

  23. DEC

    20

    Friday

    NT/RIKEN Seminar

    "TBA — Quantum computing related"

    Presented by Scott Lawrence

    2 pm, Building 510, CFNS Seminar Room 2-38

    Friday, December 20, 2019, 2:00 pm

    Hosted by: Nikhil Karthik

  24. JAN

    14

    Tuesday

    Physics Colloquium

    "TBA"

    Presented by Helio

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, January 14, 2020, 3:30 pm

    Hosted by: George Redlinger

  25. JAN

    15

    Wednesday

    CSI Q Seminar

    "TBA"

    Presented by Norman Tubman, NASA Quantum Artificial Intelligence Laboratory

    3 pm, Training Room, Bldg 725

    Wednesday, January 15, 2020, 3:00 pm

    Hosted by: Layla Hormozi

    TBA

  26. JAN

    16

    Thursday

    Condensed-Matter Physics & Materials Science Seminar

    "TBA"

    Presented by Jennifer Cano, SUNY-Stony Brook

    1:30 pm, ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Thursday, January 16, 2020, 1:30 pm

    Hosted by: Mark Dean

    TBA

  27. JAN

    24

    Friday

    NT/RIKEN Seminar

    "TBA"

    Presented by Stefan Hoeche, Fermilab

    2 pm, Building 510, CFNS Seminar Room 2-38

    Friday, January 24, 2020, 2:00 pm

    Hosted by: Niklas Mueller

  28. JAN

    31

    Friday

    NT/RIKEN Seminar

    "TBA"

    Presented by Luchang Jin, University of Connecticut

    2 pm, Building 510, CFNS room 2-38

    Friday, January 31, 2020, 2:00 pm

    Hosted by: Niklas Mueller

  29. FEB

    5

    Wednesday

    CSI Q Seminar

    "TBA"

    Presented by Helmut Katzgraber, Microsoft Research

    3 pm, Training Room, Bldg 725

    Wednesday, February 5, 2020, 3:00 pm

    Hosted by: Layla Hormozi

    TBA

  30. FEB

    7

    Friday

    NT/RIKEN Seminar

    "TBA"

    Presented by Dean Lee

    2 pm, Building 510, CFNS Seminar Room 2-38

    Friday, February 7, 2020, 2:00 pm

    Hosted by: Nikhil Karthik

  31. FEB

    12

    Wednesday

    High Energy / Nuclear Theory / RIKEN Seminars

    "TBA"

    Presented by Graham White, TRIUMF

    2:30 pm, Small Seminar Room, Bldg. 510

    Wednesday, February 12, 2020, 2:30 pm

    Hosted by: Rob Pisarski

  32. FEB

    21

    Friday

    NT/RIKEN Seminar

    "TBA"

    Presented by Duff Neill

    2 pm, Buidling 510, CFNS Room 2-38

    Friday, February 21, 2020, 2:00 pm

    Hosted by: Nikhil Karthik

  33. FEB

    28

    Friday

    NT/RIKEN Seminar

    "TBA"

    Presented by Katerina Chatziioannou

    2 pm, Building 510, CFNS Seminar Room 2-38

    Friday, February 28, 2020, 2:00 pm

    Hosted by: Nikhil Karthik

  34. MAR

    10

    Tuesday

    Physics Colloquium

    "TBA"

    Presented by Tae Min Hong, University of Pittsburgh

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, March 10, 2020, 3:30 pm

    Hosted by: George Redlinger

  35. MAR

    24

    Tuesday

    Physics Colloquium

    "TBA"

    Presented by Francesco Forti, INFN

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, March 24, 2020, 3:30 pm

    Hosted by: Dmitri Denisov

  1. HET Lunch Discussion

    "Higgs and the Lattice"

    Presented by Sally Dawson, BNL

    Friday, November 15, 2019, 12:15 pm
    Building 510, Room 2-160

  2. Particle Physics Seminar

    "Cosmology: Halo splashback detection"

    Presented by Tae-Hyeon Shin, UPenn

    Thursday, November 14, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Thomas McClintock

  3. Particle Physics Seminar

    "The NA62 experiment at CERN: recent results and prospects"

    Presented by Dr Evgueni Goudzovski

    Thursday, November 14, 2019, 1:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Steve Kettell

    The NA62 experiment at CERN dedicated to measurements of ultra-rare decays of the charged kaon with the decay-in-flight technique collected a large data set corresponding to 6*10^{12} kaon decays in 2016-2018. The first NA62 results based on parts this data set are presented, including the search for the K+—>pi+nunu decay, as well as searches for lepton number violation and production of heavy neutral leptons in kaon decays. Prospects for these and other measurements are discussed in view of the second NA62 run foreseen in 2021-2024.

  4. RIKEN Lunch Seminar

    "Revisiting the discovery potential of the isobar run at RHIC"

    Presented by Alba Soto Ontoso, BNL

    Thursday, November 14, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    During the spring of 2018, the Relativistic Heavy-Ion Collider carried out an isobar run consisting of Ru+Ru and Zr+Zr collisions at 200 GeV. The main objective of such experimental program was the unambiguous observation of a Chiral Magnetic Effect-driven charge separation. In this talk, I will demonstrate how an experimentally confirmed property of the nuclear structure of Zr, i.e. its neutron skin, significantly reduces the feasibility of such a finding. This study provides a much needed theoretical baseline to meaningfully interpret the recorded experimental data by combining state-of-the art nuclear structure techniques with a dynamical description of heavy-ion collisions in terms of a novel transport model, SMASH.

  5. HET Seminar

    "Formulating Lattice Field Theory for a Quantum Computer"

    Presented by Richard Brower, Boston University

    Wednesday, November 13, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    The quantum link (or D-theory) formulation of lattice field theory, introduced 20 years ago by Brower-Chandrasekharan-Wiese, replaced all gauge and matter fields as single bit fermion operators for a Hamiltonian in an extra dimension. This can been recast as real time quantum evolution in Minkowski space ideally suited for Qubit quantum simulations. In addition a map from fermionic (anti-computing operators) to Pauli matrix Qubit has been found using pseudo-fermions and a local Jordan Wigner transformation in the group manifold, which is simpler than the Bravyi-Kitaev map due to local gauge invariance. With the trotter expansions the gauge invariant kernels for U(1) compact QED on triangular lattice are represented as Qubit circuit are ready to be tested on the IMB-Q.

  6. CSI Q Seminar

    "Quantum Information: History, Development and Applications"

    Presented by Vladimir Korepin, Stony Brook University

    Wednesday, November 13, 2019, 11 am
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    History of quantum information will be mentioned. Followed by comments on modern developments. Current projects of the speaker [spin chains and quantum search] will be briefly described.

  7. Condensed-Matter Physics & Materials Science Seminar

    "Topological transition on anisotropic hexagonal lattices and effective phonon model for the Quantum Hall transition"

    Presented by Andreas Sinner, University of Augsburg, Germany

    Tuesday, November 12, 2019, 1 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    The topology of the band structure, which is determined by the lattice symmetries, has a strong influence on the transport properties. We consider an anisotropic honeycomb lattice and study the effect of a continuously deformed band structure on the conductivity and optical properties. We find a strong suppression of the conductivity in one direction and increment by several orders in another which leand to a considerable change of optical properties. We further study a gap generation in a two-dimensional Dirac fermion system which are coupled to in-plane phonons. At sufficiently strong electron-phonon interaction a gap appears in the spectrum of fermions. The structure of elementary excitations above the gap in the corresponding phase reveals the presence of scale invariant parity breaking terms which resemble Chern-Simons excitations. The Kubo formula remyields quantized Hall plateaux. References: EPL 119, 27001 (2017); PRB 97, 235411 (2018); PRB 93, 125112 (2016); Ann. Phys. 400, 262 (2018); arxiv:1908.00442.

  8. HET Lunch Discussion

    "Improving Lattice Measurements for B Mesons"

    Presented by Peter Boyle (BNL), Brookhaven National Laboratory

    Friday, November 8, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  9. NSLS-II Friday Lunchtime Seminar

    "Underpinning the nuclear fuel cycle with synchrotron and laboratory based X-ray absorption spectroscopy"

    Presented by Neil Hyatt, University of Sheffield, United Kingdom

    Friday, November 8, 2019, 12 pm
    NSLS-II Bldg. 743 Room 156

    Hosted by: Ignace Jarrige

    Nuclear energy provides about 30% of the world's low carbon electricity supply, from more than 450 civil nuclear reactors. The supporting nuclear fuel cycle comprises a suite of industrial processes, which transform uranium ore into nuclear fuel, and support reactor operations, decommissioning, waste management, and geological disposal. This seminar will highlight three case studies in the application of X-ray absorption spectroscopy (XAS) in the nuclear fuel cycle, embracing environmental contamination, nuclear forensics, and radioactive waste management. In addition to exploitation of state of the art micro-focus multi-modal beamlines at synchrotron light sources, I will also show how we are using new developments in laboratory based XAS instrumentation, to probe element speciation in nuclear materials.

  10. Particle Physics Seminar

    "Latest neutrino cross-section results from MicroBooNE"

    Presented by Dr. Kirsty Duffy, FNAL

    Thursday, November 7, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Xin Qian

    MicroBooNE, the Micro Booster Neutrino Experiment at Fermilab, is an 85-ton active mass liquid argon time projection chamber (LArTPC) located in the Booster Neutrino Beam at Fermilab. The LArTPC technology with 3mm wire spacing enables high-precision imaging of neutrino interactions, which leads to high-efficiency, low-threshold measurements with full angular coverage. As the largest liquid argon detector worldwide taking neutrino beam data, MicroBooNE provides a unique opportunity to investigate neutrino interactions in neutrino-argon scattering at O(1 GeV) energies. These measurements are of broad interest to neutrino physicists because of their application to Fermilab Short Baseline Neutrino program and the Deep Underground Neutrino Experiment (which will both rely on LArTPC technology), as well as the possibility for new insights into A-dependent effects in neutrino scattering on heavier targets such as argon. In this seminar I will present the most recent cross-section results from MicroBooNE, including measurements of inclusive charged-current neutrino scattering, neutral pion production, and low-energy protons. Many of the results I will show represent the first measurements of these interactions on argon nuclei, as well as an exciting demonstration of the potential of LArTPC detector technology to improve our current understanding of neutrino scattering physics.

  11. CSI Q Seminar

    "Many-body physics with atoms and molecules under quantum control"

    Presented by Sebastain Will, Columbia University

    Thursday, November 7, 2019, 3 pm
    Conference room 201, Bldg 734

    Hosted by: Layla Hormozi

    Over the past decade, quantum simulators based on ultracold atoms have emerged as a powerful tool to address open questions in strongly interacting systems and nonequilibrium quantum dynamics that have relevance in all areas of physics, from strongly correlated materials to cosmology. Today, quantum simulators based on ultracold dipolar molecules are within experimental reach, which exploit long-range dipole-dipole interactions and will give access to new classes of strongly correlated many-body systems. In this talk, I will present our efforts towards quantum simulation with ultracold dipolar molecules. In trailblazing experiments we have demonstrated the creation of ultracold molecules via atom-by-atom assembly, which yields complete control over the molecular degrees of freedom, including electronic, vibrational, rotational, and nuclear spin states. Exploiting this control, we have observed long nuclear spin coherence times in molecular ensembles, which makes ultracold molecules an interesting candidate for the realization of a long-lived quantum memory. In addition, the dipole-dipole interactions between molecules can be flexibly tuned via external electrostatic and microwave fields. This motivates our current work towards two-dimensional systems of strongly interacting molecules, which promises access to novel quantum phases, will enable high-speed simulation of quantum magnetism, and points towards potential quantum computing schemes based on ultracold molecules. In the end, I will briefly present our new project on enhancing quantum coherence by dissipation in programmable atomic arrays. For this effort we will develop a novel nanophotonic platform that will enable trapping of individual atoms in optical tweezer arrays with unprecedented accuracy and high-speed tunability.

  12. Physics Colloquium

    "Changing Flavor: the Universe's Weirdest Particle"

    Presented by Kirsty Duffy - Leona Woods Award Winner, FNAL

    Tuesday, November 5, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Neutrinos are some of the most abundant–but elusive–constituents of matter in the universe. It has been firmly established that neutrinos can change flavor (or "oscillate"), as recognized by the 2015 Nobel Prize, and in recent years the field has moved beyond the "discovery" phase to focus on precise measurements of the parameters that determine neutrino oscillation. As our understanding improves, it opens doors to new discoveries about the nature of this little-understood particle. This is a very exciting time in neutrino physics there exists a wealth of fascinating questions to investigate, including recent tantalizing hints of large neutrino-sector CP violation, and we are rapidly developing the tools to answer them. As the United States HEP community leads the next generation of neutrino oscillation experiments, I will give an overview of the field: from the initial discovery of the neutrino, to the first evidence for oscillation, to the most recent results from current long-baseline oscillation experiments such as T2K and NOvA. I will finish by discussing the exciting future prospect of the Deep Underground Neutrino Experiment and the liquid argon time projection chamber technology that makes it possible, including recent results and examples from my own work on MicroBooNE, a liquid argon neutrino detector currently taking data at Fermilab

  13. HET Lunch Discussion

    "Neutrino Windows to New Physics"

    Presented by Julia Gehrlein

    Friday, November 1, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  14. Special NT/RIKEN Seminar

    "Relaxation Time for Strange Quark Spin in Rotating Quark-Gluon Plasma"

    Presented by Joseph Kapusta

    Thursday, October 31, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Nikhil Karthik

  15. CSI Q Seminar

    "Characterizing readout in quantum computers: does the reading '0' really mean 0 and '1' really 1?"

    Presented by Tzu-Chieh Wei, Stony Brook University

    Wednesday, October 30, 2019, 3 pm
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    Typical quantum computation includes three stages: state initialization, gate operations and readout. There are tomographic tools on quantum state and process tomography, as well as one that is often ignored, i.e. the detector tomography. It is important to characterize the readout in interpreting experiments on quantum computers. We use quantum detector tomography to characterize the qubit readout in terms of measurement POVMs on IBM Quantum Computers (e.g. IBM Q 5 Tenerife and IBM Q 5 Yorktown). Our results suggest that the characterized detector model deviates from the ideal projectors, ranging from 10 to 40 percent. This is mostly dominated by classical errors, evident from the shrinkage of arrows in the corresponding Bloch-vector representations. There are also small deviations that are not `classical', of order 3 percent or less, represented by the tilt of the arrows from the z axis. Further improvement on this characterization can be made by adopting two- or more-qubit detector models instead of independent single-qubit detectors for all the qubits in one device. We also find evidence indicating correlations in the detector behavior, i.e. the detector characterization is slightly altered (to a few percent) when other qubits and their detectors are in operation. Such peculiar behavior is consistent with characterization from the more sophisticated approach of the gate set tomography. Finally, we also discuss how the characterized detectors' POVM, despite deviation from the ideal projectors, can be used to estimate the ideal detection distribution.

  16. HET Seminar

    "Elastic neutrino-electron scattering in effective field theory"

    Presented by Oleksandr Tomalak, Kentucky University

    Wednesday, October 30, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Elastic neutrino-electron scattering provides an important tool for normalizing neutrino flux in modern experiments. This process is subject to large radiative corrections. We determine the Fermi effective theory performing the one-loop matching to the Standard model at the electroweak scale with subsequent running down to low energies. Based on this theory, we analytically evaluate virtual corrections and distributions with one radiated photon beyond the electron energy spectrum and provide the resulting scattering cross sections quantifying errors for the first time. We discuss the relevance of radiative corrections depending on conditions of modern accelerator-based neutrino experiments.

  17. Physics Colloquium

    "New Physics Probes in Future Neutrino Experiments"

    Presented by Peter Denton, BNL

    Tuesday, October 29, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    Neutrino physics is a broad and diverse field, both experimentally and theoretically. As the standard oscillation picture begins to settle we are moving into an era where precise tests of the neutrino picture can be made. In this talk I will discuss the present and future status of many theoretical probes and a broad range of experiments spanning twenty orders of magnitude in neutrino energy. In particular, I will highlight the strongly interconnected nature of new physics studies in the neutrino sector.

  18. Chemistry Department Colloquium

    "Electronic Cooperativity in Supported Single and Multinuclear-Sites for Catalytic C-C and C-H Bond Functionalization"

    Presented by Dr. Massimiliano Delferro, Argonne National Laboratory

    Monday, October 28, 2019, 11 am
    Hamilton Seminar Room, Bldg. 555

    Hosted by: Sanjaya Senanayake

    Systematic study of the interactions between organometallic catalysts and metal oxide support materials is essential for the realization of rational design in heterogeneous catalysis. In this talk, I will describe the stoichiometric and catalytic chemistry of a series of organometallic complex chemisorbed on a variety of metal oxides as a multifaceted probe for stereoelectronic communication between the support and organometallic center. Electrophilic bond activation was explored in the context of stoichiometric hydrogenolysis as well as catalytic hydrogenation, dehydrogenation, and H/D exchange. Strongly acidic modified metal oxides such as sulfated zirconia engender high levels of activity toward electrophilic bond activation of both sp2 and sp3 C–H bonds, including the rapid activation of methane at room temperature; however, the global trend for the supports studied here does not suggest a direct correlation between activity and surface Brønsted acidity, and more complex metal surface interactions are at play.

  19. Computational Science Initiative Event

    "Learning Parameters and Constitutive Relationships with Physics-Informed Machine Learning Methods"

    Presented by Alexandre Tartakovsky, Computational Mathematics in the Advanced Computing, Mathematics and Data Division Pacific Northwest National Laboratory

    Monday, October 28, 2019, 11 am
    Bldg. 725 training room

    Hosted by: Kerstin Kleese van Dam

  20. NT/RIKEN Seminar

    "Detectability of phase transitions from multi-messenger observations"

    Presented by Sophia Han, Ohio University

    Friday, October 25, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Nikhil Karthik

    There is as yet no firm evidence for quark matter in neutron stars. This is mainly because of the lack of direct probes of the opaque neutron star interior, and the lack of clear qualitative difference between hadronic and quark phases. The detection of GW170817 has offered a first example of how gravitational waves can be used to constrain the equation of state (EoS) of ultra-dense matter. We shall discuss taking into account currently available information how to reveal possible phase transitions in neutron stars: the steadily growing body of astrophysical data and supported laboratory experiments should eventually allow us to narrow down the options by combining these various observations. We survey the proposed signatures of exotic matter, and emphasize the importance of data from neutron star mergers.

  21. HET Lunch Discussion

    "LIGO/Virgo Black Holes from a First Order "QCD" Phase Transition"

    Presented by Hooman Davoudiasl, Brookhaven National Laboratory

    Friday, October 25, 2019, 12:15 pm
    Building 510, Room 2-160

  22. Condensed-Matter Physics & Materials Science Seminar

    "Engineering magnetism with light with the novel photovoltaic perovskite CH3NH3PbI3"

    Presented by László Forró, Ecole Polytechnique Fédérale de Lausanne, Switzerland

    Thursday, October 24, 2019, 2:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Cedomir Petrovic

    The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic CH3NH3(Mn:Pb)I3 material in which the photo-excited electrons rapidly melt the local magnetic order through the Ruderman–Kittel–Kasuya–Yosida interactions without heating up the spin system (1). Similar effect was observed in La1-xSrxMnO3/CH3NH3PbI3 heterostructure in which Tc can be tuned by x (2). The observed optical melting of magnetism could be of practical importance, for example, in a magnetic thin film of a hard drive, where a small magnetic writing field could change the magnetic bit. Our method needs only a low-power visible light source, providing isothermal switching, and a small magnetic guide-field to overcompensate the stray field of neighboring bits. Acknowledgment: The work has been performed in collaboration with B. Náfrádi, E. Horváth, A, Arakcheeva, P. Szirmai, M. Spina, H. Lee, O.V. Yazyev, D. Chernyshov, and many others. The research was partially supported by the ERC Advanced Grant (PICOPROP#670918). Reference : 1. Nafradi et al, Nature Communications, 7, 13406, (2016) 2. Nafradi et al, submitted to PNAS

  23. CSI Q Seminar

    "Universal logical gate sets with constant-depth circuits for topological and hyperbolic quantum codes"

    Presented by Guanyu Zhu, IBM T.J. Watson Research Center

    Wednesday, October 23, 2019, 3 pm
    Conference Room 201, Bldg 734

    Hosted by: Layla Hormozi

    A fundamental question in the theory of quantum computation is to understand the ultimate space-time resource costs for performing a universal set of logical quantum gates to arbitrary precision. To date, common approaches for implementing a universal logical gate set, such as schemes utilizing magic state distillation, require a substantial space-time overhead. In this work, we show that braids and Dehn twists, which generate the mapping class group of a generic high genus surface and correspond to logical gates on encoded qubits in arbitrary topological codes, can be performed through a constant depth circuit acting on the physical qubits. In particular, the circuit depth is independent of code distance d and system size. The constant depth circuit is composed of a local quantum circuit, which implements a local geometry deformation, and a permutation of qubits. When applied to anyon braiding or Dehn twists in the Fibonacci Turaev-Viro code based on the Levin-Wen model, our results demonstrate that a universal logical gate set can be implemented on encoded qubits in O(1) time through a constant depth unitary quantum circuit, and without increasing the asymptotic scaling of the space overhead. Our results for Dehn twists can be extended to the context of hyperbolic Turaev-Viro codes as well, which have constant space overhead (constant rate encoding). This implies the possibility of achieving a space-time overhead of O(d/log d), which is optimal to date. From a conceptual perspective, our results reveal a deep connection between the geometry of quantum many-body states and the complexity of quantum circuits. References: arXiv:1806.06078,arXiv:1806.02358, Quantum 3, 180 (2019) (arXiv:1901.11029).

  24. HET Seminar

    "Neutrino Propagation in Matter: 3 flavors & beyond (joint BNL/YITP seminar (at BNL))"

    Presented by Stephen Parke, FNAL

    Wednesday, October 23, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    The Wolfenstein matter effect significantly alters neutrino flavor transformations in matter. This effect is responsible for the 1/3 reduction in the solar electron neutrino flux observed by Davis and also has significant effects in terrestrial oscillation experiments such as T2K, NOvA, DUNE and T2HK/K. In this seminar I will present some recent results on 3 (& beyond) flavor matter effects for long baseline experiments.

  25. Physics Colloquium

    "KATRIN and the Neutrino Mass Scale"

    Presented by Diana Parno, Carnegie Mellon University

    Tuesday, October 22, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Xin Qian

    Ever since it was first hypothesized 89 years ago, the strange and ghostly particle called the neutrino has mystified and inspired particle and nuclear physicists. After decades of experimental and theoretical work, we have now firmly established that neutrinos have mass, and yet their absolute mass scale remains unknown. Now, after many years of painstaking design, construction, and commissioning work, the Karlsruhe Tritium Neutrino experiment (KATRIN) has recently improved the world's best direct neutrino-mass sensitivity by a factor of 2, with more improvements to come. I will give a tour of KATRIN's 70-m beamline, share some of our adventures with engineering challenges and novel backgrounds, describe our spectral fits and systematic uncertainties, and show a glimpse of KATRIN's future.

  26. Center for Functional Nanomaterials Seminar

    "Heterogeneous Chemistry at Liquid/Vapor Interfaces Investigated with Photoelectron Spectroscopy"

    Presented by Hendrik Bluhm, Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry, Faradayweg, Berlin, Germany

    Monday, October 21, 2019, 11 am
    Bldg.735 (CFN) 1st floor conference room

    Hosted by: Ashley Head

    Aqueous solution/vapor interfaces govern important phenomena in the environment and atmosphere, including the uptake and release of trace gases by aerosols and CO2 sequestration by the oceans.[1] A detailed understanding of these processes requires the investigation of liquid/vapor interfaces with chemical sensitivity and interface specificity under ambient conditions, i.e., temperatures above 200 K and water vapour pressures in the millibar to tens of millibar pressure range. This talk will discuss opportunities and challenges for investigations of liquid/vapor interfaces using X-ray photoelectron spectroscopy and describe some recent experiments that have focused on the propensity of certain ions and the role of surfactants at the liquid/vapor interface. [1] O. Björneholm et al., Chem. Rev. 116, 7698 (2016).

  27. NT/RIKEN Seminar

    "The bulk viscosity of QCD in the chiral limit"

    Presented by Derek Teaney, Stony Brook

    Friday, October 18, 2019, 2 pm
    Building 510, CFNS Room 2-38

    In the chiral limit, the long distance effective theory of QCD at finite temperature is not hydrodynamics but a kind of non-abelian superfluid hydrodynamics. We describe this theory and its viscous corrections, including also a correction due to the finite quark mass. At finite quark mass, the long distance theory is ordinary hydrodynamics, and the superfluid theory then just determines non-analytic in the quark mass corrections to the transport coefficients of QCD, akin to the "long time tails" of hydro. We show how this works out for the bulk viscosity. In chiral perturbation theory the dissipative parameters of the superfluid theory can be computed diagrammatically, and we do this. These results then determine the leading order the bulk viscosity of the pion gas close to the chiral limit.

  28. HET Lunch Discussion

    "Quantum Computing Schwinger Model"

    Presented by Taku Izubuchi, BNL HET & RIKEN BNL

    Friday, October 18, 2019, 12:15 pm
    Building 510, Room 2-160

  29. RIKEN Lunch Seminar

    "Bottomonia in QGP from lattice QCD: Beyond the ground states"

    Presented by Rasmus Larsen, BNL

    Thursday, October 17, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Using novel lattice (non-relativistic) QCD techniques, for the first time, we will present results pertaining to the fate of Υ(1S), Υ(2S) and Υ(3S) in QGP. We will present results on how the masses of these states change with temperature, as well as how their spatial sizes change. Finally, we will also show new lattice QCD results on excited P-wave bottomonia in QGP.

  30. HET Seminar

    "Next generation kinematic variables for signal discovery and measurement in colliders"

    Presented by Prasanth Shyamsundar, Florida

    Wednesday, October 16, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    High energy physics data, even at the parton level, is high dimensional. Analyzing the distribution of collider events in the full phase-space comes with several challenges—insufficient computational resources to scan the full phase-space, insufficient data to populate it, difficulty in validating monte carlo in the full phase-space, etc. One way to address the curse of dimensionality is to reduce it. At the parton level, this is typically done by constructing kinematic event variables. But this dimensionality reduction is accompanied by information loss, so it becomes important to construct "good" event variables that capture the main features of the phase-space distribution and minimize information loss. Construction of good event variables is a challenging task for event topologies with missing particles in the final state. In this talk we'll look at a new class of kinematic event "variables" that can produce mass bumps even for event topologies with missing particles. And in the process, we'll introduce a brand new way of visualizing and representing high dimensional data, which can open up a world of possibilities for new data analysis techniques.

  31. Physics Colloquium

    "Trapped Ion Quantum Computers"

    Presented by Boris Blinov, University of Washington

    Tuesday, October 15, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Andrei Nomerotski

    System of cold trapped atomic ions has all key features necessary for implementing quantum computation, and many demonstrations of high fidelity quantum logic gates, high fidelity information storage and readout have been made in recent years. However, scalability remains an elusive goal. I will describe one possible avenue to a scalable ion trap quantum computing architecture known as the MUSIQC architecture, in which an expandable number of Elementary Logic Units (ELUs), microfabricated traps holding linear chains of 10 to 100 ions, are linked together using photonic interface to form a modular large-scale system. Local quantum gates are performed using motional coupling between ions in the same trap. One or two ions in each chain are reserved for performing a slower entanglement operation between ions in different ion traps coupled by optical fibers. This long distance entanglement will be accomplished using photon-mediated ion-ion entanglement, in which pairs of ions are projected into an entangled Bell state by a combined measurement of their emitted single photons. It is beneficial to separate the fast motional coupling and the slower remote ion entanglement to different ion species, ytterbium and barium respectively, whose atomic transitions are widely separated in frequency, yet atomic masses are relatively similar. I will comment on the current state of the art of this architecture, and briefly mention our work on two-dimensional trapped ion crystals, and an effort towards linking trapped ion qubits and solid state spins.

  32. CSI Q Seminar

    "Quantum simulation of quantum field theory on the light front"

    Presented by Peter Love, Tufts University and BNL

    Tuesday, October 15, 2019, 12 pm
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    Quantum simulation proposes to use future quantum computers to calculate properties of quantum systems. The simulation of quantum field theories by any means is a challenge, and quantum algorithms for problems in fundamental physics are a natural target for quantum computation. We will show that the light front formulation of quantum field theory is particularly useful in this regard. We analyze a simple theory in 1 + 1D and show how computation of quantities of interest in this theory is analogous to quantum algorithms for chemistry that we understand in detail.

  33. Condensed-Matter Physics & Materials Science Seminar

    "Heavy-fermion quantum criticality and unconventional superconductivity"

    Presented by Frank Stegllich, Max-Planck-Institute for Chemical Physics & Solids, Germany

    Tuesday, October 15, 2019, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Cedomir Petrovic

    Heavy-fermion (HF) metals, i.e., intermetallic compounds of certain lanthanides and actinides, have been subject of intensive investigations over the last few decades. These research activities have furnished important discoveries, such as of unconventional superconductivity (SC) ("beyond BCS") and unconventional quantum criticality ("beyond Landau"). About fifty HF superconductors are currently known, more than half of which exhibiting a quantum critical point (QCP) where antiferromagnetic (AF) order is smoothly suppressed by tuning a non-thermal control parameter like pressure or magnetic field. Two variants of HF AF-QCPs have yet been established, i.e., a conventional ("3D SDW") and an unconventional, partial Mott ("Kondo destroying") QCP [1, 2]. In clean, stoichiometric HF metals, the huge entropy accumulated at such an AF QCP is commonly removed by forming an unconventional superconducting phase. The apparent validity of this 'quantum critical paradigm' will be illustrated in the first part of the talk by addressing exemplary quantum critical materials, i.e., the isostructural compounds YbRh2Si2 and CeCu2Si2. The former system exhibits a partial-Mott QCP as reflected by, e.g., an abrupt jump of the Fermi-surface volume [3- 5] and a violation of the Wiedemann-Franz law [6, 7]. For this compound, no SC had been detected down to 10 mK, the lowest temperature accessible in a commercial 3He-4He dilution refrigerator [8]. However, recent magnetic and specific-heat measurements performed in a nuclear demagnetization cryostat down to about 1 mK revealed HF, i.e., unconventional, SC below Tc = 2 mK [9]. CeCu2Si2, the first HF superconductor [10], exhibits SC at a 3D SDW-QCP and was considered a (one-band) d-wave superconductor until a few years ago, when its specific heat was found to exhibit two-gap behavior and exponential temperature dependence at very low temperatures [11]. Based on atomic substitution [12],

  34. NT/RIKEN Seminar

    "JIMWLK equation from quantum-classical correspondence"

    Presented by Ming Li, University of Connecticut

    Friday, October 11, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    In this talk, I will examine the status of the JIMWLK evolution equation in relation to the effective density matrix of a high energy hadronic system. The high energy evolution of this density matrix which is associated with the Hilbert space completely spanned by color charge density operators has the form of Lindblad equation. The JIMWLK equation is reproduced by mapping this Lindblad type quantum mechanical equation onto the classical phase space of the system using Weyl's correspondence rules.

  35. Physics Colloquium

    "Toward scalable quantum computing in the quantum optical frequency comb""

    Presented by Oliver Pfister

    Tuesday, October 8, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Andrei Nomerotski

    The resonant (qu)modes of a single optical cavity form a quite large number of well-defined quantum optical fields. When that cavity contains a nonlinear material, i.e., a multiphoton emitter, it becomes an exotic light source, e.g. an optical parametric oscillator (OPO), which, as we have shown, can be made to emit large numbers of qumodes in multimode-squeezed, multipartite- entangled quantum states. We have also shown that said multipartite entanglement can (easily) be made to be of the cluster-state type, which is a major component of a quantum computer. The other major component of a quantum computer would be quantum fault tolerance which, in a nutshell, requires that either some states or gates include some nonpositivity in their Wigner functions. I will present my group's progress on the parallel fronts of massively scalable Gaussian entanglement and non-Gaussian quantum state tomography and engineering toward quantum error correction.

  36. NT/RIKEN Seminar

    "Resurgence and Non-Perturbative Physics"

    Presented by Gerald Dunne, University of Connecticut

    Friday, October 4, 2019, 1 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    I will review the basic ideas behind the connections between resurgent asymptotics and physics, and report on current applications to quantum field theory and phase transitions.

  37. HET Lunch Discussion

    "Unifying background with perturbations in Chaplygin gas cosmology"

    Presented by Heba Sami, North-West University

    Friday, October 4, 2019, 12:15 pm
    Building 510, Room 2-160

  38. RIKEN Lunch Seminar

    "Chiral charge dynamics in Abelian gauge theories at finite temperature"

    Presented by Adrien Florio, École polytechnique fédérale de Lausanne

    Thursday, October 3, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    The chiral anomaly present in the standard model can have important phenomenological consequences, especially in cosmology and heavy-ions physics. In this talk, I will focus on the contribution from the Abelian gauge fields. Despite an absence of topologically distinct sectors, they have a surprisingly rich vacuum dynamics, partly because of the chiral anomaly. I will present results obtained from real-time classical lattice simulations of a U(1) gauge field in the presence of a chiral chemical potential. They account for short distance fluctuations, contrary to effective descriptions such as Magneto-Hydrodynamics (MHD). I will discuss various phenomena, like inverse magnetic cascade, which occur in this system. In particular, in presence of a background magnetic field, the chemical potential exponentially decays. The associated chiral decay rate is related to the diffusion of the Abelian Chern-Simons number in a magnetic background, in the absence of chemical potential. The rate obtained from the simulations is an order of magnitude larger than the one predicted by MHD. If this result is shown to be robust under corrections such as Hard Thermal Loops, it will call for a revision of the implications of fermion number and chiral number non-conservation in Abelian theory at finite temperature.

  39. HET Seminar

    "Reevaluating Reactor Antineutrino Anomalies with Updated Flux Predictions"

    Presented by Jeffrey Berryman, University of Kentucky

    Wednesday, October 2, 2019, 1:30 pm
    Small Seminar Room, Bldg. 510

    As the number of experimental searches for oscillations involving additional, sterile neutrinos has grown, the evidence for (or against) the latter's existence has become more ambiguous. Part of this ambiguity is attributable to the predicted flux of antineutrinos from nuclear reactors: the systematic uncertainties that enter into any such evaluation can muddy the water substantially. In this talk, I discuss how the sterile neutrino hypothesis fares when the global reactor antineutrino dataset is analyzed with respect to three particular flux predictions – the traditional Huber-Mueller fluxes and two new calculations – and consider how current and future electron-neutrino disappearance experiments may affect the situation over the coming decade.

  40. NT/RIKEN Seminar

    "Observing the deformation of nuclei with relativistic nuclear collisions"

    Presented by Giuliano Giacalone, IPhT - Saclay

    Friday, September 27, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    The geometry of overlap between two nuclei interacting at high energy determines many of the observables typically investigated in heavy-ion-collision analyses, such as average transverse momenta () and azimuthal anisotropies of the emitted particle distributions. If the colliding nuclei are non-spherical, e.g., if they present a quadrupole deformation and look like ellipsoids, the geometry of interaction experiences nontrivial fluctuations due to the random orientation of the colliding bodies. I introduce an 'event-shape engineering' procedure that allows one to probe the quadrupole deformation of the colliding ions. The method is straightforward. One selects a batch of high-multiplicity (ultracentral) collisions, and within this batch looks at events that present an abnormally large or small of the produced hadrons. I show that these events correspond to configurations in which the colliding nuclei are overlapping along the longer (shorter) side of the prolate (oblate) ellipsoids. In these events, the interaction region has an elliptical shape, whose eccentricity is closely related to the quadrupole deformation of the considered nuclei. Therefore, for collisions of nuclei that are significantly deformed (e.g. 238U and 129Xe nuclei collided at RHIC and LHC) I predict a strong enhancement of elliptic flow in the tails of the distributions of ultracentral events. If validated by experimental data, this method would provide a robust tool to observe the deformations of nuclear ground states at particle colliders (in particular at RHIC).

  41. BROOKHAVEN FORUM 2019

    "Particle Physics and Cosmology in the 2020's"

    Friday, September 27, 2019, 8 am
    Berkner Hall (Bldg. 488) Main Lecture Hall

  42. RIKEN Lunch Seminar

    "Rapidity correlators at unequal rapidity"

    Presented by Andrecia Ramnath, University of Jyvaskyla

    Thursday, September 26, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Unequal rapidity correlations can be studied within the stochastic Langevin picture of JIMWLK evolution in the Colour Glass Condensate effective field theory. By evolving the classical field in the direct and complex conjugate amplitudes, the Langevin formalism can be used to study two-particle production at large rapidity separations. We show how the evolution between the rapidities of the two produced particles can be expressed as a linear equation, even in the full nonlinear limit. In addition, we show how the Langevin formalism for two-particle correlations reduces to a BFKL picture in the dilute limit and in momentum space, providing an interpretation of BFKL evolution as a stochastic process for colour charges.

  43. BROOKHAVEN FORUM 2019

    "Particle Physics and Cosmology in the 2020's"

    Thursday, September 26, 2019, 8 am
    Berkner Hall (Bldg. 488) Main Lecture Hall

  44. Brookhaven Forum 2019

    "Particle Physics and Cosmology in the 2020's"

    Wednesday, September 25, 2019, 8 am
    Berkner Hall (Bldg. 488) Main Lecture Hall

  45. Chemistry Department Seminar

    ""Probing the Excited-State Reactivity of Transition-Metal Compounds Using Photophysics""

    Presented by Dr. Daniela M. Arias-Rotondo, Department of Chemistry

    Monday, September 23, 2019, 10 am
    Hamilton Seminar Room, Bldg. 555

    Hosted by: Matt Bird

    Transition metal compounds are ubiquitous throughout the chemical sciences, their presence broadly impacting fields such as organic synthesis and solar energy conversion. This talk illustrates how spectroscopic techniques can be used to understand the intricacies of reactions involving transition metal compounds towards two different applications. The first part of this presentation will focus on the conservation of spin in chemical reactions. Our group has previously shown that spin must be conserved for energy transfer to occur.1 To further our understanding of the effect of spin on other types of reactions, we have combined Ru(II) polypyridyls and Fe(III) oxo/hydroxo-bridged dimers to study how the spin state of the acceptor affects the rate of electron transfer. Through a combination of time-resolved spectroscopy and electrochemical techniques we have shown that excited spin states may be involved in electron transfer, as was predicted by Bominaar and coworkers in their studies involving metalloproteins.2 The second half of this seminar describes the use of energy transfer to activate traditional organometallic catalysts to unlock novel reactivity patterns. In particular, we studied the use of an Ir(III) photosensitizer in combination with a Ni(II) catalyst in the coupling of aryl halides and carboxylic acids.3 Mechanistic studies showed that energy transfer from the photocatalyst to the nickel species promotes the latter to an excited state that can promote a novel C-O bond formation.

  46. NT/RIKEN Seminar - CANCELLED

    "The bulk viscosity of QCD in the chiral limit"

    Presented by Derek Teaney, Stony Brook

    Friday, September 20, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    In the chiral limit, the long distance effective theory of QCD at finite temperature is not hydrodynamics but a kind of non-abelian superfluid hydrodynamics. We describe this theory and its viscous corrections, including also a correction due to the finite quark mass. At finite quark mass, the long distance theory is ordinary hydrodynamics, and the superfluid theory then just determines non-analytic in the quark mass corrections to the transport coefficients of QCD, akin to the "long time tails" of hydro. We show how this works out for the bulk viscosity. In chiral perturbation theory the dissipative parameters of the superfluid theory can be computed diagrammatically, and we do this. These results then determine the leading order the bulk viscosity of the pion gas close to the chiral limit.

  47. NSLS-II Friday Lunchtime Seminar

    "Non-trivial Spin Textures in Ferromagnetic Hetero-Interfaces"

    Presented by Ramesh C Budhani, Department of Physics, Morgan State University, Baltimore, MD

    Friday, September 20, 2019, 12:30 pm
    NSLS-II Bldg. 743 Room 156

  48. HET Lunch Discussion

    "Snowmass Discussion"

    Presented by Viviana Cavaliere, Brookhaven National Lab

    Friday, September 20, 2019, 12:15 pm
    Building 510, Room 2-160

  49. Special Physics Colloquium

    "Mega-linear versus Giant-circular. The next big machine for HEP"

    Presented by Franco Bedeschi, INFN

    Thursday, September 19, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Dmitri Denisov

    Time is coming for a decision on the next particle accelerator at the energy frontier. As Europe is updating its strategy for particle physics, e+e- colliders are standing out as the preferred choice. The physics case for these future colliders and the comparison between the linear and circular option will be reviewed. The status of these projects and the R&D on the detectors required for these machines will also be discussed.

  50. NT/RIKEN Seminar

    "The bulk viscosity of QCD in the chiral limit"

    Presented by Derek Teaney, Stony Brook

    Thursday, September 19, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    In the chiral limit, the long distance effective theory of QCD at finite temperature is not hydrodynamics but a kind of non-abelian superfluid hydrodynamics. We describe this theory and its viscous corrections, including also a correction due to the finite quark mass. At finite quark mass, the long distance theory is ordinary hydrodynamics, and the superfluid theory then just determines non-analytic in the quark mass corrections to the transport coefficients of QCD, akin to the "long time tails" of hydro. We show how this works out for the bulk viscosity. In chiral perturbation theory the dissipative parameters of the superfluid theory can be computed diagrammatically, and we do this. These results then determine the leading order the bulk viscosity of the pion gas close to the chiral limit.

  51. Particle Physics Seminar

    "Radar detection of neutrino-induced cascades in ice: experimental evidence and future prospects"

    Presented by Steven Prohira, The Ohio State University

    Thursday, September 12, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    In order to detect ultra-high energy (UHE) neutrinos (? few PeV), tens to hundreds of cubic kilometers of material must be instrumented, owing to the exceedingly low flux. Radio methods have been suggested as the clear way forward in the UHE regime, owing to very long path lengths for radio waves in ice, meaning that a massive volume can be sparsely instrumented. Among radio techniques, the most recent—and most promising—is the radar detection method. Here, radio waves illuminate a volume, and if an UHE neutrino-induced cascade occurs within the volume, these waves are reflected to a distant receiver. In this seminar, we present the first evidence of detection of such a radar reflection, captured at SLAC in experiment T-576. We then present the science case for radar, and show that it has the best discovery potential for a detector technology in the UHE range.

  52. RIKEN Lunch Seminar

    "Deeply inelastic scattering structure functions on a hybrid quantum computer"

    Presented by Andrey Tarasov, BNL

    Thursday, September 12, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Computation of DIS structure functions from first principles is an outstanding problem in Quantum Chromodynamics (QCD) as it involves matrix elements of products of electromagnetic currents that are light-like separated in Minkowski spacetime. Since Monte Carlo computations in lattice QCD are only robust in Euclidean spacetime, it is worthwhile to ask whether simulations on a quantum computer can be beneficial. In my talk I will outline a strategy to compute deeply inelastic scattering structure functions on a hybrid quantum computer which is based on representation of the fermion determinant in the QCD effective action as a quantum mechanical "worldline" path integral over fermionic and bosonic degrees of freedom. The proper time evolution of these worldlines can be determined on a quantum computer. While extremely challenging in general, the problem simplifies in the Regge limit of QCD, where the interaction of the worldlines with gauge fields is strongly localized in proper time and the corresponding quantum circuits can be written down. As a first application, we employ the Color Glass Condensate effective theory to construct the quantum algorithm for a simple dipole model of the F2 structure function. We outline further how this computation scales up in complexity and extends in scope to other real-time correlation functions.

  53. HET Seminar

    "Neutrinos at Dark Matter Experiments, and Vice Versa"

    Presented by Nirmal Raj, Triumf Lab

    Wednesday, September 11, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Gopolang Mohlabeng

  54. Condensed-Matter Physics & Materials Science Seminar

    "Nematic superconductivity in twisted bilayer graphene"

    Presented by Laura Classen, University of Minnesota

    Tuesday, September 10, 2019, 1 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    Tunable insulating and superconducting phases have recently been induced in several twisted graphene-based heterostructures. These correlated phases are ascribed to an exceptional band flattening, which comes along with a very large hexagonal moiré pattern in real space. We study this interplay of orders in a phenomenological model for the moiré superlattice with a focus on superconductivity. Motivated by the presence of van-Hove instabilities, we approach the pairing problem as an interaction-induced instability of the Fermi surface in terms of the unbiased functional renormalization group. We find two pairing instabilities with different symmetries being close in energy and show that a similar situation arises in a model specific for twisted bilayer graphene. In view of recent experimental observations that the threefold lattice rotational symmetry is broken in the superconducting state of hole-doped twisted bilayer graphene, we analyze the corresponding Landau-Ginzburg free energy with two superconducting order parameters. The result is, indeed, a mixed ground state that breaks rotation symmetry and leads to nematic superconductivity. Time-reversal symmetry can simultaneously be broken.

  55. Nuclear Physics Seminar

    "Longitudinal double spin asymmetry for incluisve jet and dijet production in proton-proton collisions at $\sqrt{s} = $ 510 GeV"

    Presented by Zilong Chang, BNL

    Tuesday, September 10, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    Jets productions from $pp$ collisions at RHIC kinematics are dominated by quark-gluon and gluon-gluon scattering processes. Both of these longitudinal double spin dependent processes have sizable asymmetries in the pseudorapidity range, $-1 < \eta < 1$. Therefore the longitudinal double-spin asymmetry $A_{LL}$ for jets is an effective channel to explore the gluon polarization in the proton. Early STAR inclusive jet $A_{LL}$ results at $\sqrt{s} = $ 200 GeV provided the first evidence of the non-zero gluon polarization at $x > $ 0.05. In this talk, we will report the first measurement of the midrapidity inclusive jet and dijet $A_{LL}$ at $\sqrt{s} =$ 510 GeV. The inclusive jet $A_{LL}$ measurement provides sensitivity to the gluon helicity distribution down to a Bjorken-$x$ of 0.015, while the dijet measurements, binned in four jet-pair topologies, will allow for tighter constraints on the $x$ dependence. Both results are consistent with previous measurements made at $\sqrt{s} =$ 200 GeV and show excellent agreement with predictions from recent next-to-leading order global analyses. In addition the new techniques designed for this analysis, for example, the underlying event correction to the jet transverse energy and its effect on the jet $A_{LL}$ will be discussed.

  56. NT/RIKEN Seminar

    "Qubit Regularization of Quantum Field Theories"

    Presented by Shailesh Chandrasekharan, Duke University

    Friday, September 6, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    Motivated by the desire to study quantum field theories on a quantum computer, we propose a new type of regularization of quantum field theories where in addition to the usual lattice regularization, quantum field theories are constructed with a finite dimensional Hilbert space per lattice site. This is particularly relevant for studying bosonic field theories using a quantum computer since traditional lattice regularization assumes an infinite dimensional Hilbert space per lattice site and hence difficult to formulate on a quantum computer. Here we show that a two qubit model is sufficient to recover the 3d Wilson-Fisher fixed point and the 4d Gaussian fixed point of the O(3) sigma model. On the other hand in 2d, our qubit model does not seem to have a continuum limit although we have to study large lattices to establish this fact. We discuss modifications of our model that could perhaps yield a continuum limit.

  57. HET Lunch Discussion - CANCELLED

    "Is the muon just a heavy electron"

    Presented by Amarjit Soni, BNL

    Friday, September 6, 2019, 12:15 pm
    Building 510, Room 2-160

  58. CFNS Seminar

    "Nuclear femtography as a bridge from protons and neutrons to the core of neutron stars"

    Presented by Simonetta Liuti, University of Virginia

    Thursday, September 5, 2019, 4 pm
    Building 510, CFNS Room 2-38

    Hosted by: Abha Rajan

    In this talk I will address how the science of Nuclear Femtography, probed by deeply virtual exclusive electron nucleon scattering, has revolutionized our approach to exploring the internal structure of the nucleon. Current and planned experiments at the future EIC could in principle allow us to use all the information from data and phenomenology, on one side, to form tomographic images of the nucleon's quark and gluon distributions and, on the other, to reveal the nucleon's internal structure by measuring mechanical properties such as the quark angular momentum, energy density and pressure distributions. While this information is critical for ultimately understanding the working of the color forces, it also defines a new area of research where the fundamental gravitational properties of protons, neutrons and nuclei can be tested through recent astronomical observations constraining the equation of state of neutron stars.

  59. Special Nuclear Theory Seminar

    "Confinement and Entanglement in Coupled Quantum Systems"

    Presented by Masanori Hanada, Stanford/Kyoto

    Thursday, September 5, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Rob Pisarski

  60. HET Lunch Discussion

    "NSI at DUNE"

    Presented by Poonam Mehta

    Friday, August 30, 2019, 12:15 pm
    Building 510, Room 2-160

  61. RIKEN Lunch Seminar

    "Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula"

    Presented by Masazumi Honda, Cambridge

    Thursday, August 29, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    I will talk about supersymmetric index of 4d N=1 supersymmetric theories on S^1xM_3 which counts supersymmetric states. In the first part, I will discuss a general formula to describe an asymptotic behaviour of the index in the limit of shrinking S^1 which we refer to as 4d (refined) supersymmetric Cardy formula. This part is based on arXiv:1611.00380 with Lorenzo Di Pietro. In the second part, I will apply this formula to black hole physics. I will mainly focus on superconformal index of SU(N) N=4 super Yang-Mills theory which is expected to be dual to type IIB superstring theory on AdS_5 x S^5. We will see that the index in the large-N limit reproduces the Bekenstein-Hawking entropy of rotating charged BPS black hole on the gravity side. Our result for finite N makes a prediction to the black hole entropy with full quantum corrections. The second part is based on arXiv:1901.08091.

  62. Condensed-Matter Physics & Materials Science Seminar

    "Tailoring the twinning of DyBa2Cu3O7-x thin films with atomic-layer-by-layer molecular beam epitaxy"

    Presented by Daniel Putzky, Max Planck Institute for Solid State Research, Germany

    Monday, August 26, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Tony Valla/Ilya Drozdov

    In this talk I will present the work on high-quality, epitaxial DyBa2Cu3O7-x (DBCO) thin films grown by molecular beam epitaxy (MBE). In contrast to the previous DBCO growth by MBE using co-deposition technique, we have employed an atomic-layer-by-layer shuttering sequence with in-situ RHEED feedback. Films grown on LSAT (100), NGO (110) and STO (100) have a sharp superconducting transition above 80 K. Scanning-transition electron microscopy (STEM) shows atomically sharp substrate-film interface and the absence of stacking faults, unlike films previously grown by PLD. In the second part of the talk I will focus on the structural investigation using x-ray diffraction (XRD). In-plane scans at the KARA synchrotron confirm the epitaxial relationship to the substrate. In addition the formation of twin domains with the bulk-like orthorhombic crystal structure were observed. By reducing the film thickness the tetragonal to orthorhombic phase transition can be suppressed while the films still remain superconducting.

  63. NT/RIKEN Seminar

    "Symmetries in quantum field theory and quantum gravity"

    Presented by Daniel Harlow, MIT

    Friday, August 23, 2019, 1:15 pm
    Building 510, CFNS Seminar room 2-38

    Hosted by: Niklas Mueller

    It has long been suspected that symmetries in quantum gravity are highly constrained. In this talk I will describe joint work with Hirosi Ooguri, where we use the power of the AdS/CFT correspondence to prove three conjectures of this type: that there are no global symmetries, that there must be objects transforming in all representations of any gauge symmetry, and that any gauge group must be compact. Real world implications include the existence of magnetic monopoles and neutrinoless double beta decay, although we so far are unable to give estimates for when these should be seen. An important point, which we dwell on at length, is the proper definition of gauge and global symmetries in quantum field theory.

  64. HET Discussion - CANCELLED

    "TBD"

    Presented by Aaron Meyer, BNL

    Friday, August 23, 2019, 12:15 pm
    Building 510, Room 2-160

  65. Condensed-Matter Physics & Materials Science Seminar

    "The 2-spinon contribution to the longitudinal structure factor in the XXZ model"

    Presented by Isaac Perez Castillo, Institute of Physics, UNAM and London Mathematical Laboratory

    Thursday, August 22, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    In this work we derive exactly the two-spinon contribution to the longitudinal dynamical structure factor of the anisotropic Heisenberg spin-1/2 chain in the gapped regime by using quantum group approach. We will briefly discuss some of the mathematical difficulties when confronting form factor formulas given by quantum group approach and how to overcome these obstacles. We end up by contrasting our results with those coming from perturbation theory, while comparison to DMRG and experiments are currently underway.

  66. NT/RIKEN

    "Effective and temperature-dependent viscosities in a hydrodynamically-expanding QCD plasma"

    Presented by Jean-Francois Paquet, Duke University

    Friday, August 16, 2019, 2 pm
    Building 510, CFNS room 2-38

    Hosted by: Niklas Mueller

    The shear and bulk viscosities of QCD are understood to have non-trivial temperature dependence. The quark-gluon plasma created at RHIC and the LHC provides a unique probe of this temperature dependence for temperatures ranging from ∼150 ~MeV to ∼400−600 MeV. Values of viscosities commonly quoted for the quark-gluon plasma, e.g. η/s∼0.1−0.2 for the shear viscosity to entropy density ratio, are understood to represent ``effective viscosities'', which combine the actual temperature-dependence of the transport coefficient with the complex temperature profile of the quark-gluon plasma. Using 0+1D Bjorken hydrodynamics as starting point, we provide a precise definition of effective viscosity for first-order (Navier-Stokes) hydrodynamics. We examine the role of the equation of state by comparing a QCD fluid with a conformal one. We use this definition of effective viscosity to obtain families of bulk viscosities ζ/s(T) that have different temperature dependence but nevertheless produce matching temperature evolutions in 0+1D hydrodynamics. We further extend the definition of effective viscosity to second-order (Israel-Stewart) Bjorken hydrodynamics. We express the second-order effective viscosity in terms of the initial bulk pressure of the system and its first-order effective viscosity, and quantify the approximate degeneracy of these latter two quantities in Bjorken hydrodynamics. We discuss extensions of this work beyond 0+1D, and review implications for phenomenological studies of heavy ion collisions.

  67. HET Lunch Discussion

    "The Fermi Constant Revisited"

    Presented by William Marciano, BNL

    Friday, August 16, 2019, 12:15 pm
    Building 510, Room 2-95

  68. RIKEN Lunch Seminar

    "Mean field approach to the Fisher information matrix in deep neural networks"

    Presented by Ryo Karakida, AIST, National Institute of Advanced Industrial Science and Technology

    Thursday, August 15, 2019, 12 pm
    Building 510, Room 1-224

    Hosted by: Akio Tomiya

  69. Environmental & Climate Sciences Department Seminar

    "Experimental and modeling investigation of the OH-initiated heterogeneous oxidation of semi-solid and aqueous saccharide aerosols"

    Presented by Hanyu Fan, Department of Chemistry, West Virginia University

    Monday, August 12, 2019, 11 am
    Conference Room Bldg 815E

    Hosted by: Art Sedlacek and Ernie Lewis

    Sugars (primary saccharides, saccharide polyols and anhydro-saccharides) are a major class of water-soluble organic carbon (WSOC) that significantly contribute to atmospheric organic aerosol particular matter (PM). [1] The heterogeneous oxidation of organic materials plays a significant role during the chemical aging of organic aerosols in the atmosphere. The kinetic of such heterogeneous reactions has been shown to be very dependent on the chemical component of the particle phase. [2] The experiments were performed using an atmospheric pressure aerosol flow tube coupled with Scanning Mobility Particle Sizer (SMPS), Gas Chromatography – Flame Ionization Detector (GC-FID) and Aerosol Mass Spectrometer or Teflon filter collection. The kinetics are determined from the loss of particle species as a function of OH exposure. We reported results on the OH-initiated heterogeneous oxidation of pure monosaccharide semi solid nanoparticles over a wide range of relative humidity (RH) conditions. The decay rate of the monosaccharide is found to strongly depend on the gas phase water concentration. [3] We recently report results on heterogeneous oxidation of OH radicals with ternary component of monosaccharide-disaccharide-water semi solid nanoparticles over a range of mole ratio of mixtures of monosaccharide and disaccharide. The presence of disaccharide slows down the decay rate of monosaccharide in semi solid phase. [4] Then we moved on to aqueous phase oxidation of saccharides by OH radicals study. Contrast to what we observed in semi solid phase study, the presence of monosaccharide slows down the kinetic of disaccharide in aqueous phase. [5] A reaction-diffusion kinetic model solved in Matlab software is developed in order to investigate the effect composition-dependent diffusion on heterogeneous reaction behaviors in solid phase study. [3,4] Molecular dynamics simulations and kinetic mechanism of the heterogeneous oxidation of aqueous droplets based

  70. C-AD Accelerator Physics Seminar

    "Storage Rings as Quantum Computers"

    Presented by Kevin Brown, BNL

    Friday, August 9, 2019, 4 pm
    Bldg. 911B, Second Floor, Large Conf. Rm., Rm. A2

    There are multiple ways that quantum computer elements have been realized and have been proposed to be realized. These include ion traps, Josephson junctions, Nuclear Magnetic Resonance spin states and optical systems. In this presentation, I will present a new idea; using a storage ring as a quantum computer. The key to building a storage ring quantum computer is to create an ultracold beam in the form of an "ion Coulomb crystal". In a classical Coulomb crystal, a chain of ions is bound into a lattice structure in which the ions remain locked in sequence despite the mutual Coulomb repulsion force between the positively charged ions. In an ion Coulomb crystal, the thermal vibrations of the ions are cooled to extremely low temperature, so that the quantum states in the motion of the ions are observable. There are a number of challenges in realizing such a system, although much can be learned from ion trap systems, since the storage ring is essentially an unbounded ion trap where the ion chains have a finite velocity.

  71. Nuclear Theory / RIKEN Seminar

    "DIS on a Quantum Extremal RN-AdS Black Hole: with Application to DIS on a Nucleus"

    Presented by Kiminad Mamo, Stony Brook University

    Thursday, August 8, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    We consider deep inelastic scattering (DIS) on a dense nucleus described as an extremal RN-AdS black hole with holographic quantum fermions in the bulk. We find that the R-ratio (the ratio of the structure function of the black hole to proton) exhibit shadowing for x < 0.1, anti-shadowing for 0.1 < x < 0.3, EMC-like effect for 0.3 < x < 0.8 and Fermi motion for x > 0.8 in a qualitative agreement with the experimental observation of the ratio for DIS on nucleus for all range of x. We also take the dilute limit of the black hole and show that its R-ratio exhibits EMC-like effect for 0.2 < x < 0.8 and the Fermi motion for x > 0.8, and no shadowing is observed in the dilute limit.

  72. Center for Functional Nanomaterials Seminar

    "Precursors that live surprisingly long and prosper even at "real catalytic" high temperatures"

    Presented by Heriberto Fabio Busnengo

    Tuesday, August 6, 2019, 11 am
    CFN, Building 735 - first floor conf. rm.

    Hosted by: Dario Stacchiola

    The dynamics of intrinsic precursors and their role on surface chemistry are presented using quasi-classical trajectory calculations based on force fields parametrized from Density Functional Theory results. Carbon monoxide and methane are used as benchmark molecules, exemplifying non-reactive and reactive sticking processes on Cu(110) and Ir(111) respectively. The role of entropic effects in the stabilization of the precursor state for CO/Cu(110) is presented, as well as an analysis of the extent low energy CH4 molecules thermalize on a hot surface. The theoretical studies are motivated by recent molecular beam experimental findings for both molecules, where the long lifetime of vibrationally excited states on shallow potential wells enable these precursors to "prosper" even at high "real catalytic" temperatures.

  73. NT/RIKEN Seminar

    "Perturbation Theory of Non-Perturbative QCD"

    Presented by Fabio Siringo, University of Catania

    Friday, August 2, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    A purely analytical approach to non-perturbative QCD is discussed. The exact, gauge-fixed, Faddeev-Popov Lagrangian of Yang-Mills theory is studied by the screened massive expansion which emerges from a mere change of the expansion point of ordinary perturbation theory. The gluon propagator has gauge-invariant complex conjugated poles which might give a direct dynamical proof of gluon confinement. Their genuine nature is discussed. Because of BRST symmetry, the analytic properties and the poles are shown to play a central role in the optimization of the expansion, which becomes a very predictive and ab initio tool. While in excellent agreement with the lattice data in the Euclidean space, the expansion provides valuable information in sectors which are not easily explored on the lattice, like Minkowski space and a generic covariant gauge. Moreover, even in the Euclidean space, the method gives a lattice-independent estimate of the running coupling in the continuum limit.

  74. HET Lunch Seminar

    "Nucleon-Pion States for the Nucleon Form Factors from the Lattice QCD"

    Presented by Yong-Chull Jang

    Friday, August 2, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  75. Physics Colloquium

    "Belle II and SuperKEKB: New Physics and the Next Generation"

    Presented by Tom Browder, University of Hawai'i at Manoa

    Tuesday, July 30, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: David Jaffe

    Recent results now suggest that flavor physics could be an alternative path to breaking the Standard Model of particle physics. I will review the startup of Belle II and SuperKEKB, including news from the first physics run that took place April-June 2019 as well as the the long term physics program of Belle II and the innovative technologies that have made it possible. Belle II will soon become the leading experiment for exploration of the physics of B mesons, D mesons and tau leptons. I will also discuss the special role of BNL in Belle II.

  76. Nuclear Physics Seminar

    "Understanding the nature of heavy-ion collisions in small systems"

    Presented by Jacquelyn Noronha-Hostler, Rutgers University

    Tuesday, July 30, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jiangyong Jia

    In recent years our understanding on the limits of the smallest possible droplet of the Quark-Gluon Plasma has been called into question. Experimental results from both the Large Hadron Collider and the Relativistic Heavy Ion Collider have provided hints that the Quark-Gluon Plasma may be produced in systems as small as those formed in pPb or dAu collisions. Yet, alternative explanations still exist from correlations arising from quarks and gluons in a color glass condensate picture. In order to better resolve the distinctions between these two scenarios, I will discuss the possibility of a future system size scan involving ArAr and OO collisions at the Large Hadron collider and make predictions for flow harmonics in both the light and heavy flavor sectors. Additionally, I will discuss the potential of using small deformed ions to help disentangle the color glass condensate scenario versus hydrodynamics where most of these results can be confirmed or denied using experimental data that is already on tape.

  77. Condensed-Matter Physics & Materials Science Seminar

    "Fermi arcs, nodal and antinodal gaps in cuprates : the 'pairon' model to the rescue"

    Presented by William Sacks, Sorbonne University, France

    Friday, July 26, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Ivan Bozovic

    Angle-resolved photoemission, in addition to tunneling, has provided key information on the cuprate pairing on the microscopic scale. In particular, in the underdoped regime, the angular dependence of the gap function Δ(θ) deviates from a pure d-wave form such that the antinodal gap value ΔAN and the nodal gap value ΔN completely diverge. On another front, ARPES has firmly established that the enigmatic Fermi arcs, i.e. normal electron excitations around the nodes, exist even below Tc. In this work, we will interpret these experiments based on the 'pairon' model [1] in which the fundamental object is a hole pair bound by its local antiferromagnetic environment on the scale of the coherence length ξAF. The pairon model agrees quantitatively with both the gap function Δ(θ) and the Fermi arcs seen at finite temperature.

  78. Physics Department Summer Lectures

    "From Raw Data to Physics Results"

    Presented by Paul Laycock

    Friday, July 26, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    Modern nuclear and particle physics experiments generate huge amounts of data that need to be calibrated, processed and analysed so that we can extract and publish physics results. In this talk I will describe the journey of data, from the bits that leave the detectors through its transformation into well-understood physics objects that are analysed by physicists all over the world. We will look in particular at how this exabyte scale problem requires computing and software solutions that operate on a global scale, and take a look at the challenges that still lie ahead of us.

  79. HET Lunch Discussion

    "Revisiting the Dark Photon Interpretation of the Muon Anomalous Magnetic Moment"

    Presented by Gopi Mohlabeng, BNL

    Friday, July 26, 2019, 12:15 pm
    Building 510, Room 2-160

    A massive U(1)′ gauge boson known as a "dark photon" or A′, has long been proposed as a potential explanation for the discrepancy observed between the experimental measurement and theoretical determination of the anomalous magnetic moment of the muon (gμ − 2) anomaly. Recently, experimental results have excluded this possibility for a dark photon exhibiting exclusively visible or invisible decays. In this work, we revisit this idea and consider a model where A′ couples inelastically to dark matter and an excited dark sector state, leading to a more exotic decay topology we refer to as a semi-visible decay. We show that for large mass splittings between the dark sector states this decay mode is enhanced, weakening the previous invisibly decaying dark photon bounds. As a consequence, A′ resolves the gμ− 2 anomaly in a region of parameter space the thermal dark matter component of the Universe is readily explained. Interestingly, it is possible that the semi-visible events we discuss may have been vetoed by experiments searching for invisible dark photon decays. A re-analysis of the data and future searches may be crucial in uncovering this exotic decay mode or closing the window on the dark photon explanation of the gμ− 2 anomaly.

  80. HET Lunch Discussions

    "Unearthing Kinematic Information in WH Production"

    Presented by Sam Homiller, SBU

    Friday, July 26, 2019, 12:15 pm
    Building 510, Room 2-160

    The associated production of a Higgs and a W boson is an important channel not only for observing the Higgs decay to b quark pairs, but also for examining the interactions of the Higgs and gauge fields. Using the inference toolkit MadMiner, which combines matrix element information and machine learning techniques, we examine the sensitivity of this production mode to non-Standard Model (SM) interactions arising in the context of the SM Effective Field Theory. These modern inference techniques maximize the sensitivity to new physics effects by exploiting all the kinematic information in the process and also help us understand how this information is distributed in phase space. In particular, this lets us rigorously evaluate the sensitivity of traditional approaches using histograms of a small number of observables. Based on our study we propose improvements to the recently implemented "Simplified Template Cross Section" templates for the Higgstrahlung process in order to increase the experimental sensitivity of beyond the SM physics at the LHC.

  81. Sambamurti Lecture

    "Finger-printing a nuclear reactor with neutrinos"

    Presented by Thomas Langford, Yale University

    Thursday, July 25, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: John Haggerty

    Neutrinos have been the most consistently surprising particle of the last few decades. The onset of high-precision experiments has lead to the discovery of neutrino oscillations, possible evidence for beyond the Standard Model sterile neutrinos, and the beginnings of neutrino-based geophysics. Recent measurements of antineutrinos from nuclear reactors have observed flux and spectral discrepancies compared to leading theoretical models. Experiments like Daya Bay and PROSPECT are able to observe the small differences of neutrino emission from different mixtures of nuclear fuel, which may illuminate the origin of this disagreement. These neutrino finger-prints can also be used to investigate the mixture of fuel inside an operating reactor, rekindling interest in neutrino-based reactor monitoring. I will present recent advances which have demonstrated how small-scale experiments utilizing new technologies can advance both fundamental and applied science.

  82. RIKEN Lunch Seminar

    "Deciphering the z_g distribution in ultrarelativistic heavy ion collisions"

    Presented by Paul Caucal, Saclay

    Thursday, July 25, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

  83. Nuclear Physics Seminar

    "Understanding the nature of heavy-ion collisions in small systems"

    Presented by Jacquelyn Noronha-Hostler, Rutgers University

    Thursday, July 25, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jia Jiangyong

    In recent years our understanding on the limits of the smallest possible droplet of the Quark-Gluon Plasma has been called into question. Experimental results from both the Large Hadron Collider and the Relativistic Heavy Ion Collider have provided hints that the Quark-Gluon Plasma may be produced in systems as small as those formed in pPb or dAu collisions. Yet, alternative explanations still exist from correlations arising from quarks and gluons in a color glass condensate picture. In order to better resolve the distinctions between these two scenarios, I will discuss the possibility of a future system size scan involving ArAr and OO collisions at the Large Hadron collider and make predictions for flow harmonics in both the light and heavy flavor sectors. Additionally, I will discuss the potential of using small deformed ions to help disentangle the color glass condensate scenario versus hydrodynamics where most of these results can be confirmed or denied using experimental data that is already on tape.

  84. Condensed-Matter Physics & Materials Science Seminar

    "Strange superconductivity near an antiferromagnetic heavy-fermion quantum critical point"

    Presented by Chung-Hou Chung, Department of Electrophysics, National Chiao-Tung University, Taiwan

    Wednesday, July 24, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201

    Hosted by: Alexei Tsvelik

    The heavy fermion systems CeMIn5 with M = Co, Rh, Ir, the "115" family, provide a prototypical example of an exotic "strange superconductivity" where unconventional d-wave Cooper pairs get condensed out of an incoherent strange metal normal state, displaying non-Fermi liquid behavior such as: T-linear-resistivity, T-logarithmic specific heat coefficient and a T-power-law singularity in magnetic susceptibility, near an antiferromagnetic quantum critical point [1]. The microscopic origin of strange superconductivity and its link to antiferromagnetic quantum criticality of the strange metal state are still long-standing open issues. We propose a microscopic mechanism for strange superconductors, based on the coexistence and competition between the Kondo correlation and the quasi-2d short-ranged antiferromagnetic resonating-valence-bond (RVB)spin-liquid near the antiferromagnetic quantum critical point via a large-N (Sp(N)) Kondo-Heisenberg model and renormalization group analysis beyond the mean-field level [2]. In the absence of superconductivity, this effective field theory [3] can describe various aspects of strange metal state observed in Ge-substituted YbRh2Si2 [4] close to the field-tuned Kondo breakdown quantum critical point. The interplay of these two effects between the Kondo and RVB physics provides a qualitative understanding on how superconductivity emerges from the strange metal state and the observed superconducting phase diagrams for CeMIn5 [1,2]. References: [1] C. Petrovic et al. J. Phys. Condens. Matt. 13, L337 (2001); S. Zaum et al. Phys. Rev. Lett. 106, 087003 (2011). [2] Y. Y. Chang, F. Hsu, S. Kirchner, C. Y. Mou, T. K. Lee, and C. H. Chung, Phys. Rev. B 99, 094513 (2019). [3] Y. Y. Chang, S. Paschen, and C. H. Chung, Phys. Rev. B 97, 035156 (2018). [4] J. Custers et al, Nature (London) 424, 524 (2003); J. Custers et al. Phys. Rev. Lett. 104, 186402 (2010).

  85. Physics Department Summer Lectures

    "Searching for and understanding the quark-gluon plasma in heavy-ion"

    Presented by Rongrong Ma, BNL

    Tuesday, July 23, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    Lattice-QCD predicts the occurrence of a phase transition above a critical temperature from ordinary nuclear matter to a new state of matter, usually referred to as the quark-gluon plasma (QGP), in which partons are relevant degrees of freedom. One primary goal of the heavy-ion physics is to create and study the properties of the QGP created in these collisions. The last couple of decades have seen tremendous progresses in understanding the QGP, thanks to the successful operation of dedicated experiments at the RHIC and the LHC. In this lecture, I will discuss the detectors designed for heavy-ion physics, and how an experimentalist turns electronic signal into physics results. Future direction of heavy-ion experiments will also be discussed.

  86. Condensed-Matter Physics & Materials Science Seminar

    "Electron beam effects on organic ices"

    Presented by Marco Beleggia, Technical University of Denmark, Denmark

    Monday, July 22, 2019, 11 am
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Yimei Zhu

    While beam damage is often considered detrimental to our quantitative imaging capabilities, the energy and charge injected into the sample as a result of inelastic scattering can be exploited beneficially. This is especially true in radiation-chemistry-type experimental setups in the electron microscope where the beam promotes local wanted chemical reactions. We have observed that by exposing to the electron beam a layer of small volatile organic molecules condensed over a cold substrate results in the formation of a solid product. Evidence suggests that the exposure mechanism driving the formation of a solid product is partial dehydrogenation of the molecules, removal of H2, and progressive increase of the average molecular weight. Contrary to focused electron beam induced deposition, that relies on surface absorption followed by aggregation of mobile species, at cryogenic temperature organic ice molecules are largely immobilized, and act as targets for the incoming electrons throughout the entire thickness of the layer. Therefore, the exposure occurs throughout the volume of the frozen precursor, and the features are essentially determined by the electron distribution, with diffusion/transport parameters bearing little or no relevance. Since larger molecules are less volatile, if the molecular weight increases sufficiently, upon raising the temperature the unexposed areas leave the sample, while the exposed molecules assemble into a solid product in the form of hydrogenated amorphous carbon.

  87. Physics Department Summer Lectures

    "Introduction to Statistics in High-Energy Physics"

    Presented by Xin Qian

    Friday, July 19, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    In this lecture, I will introduce some basic statistical concepts commonly used in the data analysis of high-energy physics experiments. I will review the basic procedure in setting confidence intervals. Some advanced topics in data unfolding, selection of test statistics, and usage of linear algebra in reducing computation will be touched upon.

  88. HET Lunch Seminar

    "Probing Dark Matter Particle Properties with Ultra-High-Resolution CMB Lensing"

    Presented by Neelima Sehgal, SBU

    Friday, July 19, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Hooman Davoudiasl

  89. Particle Physics Seminar

    "Precision Jet Substructure with the ATLAS Detector"

    Presented by Jennifer Roloff, BNL

    Thursday, July 18, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

  90. Physics Department Summer Lecture Series

    "Quantum Chromodynamics (QCD) as a many-body theory: An existential tale in four acts"

    Presented by Raju Venugopalan, BNL

    Tuesday, July 16, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    QCD, our nearly perfect theory of the strong interaction, is also deeply profound because all phenomena are emergent features of the many-body dynamics of the quark and gluon fields and the vacuum of the theory. This talk on many-body QCD is organized as a play in four acts: i) Origins, mysteries, symmetries ii) The power and the glory of QCD iii) Surprises from boiling the QCD vacuum in heavy-ion collisions: a) why the world's hottest fluid, albeit also being its most viscous, flows with almost no resistance b) a possible unexpected universality between the hottest and coldest fluids on earth c) What magnetar strength magnetic fields created in heavy-ion collisions may reveal about the topology of the QCD vacuum iv) Looking ahead to the Electron-Ion Collider: what the ultimate IMAX experience may reveal of QCD's mysteries

  91. Chemistry Department Seminar

    "Nanoparticle Beam Deposition: A Novel Route to the Solvent-Free"

    Presented by Richard E. Palmer, Nanomaterials Lab, Swansea University, UK, United Kingdom

    Tuesday, July 16, 2019, 11 am
    Room 300, 3rd Floor, Chemistry Building 555

    Hosted by: Michael White

    Size-selected nanoparticles (atomic clusters), deposited onto supports from the beam in the absence of solvents, represent a new class of model systems for catalysis research and possibly small-scale manufacturing of selective catalysts. To translate these novel and well-controlled systems into practical use, two major challenges have to be addressed. (1) Very rarely have the actual structures of clusters been obtained from direct experimental measurements, so the metrology of these new material systems have to improve. The availability of aberration-corrected HAADF STEM is transforming our approach to this structure challenge [1,2]. I will address the atomic structures of size-selected Au clusters, deposited onto standard carbon TEM supports from a mass-selected cluster beam source. Specific examples considered are the "magic number clusters" Au20, Au55, Au309, Au561, and Au923. The results expose, for example, the metastability of frequently observed structures, the nature of equilibrium amongst competing isomers, and the cluster surface and core melting points as a function of size. The cluster beam approach is applicable to more complex nanoparticles too, such as oxides and sulphides [3]. (2) A second major challenge is scale-up, needed to enable the beautiful physics and chemistry of clusters to be exploited in applications, notably catalysis [4]. Compared with the (powerful) colloidal route, the nanocluster beam approach [5] involves no solvents and no ligands, while particles can be size selected by a mass filter, and alloys with challenging combinations of metals can readily be produced. However, the cluster approach has been held back by extremely low rates of particle production, only 1 microgram per hour, sufficient for surface science studies but well below what is desirable even for research-level realistic reaction studies. In an effort to address this scale-up challenge, I will discuss the development of a new kind of nanop

  92. NT/RIKEN Seminar

    "Topological Superconducting Qubits"

    Presented by Javad Shabani, Center for Quantum Phenomena NYU

    Friday, July 12, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    Topological superconductivity hosts exotic quasi-particle excitations including Majorana bound states which hold promise for fault-tolerant quantum computing. The theory predicts emergence of Majorana bound states is accompanied by a topological phase transition. We show experimentally in epitaxial Al/InAs Josephson junctions a transition between trivial and topological superconductivity. We observe a minimum of the critical current at the topological transition, indicating a closing and reopening of the superconducting gap induced in InAs, with increasing magnetic field. By embedding the Josephson junction in a phase-sensitive loop geometry, we measure a π-jump in the superconducting phase across the junction when the system is driven through the topological transition. We present a scalable topological qubit architecture to study coherence for computing applications. Funded by DARPA TEE program.

  93. Physics Department Summer Lecture Series

    "A golden age in physics, an overview of what the...is going on in the RHIC tunnel"

    Presented by Rob Pisarski, BNL

    Friday, July 12, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    I will give a general introduction to the modern theory of "strong" interactions, which involve quarks and gluons. At about a trillion degrees, these form a Quark-Gluon Plasma, which we believe is created in the collisions of heavy ions at very high energies, such as at the Relativistic Heavy Ion Collider here at Brookhaven. I also make extensive comments about the sociology of the field, especially the phenomenon of "As everyone who is anyone knows..."

  94. Particle Physics Seminar

    "Low-nu Flux Measurement Using Neutrino/Antineutrino-Hydrogen Interactions for Long-baseline Neutrino Oscillation Experiments"

    Presented by Hongyue Duyang, University of South Carolina

    Thursday, July 11, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Chao Zhang

    The next generation long-baseline neutrino oscillation experiments such as DUNE (Deep Underground Neutrino Experiment) aim to solve the remaining questions in neutrino oscillation physics, including neutrinos' mass ordering and CP violation. The near detector(s) will provide crucial constraints on the systematic uncertainties to the oscillation measurements. Flux uncertainty is one of the dominant contributions to the systematic uncertainties. In this talk I present a novel approach of precisely determining the neutrino flux in the near detector(s) of a long-baseline neutrino experiment such as DUNE, by using neutrino/antineutrino-hydrogen interactions with low visible hadronic energy (Low-nu). The application of this method in the proposed KLOE-STT detector is discussed, which could serve as part of the near detector complex of DUNE.

  95. Physics Department Summer Lecture Series

    "Silicon Detectors for Particle and Nuclear Physics"

    Presented by Gabriele Giacomini, BNL

    Tuesday, July 9, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    Silicon technology is approximately 70 years old but thousands of years by a multitude of researchers has been dedicated to R&D; the well-established microelectronic industry is based on it. Being that the silicon is sensitive to photons (from infrared to X-rays, passing through visible light and ultraviolet) and to charged particles, we can leverage the microelectronic technology to make sensors out of silicon. Silicon sensors are used in a variety of applications including scientific experiments (High Energy Physics, Astrophysics, Photon Science, etc) as well as industrial and commercial use (cameras, etc). The basic structure is the p-n junction across which a voltage is applied. When an ionizing event occurs (a photon or a charged-particle interacting with silicon), a short current pulse (~ few ns) is generated and detected by the read-out electronics. There are many kinds of silicon sensors and each one must be tailored according to the specific application. We'll give an overview of the state of the silicon technology and its different applications.

  96. Nuclear Physics Seminar

    ": Extracting the Heavy-Quark Potential from Bottomonium Observables in Heavy-Ion Collisions"

    Presented by Xiaojian Du, Texas A&M University

    Tuesday, July 9, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    The in-medium color potential is a fundamental quantity for understanding the properties of the strongly coupled quark-gluon plasma (sQGP). Open and hidden heavy-flavor (HF) production in ultrarelativistic heavy-ion collisions (URHICs) has been found to be a sensitive probe of this potential. Here we utilize a previously developed quarkonium transport approach in combination with insights from open HF diffusion to extract the color-singlet potential from experimental results on Υ production in URHICs. Starting from a parameterized trial potential, we evaluate the Υ transport parameters and conduct systematic fits to available data for the centrality dependence of ground and excited states at RHIC and the LHC. The best fits and their statistical significance are converted into a temperature dependent potential. Including nonperturbative effects in the dissociation rate guided from open HF phenomenology, we extract a rather strongly coupled potential with substantial remnants of the long-range confining force in the QGP.

  97. EBNN Directorate Visitor Seminar

    "Defense Nuclear Nonproliferation's Mission"

    Presented by Dr. Brent K. Park, NNSA - Deputy Administrator for Defense Nuclear Nonproliferation

    Monday, July 8, 2019, 3 pm
    Large Conference Room, Bldg. 535

    Hosted by: Martin Schoonen

  98. Office of Educational Programs Event

    "QuarkNet Workshop for High School Teachers"

    Wednesday, July 3, 2019, 9 am
    Building 438

    Hosted by: Ketevi Assamagan

  99. Physics Department Summer Lecture Series

    "Astronomical CCDs and light-sensitive sensors for fast imaging"

    Presented by Andrei Nomerotski, BNL

    Tuesday, July 2, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    I will review how the state-of-the-art sensors developed for astronomical applications can precisely measure the positions and shapes of billions of galaxies. The talk will focus on the camera and sensors for the Large Synoptic Survey Telescope (LSST) and will discuss limitations on the achievable precision coming from the instrumentation. I will also discuss light sensitive sensors which can be used for fast imaging of single photons in QIS and other applications.

  100. Nuclear Physics Seminar

    "DREENA framework as a multipurpose QGP tomography tool"

    Presented by Magdalena Djordjevic, Institute of Physics Belgrade

    Tuesday, July 2, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jin Huang

    High-pt theory and data are traditionally used to explore high-pt parton interactions with QGP, while QGP bulk properties are explored through low-pt data and corresponding models. However, with a proper description of high-pt medium interactions, high-pt probes also become a powerful tool for inferring bulk QGP properties, as they are sensitive to global QGP parameters. With the goal of developing a multipurpose QGP tomography tool, over the past several years, we developed the dynamical energy loss formalism, and the corresponding fully optimized DREENA numerical framework. As first steps towards QGP tomography, we will use DREENA framework to address how we can directly from experimental data i) differentiate between different energy loss mechanisms, ii) infer the shape of QGP droplet. The research presented in this talk will therefore demonstrate how high-pt theory and data can be used to both infer the nature of high pt-parton medium interactions, and important bulk QGP medium properties.

  101. Nuclear Physics Seminar

    "Charm hadron collective flow and charm hadrochemistry in heavy-ion collisions"

    Presented by Xin Dong, Lawrence Berkeley National Laboratory

    Tuesday, July 2, 2019, 10 am
    Small Seminar Room, Bldg. 510

    Hosted by: Lijuan Ruan

    Heavy quark transport offers unique insight into the microscopic picture of the sQGP created in heavy-ion collisions. One central focus of heavy quark program is to determine the heavy quark spatial diffusion coefficient and its momentum and temperature dependence. This requires precise measurements of heavy flavor hadron production and their collective flow over a broad momentum region. In the meantime, heavy quark hadrochemistry, the abundance of various heavy flavor hadrons, provides special sensitivity to the QCD hadronization and also plays an important role for the interpretation of heavy flavor hadron data in order to constrain the heavy quark spatial diffusion coefficient of the sQGP. In this seminar, I will focus on the recent STAR results of charm hadron D0, D+/-, D*, Ds, Lambda_c production and D0 radial and elliptic flow in heavy-ion collisions utilizing the state-of-the-art silicon pixel detector, the Heavy Flavor Tracker. These data will be compared to measurements from other experiments at RHIC and the LHC as well as various model calculations. I will then discuss how these data will help us better understand the sQGP properties and its hadronization. Finally, I will present a personal view of future heavy quark measurements at RHIC.

  102. Office of Educational Programs Event

    "QuarkNet Workshop for High School Teachers"

    Tuesday, July 2, 2019, 9 am
    Building 438

    Hosted by: Ketevi Assamagan

  103. Particle Physics Seminar

    "Searches of Dark Matter signals with the ATLAS detector at the LHC: Present and future"

    Presented by Dr. Rachid Mazini, Academia Sinica, Taiwan

    Monday, July 1, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    In this seminar, I will present an overview of up-to-date results on searches for Dark Matter signals with the ATLAS detector at the LHC using Run 2 data. Comparison with non-accelerator DM results as well as interpretation within some theoretical models will be discussed. In addition, expectation from the high-luminosity LHC (HL-LHC) DM searches program will be briefly presented. Finally, I will talk about the new ATLAS High Granularity Timing Detector (HGTD), planned for the phase 2 upgrade program for the HL-LHC run, and it performances for physics studies.

  104. Office of Educational Programs Event

    "QuarkNet Workshop for High School Teachers"

    Monday, July 1, 2019, 9 am
    Building 438

    Hosted by: Ketevi Assamagan

  105. Physics Department Summer Lecture Series

    "Using Gravitational Lensing to measure Dark Matter and Dark Energy in the Universe"

    Presented by Erin Sheldon, BNL

    Friday, June 28, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    Gravitational lensing is the bending of the path of light near massive bodies. Mass produces a curvature of space time, and light follows a curved path that is calculable using the General Theory of Relativity. I will discuss how the lensing effect is used to measure the amount of Dark Matter in galaxies and in the universe as a whole. I will also discuss how we use lensing to measure the properties of the mysterious Dark Energy that is driving the accelerated expansion of our universe.

  106. Particle Physics Seminar

    "First measurement of the neutron-argon cross section between 100 and 800 MeV"

    Presented by Prof. Christopher Mauger, University of Pennsylvania

    Thursday, June 27, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Chao Zhang

    The DUNE experiment directs a neutrino beam from Fermilab towards a 40 kiloton liquid argon time-projection chamber (TPC) 1300 km away in the Sanford Underground Research Facility in South Dakota. By measuring electron neutrino and anti-neutrino appearance from the predominantly muon neutrino and anti-neutrino beams, DUNE will determine the neutrino mass ordering and explore leptonic CP violation. The neutrino oscillation phenomena explored by DUNE require robust determinations of the (anti-)neutrino energies by reconstructing the particles produced in charged current reactions. Among the particles emerging from the interaction which carry significant energy, neutrons are the most challenging to reconstruct. The CAPTAIN collaboration has made the first measurement of the neutrino-argon cross section between 100 and 800 MeV of neutron kinetic energy - an energy regime crucial for neutrino energy reconstruction at DUNE. We made the measurement in a liquid argon TPC with 400 kg of instrumented mass. I describe the measurement and discuss future plans.

  107. HET Seminar

    "Inducing and Detecting Collective Effects of Particle Dark Matter"

    Presented by Asher Berlin, SLAC

    Wednesday, June 26, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Gopolang Mohlabeng

    Detecting light dark matter that interacts weakly with electromagnetism has recently become one of the benchmark goals of near-term and futuristic direct detection experiments. In this talk, I will discuss an alternative approach to directly detecting such models below the GeV-scale, leveraging on the recent interest and advances in resonant detectors, such as LC circuits.

  108. Condensed-Matter Physics & Materials Science Seminar

    "Excitonic condensation of strongly correlated electrons"

    Presented by Professor Jan Kunes, Vienna University of Technology, Austria

    Wednesday, June 26, 2019, 2:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: Keith Gilmore

    Spontaneous symmetry breaking is a prominent demonstration of the collective behavior of strongly correlated systems. Besides ordering of charge or of spin dipoles, more exotic types of long-range order are possible, which do not couple to conventional probes and are therefore sometimes called the hidden order. Excitonic magnets, or excitonic condensates, are examples of such systems. I will introduce the concept of excitonic condensate from the strong coupling perspective and discuss the rich variety of excitonic phases arising from the internal (spin, orbital) degrees of freedom of the excitons. I will present some numerical results obtained with dynamical mean-field theory for models as well as for specific materials, which we suspect to be excitonic magnets. The presentation will include the recently obtained results for dynamical susceptibilities in phases with long-range order and some proposals on how to detect excitonic condensates with today's experimental techniques.

  109. Physics Department Summer Lecture Series

    "The Really Big Picture: Cosmology in the 21st Century"

    Presented by Paul Stankus, Oak Ridge National Laboratory

    Tuesday, June 25, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

  110. Physics Department Summer Lecture Series

    "Search for a new particle in the decay of the Higgs boson"

    Presented by Ketevi Assamagan, BNL

    Friday, June 21, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    In this talk, I will discuss the search strategies that led to the discovery of the Higgs boson. Then, I will focus on the usage of the Higgs boson as a portal to "new physics". I will conclude with dark sector states as a possibility for physics beyond the Standard Model of particle physics

  111. Physics Collquium - CANCELLED

    "3D imaging of nuclei: status and towards an EIC"

    Presented by Kawtar Hafidi, ANL

    Tuesday, June 18, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Thomas Ullrich

  112. Physics Department Summer Lecture Series

    "Basics of Neutrino Interactions in Matter"

    Presented by Milind Diwan, BNL

    Tuesday, June 18, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    I will review the basics of neutrino interactions in matter with emphasis on calculations of cross sections and rates. The lecture will provide introduction to the physics of weak interactions.

  113. Nuclear Physics Seminar

    "First observation of the directed flow of D0 and anti-D0 in Au+Au collisions at sqrt(sNN) = 200 GeV"

    Presented by Subhash Singha, KSU

    Tuesday, June 18, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Isaac Upsal

    In this talk, we will present the first measurement of rapidity-odd directed flow (v1) for D0 and anti-D0 mesons at mid-rapidity (|y| < 0.8) in Au+Au collisions at sqrt(sNN) = 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. In 10-80% Au+Au collisions, the slope of the v1 rapidity dependence (dv1/dy), averaged over D0 and anti-D0 mesons, is -0.080 +/- 0.017 (stat.) +/- 0.016 (syst.) for transverse momentum (pT) above 1.5 GeV/c. The absolute value of D0-meson dv1/dy is about 25 times larger than that for charged kaons, with 3.4sigma significance. These data not only give unique insight into the initial tilt of the produced matter, they are expected to provide improved constraints for the geometric and transport parameters of the hot QCD medium created in relativistic heavy-ion collisions.

  114. Condensed-Matter Physics & Materials Science Seminar

    "Tracking phase textures in complex oxides using coherent x-rays"

    Presented by Xiaoqian Chen, Lawrence Berkeley Laboratory

    Monday, June 17, 2019, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Ian Robinson/Mark Dean

    In complex oxides, coupled interactions result in unpredictable and novel emerging orders that are yet to be understood. With the recent advancement in x-ray and laser sources, exploration of equilibrium fluctuation and nonlinear dynamics have become an effective approach to understand these intertwined orders. In particular, coherent x-rays are a simultaneous probe of the order parameter, phase texture, and dynamics. In the first part of my talk, I will use underdoped cuprate La2-xBaxCuO4 as an example to show how x-ray speckle correlation can be a test for (lattice degree of freedom and charge) order coupling and dynamics. However, can we image domain dynamics in real time? In the second part of my talk, I will use antiferromagnetically ordered artificial lattice to demonstrate that phase retrieval lensless imaging can be used to image charge and magnetic orders. Using Bragg coherent diffraction imaging, we revealed a single domain wall motion with 100ms time resolution. References [1] X. M. Chen et al. Phys. Rev. Lett. 117, 167001 (2016) [2] V. Thampy et al. Phys. Rev. B 95, 241111 (2017) [3] X. M. Chen et al. Nat Commun. 10 1435 (2019) [4] X. M. Chen et al. under review, arXiv:1809.05656 [cond-mat.mes-hall]

  115. NT/RIKEN Seminar

    "D meson mixing via dispersion relation"

    Presented by Hsiang-nan Li, National Center for Theoretical Sciences, Physics Division, Taiwan

    Friday, June 14, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    In this talk I will explain how to calculate the D meson mixing parameters x and y in the Standard Model. Charm physics is notoriously difficult, because most effective theories and perturbation theories do not apply well. I propose to study the D meson mixing via a dispersion relation, which relates low mass dynamics to high mass one. Taking heavy quark results as inputs in the high mass region, we obtain x and y consistent with experimental data at least in order of magnitude.

  116. Physics Department Summer Lecture Series

    "The Little Neutral One"

    Presented by Mary Bishai, BNL

    Friday, June 14, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    In the past 50 years, the study of neutrinos, the lightest, yet most abundant of the known elementary particles has revealed cracks in the Standard Model of Particle Physics. Could neutrinos explain the matter anti-matter asymmetry in our Universe? To answer these questions we need to better understand the properties of these elusive polymorphs. I will present a brief history of the neutrino, what we have learnt so far about it, and what we hope to learn in the next couple of decades from some of the most ambitious experiments in particle physics.

  117. NSLS-II Friday Lunchtime Seminar

    "High resolution strain measurements and phase discrimination in solid solutions using X-Ray Diffuse Multiple Scattering (DMS)"

    Presented by Gareth Nisbet, Diamond Light Source, United Kingdom

    Friday, June 14, 2019, 12 pm
    NSLS-II Bldg. 743 Room 156

    Hosted by: Ignace Jarrige

    DMS is a new high resolution scattering technique which manifests as diffraction lines impinging on the detector plane, similar to Kikuchi lines or Kossel lines. I will explain how multiple intersections from coplanar and non-coplanar reflections can be used for phase discrimination in multi-phasic systems by following a simple reductive procedure. The methods will be demonstrated using data from complex PMN-PT and PIN-PMN-PT ferroelectric solid solutions. I will also show how convolutional neural networks are being applied to DMS data for phase discrimination.

  118. Particle Physics Seminar

    "Argon Capture Experiment at DANCE (ACED)"

    Presented by Jingbo Wang, UC Davis

    Thursday, June 13, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Chao Zhang

    Liquid argon is becoming a popular medium for particle detection, with applications ranging from low-background dark matter searches to high-energy neutrino detection. Because neutrons may represent both an important source of background and a product of signal events, a good understanding of their interactions in argon is a requirement for precision physics measurements. Despite being one of the most basic quantities needed to describe low energy neutron transport, the thermal neutron capture cross section on argon remains poorly understood, with the existing activation measurements showing significant disagreements. To resolve these disagreements, the Argon Capture Experiment at DANCE (ACED) collaboration has performed a differential measurement of the 40Ar(n, gamma)41Ar cross section using a time of flight neutron beam and the Detector for Advanced Neutron Capture Experiments (DANCE), a ∼4pi gamma spectrometer at Los Alamos National Laboratory. A fit to the differential cross section from 0.015-0.15eV, assuming a 1/v energy dependence, yields sigma(2200)=673+-26 (stat.) +- 59(sys.) mb. During this talk, I will introduce the DUNE experiment before focusing on the importance of neutrons in liquid argon detectors. I will then present the ACED experiment and the use of neutrons as a detector calibration method.

  119. Physics Colloquium

    "High energy atmospheric neutrinos: connections between laboratory experiments and cosmic rays"

    Presented by Mary Hall Reno, University of Iowa

    Tuesday, June 11, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Milind Diwan

    The IceCube Neutrino Observatory's measurement of a diffuse flux of neutrinos from astrophysical sources has opened a new era in high energy astroparticle physics. Neutrinos produced by cosmic ray interactions in the atmosphere are the main background to the astrophysical neutrino flux. At these high energies, data from the Large Hadron Collider experiments on heavy flavor production can be used to narrow the uncertainties in the background predictions at the highest energies. Our evaluation of the atmospheric neutrino flux from charm will be used to illustrate how collider physics results are connected to cosmic ray physics in this context.

  120. Physics Department Summer Lecture Series

    "The Anomalous Magnetic Moment of the Muon and the Standard Model of Particle Physics"

    Presented by William Morse, BNL

    Tuesday, June 11, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    At the end of this lecture, you will know: What is anomalous about the magnetic moment of the muon. What is the magnetic moment of the muon. What is the muon. Why Bohr said "Anyone who thinks they understand Quantum Mechanics, and is not deeply disturbed by it, doesn't understand Quantum Mechanics." What the Standard Model Theorists have to fear from the anomalous magnetic moment of the muon.

  121. Physics Department Summer Lecture Series

    "Visible and Invisible Clues for New Physics"

    Presented by Hooman Davoudiasl, BNL

    Friday, June 7, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    In this presentation, we will briefly describe the main elements of the Standard Model of particle physics. This theory, together with General Relativity, provides a precise description of a vast array of experimental and observational data, from microscopic to astronomical scales. However, solid empirical evidence and conceptual clues lead us to expect that this "standard" picture is incomplete. We will discuss some of the key reasons for this expectation.

  122. NSLS-II Friday Lunchtime Seminar

    "Status and perspective of high-energy automotive batteries"

    Presented by Richard Schmuch, University of Munster, Germany

    Friday, June 7, 2019, 12:30 pm
    NSLS-II Bldg. 743 Room 156

    Hosted by: Ignace Jarrige

    This presentation gives an overview of the materials, performance requirements and cost of current automotive traction batteries based on Li-ion technology. It also includes important aspects related to electromobility, such as its sustainability and energy efficiency. As current Li-Ion batteries with intercalation-type active materials are approaching their physicochemical energy density limit of roughly 300 Wh/kg or 800 Wh/L, alternative technologies such as lithium-metal based all-solid-state batteries (ASSBs) currently intensively studied, which promise an energy density of up to 1000 Wh/L. The potential and challenges of this and other post Li-ion batteries (e.g. Dual-Ion, Mg-Ion, Li-Sulphur) are discussed and also compared by systematic bottom-up energy density calculations. Through a step-by-step analysis from theoretical energy content at the material level to practical energies at the cell level, the individual advantages and shortcomings of the studied battery types are elucidated. Literature: (1) Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries. Nat. Energy 2018, 3 (4), 267–278. (2) Betz, J.; Bieker, G.; Meister, P.; Placke, T.; Winter, M.; Schmuch, R. Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Adv. Energy Mater. 2018, 1803170, 1803170. (3) Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium Ion, Lithium Metal, and Alternative Rechargeable Battery Technologies: The Odyssey for High Energy Density. J. Solid State Electrochem. 2017, 1–26. (4) Meister, P.; Jia, H.; Li, J.; Kloepsch, R.; Winter, M.; Placke, T. Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency. Chem. Mater. 2016, 28 (20), 7203-7217

  123. Condensed-Matter Physics & Materials Science Seminar

    "Probing quantum materials with multiple spectroscopic techniques"

    Presented by Eduardo H. da Silva Neto, University of California, Davis

    Thursday, June 6, 2019, 1:30 pm
    ISB - Bldg. 734

    Hosted by: Robert Konik

    Resonant X-ray Scattering (RXS), Scanning Tunneling Spectroscopy (STS) and Angle-Resolved Photo-Emission Spectroscopy (ARPES) measurements have been at the forefront of several advances in the studies of quantum materials. Our group specializes in these techniques, looking to leverage their combination to the study of quantum materials. I will discuss two projects where we have used these state-of-the-art techniques to study high-temperature superconductors and topological materials. Charge order has now been ubiquitously observed in cuprate high-temperature superconductors. However, it remains unclear if the charge order is purely static or whether it also features dynamic correlations. I will discuss a polarization-resolved soft x-ray inelastic RXS experiment with unprecedented resolution that demonstrates the existence of a coupling between dynamic magnetic and charge-order correlations in the electron-doped cuprate Nd2−xCexCuO4 [1-3]. I will also discuss a combined ARPES-STS study of the topological material Hf2Te2P. Similar to the reports by H. Ji, et al. on Zr2Te2P [4], band structure calculations and ARPES by Hosen et al. [5] also suggest multiple topological surface states in Hf2Te2P. However, some topological surface states still lacked direct spectroscopic evidence due the inability of ARPES experiments to probe the unoccupied band structure. Using the combination of STS and ARPES with surface K-doping, we probe the unoccupied band structure of Hf2Te2P and demonstrate the presence of multiple surface states with a linear Dirac-like dispersion, consistent with the predictions from previously reported band structure calculations [6]. [1] E. H. da Silva Neto, et al. Science 347, 282 (2015). [2] E. H. da Silva Neto, et al. Science Advances 2 (8), e1600782 (2016). [3] E. H. da Silva Neto, et al. Physical Review B, Rapid Communication 98, 161114(R) (2018). [4] H. Ji, et al. Physical

  124. Condensed-Matter Physics & Materials Science Seminar

    "Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory"

    Presented by Xiaozhe Shen, SLAC National Accelerator Laboratory

    Monday, June 3, 2019, 2 pm
    Bldg. 480, Conference Room

    Hosted by: Jing Tao

    Ultrafast electron diffraction (UED) is a transformative tool for probing atomic structural dynamics in ultrafast science to understand the correlation between materials' structure and their functionalities, with the ultimate goal of controlling energy and matter. The advent of high-brightness relativistic electron beams from photocathode radio frequency (RF) gun provides a great opportunity to push the resolving power of UED onto atomic length and time scales. With the expertise in electron beam physics and ultrafast laser technology, SLAC has dedicated enormous efforts to develop a world-leading UED using mega-electron-volt (MeV) electron beams since 2014. Over the years, SLAC MeV UED has achieved great instrument performance and delivered numerous scientific outcomes for ultrafast science. In 2019, SLAC MeV UED has officially transformed into a user facility. In this talk, performance of SLAC MeV UED will be reviewed, including characterization of the instrument resolution and machine stability. The unique capabilities of SLAC MeV UED to accommodate various sample environments for a broad range of scientific interests, including condense matter physics and chemical science, will be presented, with highlighted scientific results. Research and development efforts to improve the performance of SLAC MeV UED will be discussed.

  125. Particle Physics Seminar

    "Dark matter in the cosmos-The Hunt to Find it in the Laboratory"

    Presented by Ioannis (J.D.) Vergados

    Friday, May 31, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Milind Diwan

    There is plenty of evidence at all scales (galaxies, cluster of galaxies, cosmological distances) that most of the energy content of the universe is of unknown nature, i.e, 70% is dark energy and 25% dark matter. Only 5% is made up of matter of known nature, in atoms, in stars, in planets etc, constituents predicted by the standard model. Thus unraveling the nature of the dominant components and, in particular, of dark matter is one of the most important open problems in science. This nature can only be understood by the direct detection of its constituents in the laboratory. This can be achieved, if there exists a week interaction, much stronger than gravity, between the dark matter and ordinary matter. The constituents are supposed to have a mass and are called WIMPs (weakly interacting massive particles). We have no idea what this mass is, but from the rotational curves we know that the constituents must be non relativistic, regardless of the size of their mass. The experimental techniques for the direct detection crucially depend on the assumed WIMP mass. Historically the first searches assumed WIMP masses of many GeV and, therefore, heavy nuclear targets were favored. Thus the hunt for DM began and evolved into a multi-pronged and interdisciplinary enterprise, combining cosmology and astrophysics, particle and nuclear physics as well as detector technology, which will be reviewed. Since the WIMP energy is in the keV region, the nucleus cannot be excited and only the nuclear recoil can be measured. As a result, unfortunately, the signal cannot be easily distinguished from backgrounds. After thirty years of intensive work against formidable backgrounds by a lot of large experimental teams, no dark matter has been found. Impressive limits on the nucleon cross section have, however, been obtained. Extension of these searches to GeV or sub-GeV WIMPs is also been considered using light nuclear targets. It may very w

  126. Particle Physics Seminar

    "Latest oscillation results from the NOvA experiment"

    Presented by Diana Patricia Mendez, University of Sussex

    Thursday, May 30, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Elizabeth Worcester

    NOvA is a long-baseline neutrino oscillation experiment measuring $\nu_{\mu}$ disappearance and $\nu_e$ appearance within the NuMI beam from Fermilab. The experiment uses a Near and a Far Detector placed 810 km away from each other and at 14 milliradians off the beam-axis resulting in an observed energy spectrum that peaks at 2 GeV, close to the oscillation maximum. A combined $\bar{\nu}_{\mu}$ + $\nu_{\mu}$ disappearance, and $\bar{\nu}_{e}$ + $\nu_{e}$ appearance result will be presented including NOvA's first collected anti-neutrino data for a total exposure of $16\times10^{20}$ protons-on-target. In addition to an increased exposure, an upgraded analysis has enable the experiment to set new limits to the allowed regions for $\Delta m^2_{32}$ and sin$^2\theta_{23}$ and make a measurement of $\Delta m^2_{32}$ among the world's best.

  127. RIKEN Lunch Seminar

    "Applications of machine learning to computational physics"

    Presented by Dr Akio Tomiya, RBRC

    Thursday, May 30, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    In this talk, I would like to talk about my works with machine learning. I plan to introduce my works which related to lattice QCD research: detection of phase transition in classical spin systems [arXiv 1609.09087, 1812.01522], configuration generation [1712.03893 + some]

  128. Environmental & Climate Sciences Department Seminar

    "The Influence of Aerosol Chemical Composition, Morphology, and Phase State on Water and Ice Cloud Particle Formation"

    Presented by Yue Zhang, North Carolina State, MIT, and Aerodyne

    Thursday, May 30, 2019, 11 am
    Large Conference Room, Bldg. 490

    Hosted by: Ernie Lewis

    Aerosols and clouds effect Earth's radiative balance, and aerosol-cloud interactions are major sources of uncertainties in predicting future climate. The climate effects of water and ice cloud particles formed from atmospheric particulate matter are not well understood due to the complex physical and chemical properties of these aerosols. Measurements from fixed sites and field campaigns have shown that organic aerosols (OA) dominate the non-refractory aerosols in the free troposphere where clouds typically form, and cloud water and ice cloud residue both show the presence of organic materials. Despite the abundance of OA, their effects on both cloud condensation nuclei (CCN) and ice nucleation (IN) are not fully understood and even controversial. To probe into these issues, the CCN and IN properties of complex inorganic-organic aerosol mixtures that simulate ambient conditions were measured with a cloud condensation nuclei counter (CCNC, DMT, Inc.) and a spectrometer for ice nucleation (SPIN, DMT, Inc.) at a variety of laboratory conditions. Our studies suggest that the composition of the organic-containing aerosols, as well as their morphology and phase state, jointly impact their cloud forming potential. The results highlight the importance of combining aerosol physical and chemical properties to accurately understand cloud particle formation processes and their implications on the climate.

  129. HET Seminar

    "Visualization Tools and the B-anomalies"

    Presented by German Valencia, Monash University

    Wednesday, May 29, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Sally Dawson

  130. Nuclear Physics Seminar

    "Examining hydrodynamical modelling of the QGP through dilepton radiation"

    Presented by Gojko Vujanovic, Wayne State University

    Tuesday, May 28, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    Recent viscous hydrodynamical studies at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC), show that bulk viscosity plays an important role in their phenomenological description. A temperature-dependent bulk viscosity in the hydrodynamical evolution of the medium can modify the development of the hydrodynamic momentum anisotropy differently in the high- and low-temperature regions. Thus, anisotropic flow coefficients of various particle species are affected differently depending where their surface of last scattering lies. For the case of hadronic observables, they are predominantly sensitive to low temperature regions, while electromagnetic radiation is emitted at all temperatures. Therefore, bulk viscosity should affect electromagnetic radiation differently than hadron emission. The effects of bulk viscosity on one of the electromagnetic probes, namely photons, has already been investigated. The same statement holds true for hadrons. The goal of this presentation is to study how dilepton production, the other source of electromagnetic radiation, gets modified owing to the presence of bulk viscosity at RHIC and LHC energies. With calculations at different collision energies, comparisons in the dilepton signal can be made and more robust conclusions regarding the role of bulk viscosity in high energy heavy-ion collisions can be drawn. Dilepton radiation from the dilute hadronic sector of the medium, which are radiated in addition to dileptons emitted during the hydrodynamical evolution, will also be included to ascertain whether interesting dynamics induced by bulk viscosity may have observable consequences. To complete that investigation, particular attention will be given to how the $\rho(770)$ meson, and its subsequent dilepton decay, is calculated at the end of the hydrodynamical simulation.

  131. NT/RIKEN Seminar

    "Pieces of the Puzzle: Reaching QCD on Quantum Computers"

    Presented by Henry Lamm, UMD

    Friday, May 24, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    The advent of quantum computing for scientific research presents the possibility of calculating time-dependent observables like viscosity and parton distributions from QCD. In order to utilize this new tool, a number of theoretical and practical issues must be addressed related to efficiently digitize, initialize, propagate, and evaluate quantum field theory. In this talk, I will discuss a number of projects being undertaken by the NuQS collaboration to realize calculations on NISQ era and beyond quantum computers.

  132. HET Lunch Discussion

    "Partial Neutrino Decay Resolves IceCube's Track and Cascade Tension"

    Presented by Peter Denton, BNL

    Friday, May 24, 2019, 12:15 pm
    Building 510, Room 2-160

  133. CFNS Seminar

    "Effect of non-eikonal corrections on two particle correlations"

    Presented by Tolga Altinoluk, National Centre for Nuclear Research, Warsaw, Poland

    Thursday, May 23, 2019, 4 pm
    Building 510, CFNS Room 2-38

    Hosted by: Andrey Tarasov

    We will discuss the non-eikonal effects on gluon production in pA collisions that originate from the finite longitudinal width of the target. We will then consider the dilute target limit, and discuss the single and double inclusive gluon production cross section in pp collisions. We will show that non-eikonal corrections break the accidental symmetry of the CGC and give rise to non-vanishing odd azimuthal harmonics.

  134. Condensed-Matter Physics & Materials Science Seminar

    "In situ imaging of gold nanocrystals during the CO oxidation reaction studied by Bragg Coherent Diffraction Imaging"

    Presented by Ana Flavia Suzana, Brazilian Association of Synchrotron Light Technology-ABTLUS, Brazil

    Thursday, May 23, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Ian Robinson

    The fundamental aim of heterogeneous catalysis research is to understand mechanisms at the nanoparticle level, and then to design and synthesize catalysts with desired active sites. In this regard, the in situ/operando characterization of defects is crucial as they are preferential catalytic sites for the reaction occurrence. In this seminar I will talk about the main part of the work developed during my PhD: the investigation of the morphology and structure evolution of gold nano-catalysts supported on titanium dioxide. Those catalytic materials were evaluated for the model CO oxidation reaction, chosen for its environmental relevance and "simplicity" to be reproducible within our X-ray imaging study. We used the Bragg Coherent Diffraction Imaging technique to follow in situ the 3D morphology changes under catalytic reaction conditions. We correlated the 3D displacement field and strain distribution of the gold nanoparticles to the catalytic properties of the material. In particular, for a 120 nm gold nanoparticle, we quantified under working conditions the adsorbate-induced surface stress on the gold nanocrystal, which leads to restructuration and defects identified as a nanotwin network.

  135. RIKEN Lunch Seminar

    "Complex saddle points of path integrals"

    Presented by Semeon Valgushev, BNL

    Thursday, May 23, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    In this talk, we discuss the physical role of complex saddle points of path integrals. In the first case study, we analyze saddle point structure of two-dimensional lattice gauge theory represented as Gross-Witten-Wadia unitary matrix model. We find that non-perturbative physics in the strong coupling phase can be understood in terms of new family of complex saddle points those properties are connected to resurgent structure of the 1/N expansion. In the second case study, we discuss the sign problem in fermionic systems at finite density and the possibility to alleviate it with the help of defomations of integration contour into complex space on the example of two-dimensional Hubbard model.

  136. Chemistry Department Seminar

    "Designing Dopants to Shield Anion Electrostatics in Doped Conjugated Polymers to Obtain Highly Mobile and Delocalized Carriers"

    Presented by Taylor Aubry, UCLA

    Thursday, May 23, 2019, 11 am
    Room 300, 3rd Floor - Chemistry Bldg. 555

    Hosted by: Matthew Bird

    Doping conjugated polymers is an effective way to tune their electronic properties for thin-film electronics applications. Chemical doping of semiconducting polymers involves the introduction of a strong electron acceptor or donor molecule that can undergo charge transfer (CT) with the polymer. The CT reaction creates electrical carriers on the polymer chain (usually positive polarons a.k.a. holes) while the dopant molecules remain in the film as counterions. Undesirably, strong electrostatic attraction from the anions of most dopants will localize the polarons and reduce their mobility. We employ a new strategy utilizing substituted icosahedral dodecaborane (DDB) clusters as molecular dopants for conjugated polymers. DDBs provide a unique system in which the redox potential of the dopant can be rationally tuned via modification of the substituents without significant change to the size or shape of the dopant molecule. These clusters allow us to disentangle the effects of energetic offset on the production of free and trapped carriers in DDB-doped poly-3-hexylthiophene (P3HT) films. We find that by designing our cluster to have a high redox potential and steric protection of the core-localized electron density, highly delocalized polarons with mobilities equivalent to films doped with no anions present are obtained.1 P3HT films doped with these boron clusters have conductivities and polaron mobilities roughly an order of magnitude higher than films doped with conventional small-molecule dopants such as 2,3,5,6-tetrafluoro-7,7,8,8- tetracyanoquinodimethane (F4TCNQ). The spectral shape of the IR-region absorption for our DDB-doped polymer film closely matches the calculated theoretical spectrum for the anion at infinite distance from the polaron.2 We therefore conclude that these DDB clusters are able to effectively spatially separate the counterion. Moreover, nearly all DDB-produced carriers are free, while it has been shown that small m

  137. C-AD Accelerator Physics Seminar

    "High-Level Software Development for the CLARA FEL Test Facility"

    Presented by Dr. James Jones, Daresbury Laboratory

    Wednesday, May 22, 2019, 3 pm
    Bldg. 911B, Second Floor, Large Conf. Rm., Rm. A2

    Hosted by: Steve Peggs

    CLARA is a low-energy test facility for advanced FEL physics and beam-driven novel acceleration techniques. As part of the facility we have planned for an advanced integrated system for high-level software development and online-model based on C++ and python interfaces. An overview of the CLARA facility and recent experimental results will be presented along with a description and current status of the HLS middle-layer and online-model. Future plans for CLARA will also be presented.

  138. Nuclear Physics Seminar

    "Future opportunities for a small-system scan at RHIC"

    Presented by Jiangyong Jia

    Tuesday, May 21, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    The observation of multi-particle azimuthal correlations in high-energy small-system collisions has led to intense debate on its physical origin between two competing theoretical scenarios: one based on initial-state intrinsic momentum anisotropy (ISM), the other based on final-state collective response to the collision geometry (FSM). To complement the previous scan of asymmetric collision systems (p+Au, d+Au and He+Au), we propose a scan of small symmetric collision systems at RHIC, such as C+C, O+O, Al+Al and Ar+Ar at sqrt{s_NN} = 0.2 TeV, to further disentangle contributions from these two scenarios. These symmetric small systems have the advantage of providing access to geometries driven by the average shape of the nuclear overlap, compared to fluctuation-dominant geometries in asymmetric systems. A transport model is employed to investigate the expected geometry response in the FSM scenario. Different trends of elliptic flow with increasing charge particle multiplicity are observed between symmetric and asymmetric systems, while triangular flow appears to show a similar behavior. Furthermore, a comparison of O+O collisions at sqrt{s_NN} = 0.2 TeV and at sqrt{s_NN} =2.76−7 TeV, as proposed at the LHC, provides a unique opportunity to disentangle the collision geometry effects at nucleon level from those arising from subnucleon fluctuations.

  139. HET Lunch Discussion

    "Update on Double Higgs Production"

    Presented by Sally Dawson, BNL

    Friday, May 17, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  140. NSLS-II Friday Lunchtime Seminar

    "MAXPD: Multi-Anvil X-ray Powder Diffraction — COMPRES Partner User Program for High Pressure Studies at 28-ID-2-D"

    Presented by Matthew L. Whitaker, Stony Brook University

    Friday, May 17, 2019, 12 pm
    NSLS-II Bldg. 743 Room 156

    Hosted by: Ignace Jarrige

    MAXPD is the downstream endstation of XPD, an insertion device beamline at Sector 28 (28-ID-2-D) of NSLS-II. The MAXPD endstation and General User Program are sponsored by the COnsortium for Materials Properties Research in Earth Sciences (COMPRES). MAXPD has an 1100-ton hydraulic press installed, which is equipped with a unique DT-25 pressure module that can be swapped out for a more standard D-DIA module as desired. MAXPD makes use of the world-class monochromatic beam available at XPD (usually ~67 keV), with which we collect both angular dispersive X-ray diffraction data and X-radiographic imaging. The first General User experiments took place in March 2018. Final Science Commissioning beamtime took place in August of last year, and the full General User program for MAXPD began in the 2018-3 cycle. In this seminar, I will give an overview of the science drivers behind the development of the endstation, some of its unique capabilities, some representative results from recent experiments conducted over the last two cycles at MAXPD, and where we are looking to go as we look to the future.

  141. NT/RIKEN Seminar

    "The non-equilibrium attractor: Beyond hydrodynamics"

    Presented by Michael Strickland, Kent State University

    Friday, May 10, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

  142. HET Seminar - CANCELLED

    Presented by Nirmal Raj, Triumf

    Friday, May 10, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Gopolang Mohlabeng

  143. RIKEN Lunch Seminar

    "Electric dipole moments in the era of the LHC"

    Presented by Jordy de Vries, University of Massachusetts Amherst, Riken BNL

    Thursday, May 9, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    The search for an understanding of fundamental particle physics that goes beyond the Standard Model (SM) has grown into a worldwide titanic effort. Low-energy precision experiments are complementary to collider searches and, in certain cases, can even probe higher energy scales directly. However, the interpretation of a potential signal, or lack thereof, is complicated because of the non-perturbative nature of low-energy QCD. I will use the search for electric dipole moments (EDMs), which aims to discover beyond-the-SM CP violation, as an example to illustrate these difficulties and how they can be overcome by combining (chiral) effective field theory and lattice QCD. I discuss how EDM experiments involving complex systems like nucleons, nuclei, atoms, and molecules constrain possible CP-violating interactions involving the Higgs boson, how these constraints match up to direct LHC searches, and the relevance of and strategies for the improvement of the hadronic and nuclear theory.

  144. Environmental & Climate Sciences Department Seminar

    "High-throughput field phenotyping of photosynthetic capacity using hyperspectral imaging"

    Presented by Katherine Meacham, Univ. of Illinois

    Thursday, May 9, 2019, 11 am
    Large Conference Room, Bldg. 490

    Hosted by: Angie Burnett

    Improved photosynthetic rates have been shown to increase crop biomass, making improved photosynthesis a focus for driving future grain yield increases. Improving the photosynthetic pathway offers opportunity to meet food demand, but requires high throughput measurement techniques to detect photosynthetic variation in natural accessions and transgenically improved plants. Gas exchange measurements are the most widely used method of measuring photosynthesis in field trials but this process is laborious and slow, and requires further modeling to estimate meaningful parameters and to upscale to the plot or canopy level. In field trials of tobacco with modifications made to the photosynthetic pathway, we infer key photosynthetic parameters from imaging spectroscopy using a partial least squares regression technique. We used two hyperspectral cameras with resolution 2.1nm in the visible range and 4.9nm in the NIR. Ground-truth measurements from leaf-level photosynthetic gas exchange, full-range (400-2500nm) hyperspectral reflectance and extracted pigments support the model. The results from a range of wild-type cultivars and from genetically modified germplasm offer a high-throughput screening tool for crop trials aimed at identifying increased photosynthetic capacity.

  145. Physics Colloquium

    "Mu*STAR Accelerator-Driven Subcritical Molten-Salt All-Purpose non-Nuclear Reactor"

    Presented by Rolland Johnson, Muons Inc.

    Tuesday, May 7, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: George Redlinger

    The Mu*STAR BHAG[1] is: To make superconducting RF accelerators so powerful and efficient that they make enough neutrons to produce nuclear energy for electricity or for process heat at less cost than from wind, solar, or natural gas, without weapons proliferation legacies of enrichment and chemical reprocessing, by burning unwanted nuclear materials. The arguments are presented to support that such a goal is possible in the near future. [1] BHAG: Big Hairy Audacious Goal, from "Built to Last: Successful Habits of Visionary Companies" by Jim Collins and Jerry Porras (2004)

  146. NT/RIKEN Seminar

    "Relativistic Hydrodynamic Fluctuations"

    Presented by Gokce Basar, UiC

    Friday, May 3, 2019, 2 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Niklas Mueller

    We present a general systematic formalism for describing dynamics of fluctuations in an arbitrary relativistic hydrodynamic flow, including their feedback (known as long-time hydrodynamic tails) in a deterministic way. The fluctuations are described by two-point equal-time correlation functions. We introduce a definition of equal time in a situation where the local rest frame is determined by the local flow velocity, and a method of taking derivatives and Wigner transforms of such equal-time correlation functions, which we call confluent. The Wigner functions satisfy evolution equations that describes the relaxation of the out-of-equilibrium modes. We find that the equations for confluent Wigner functions nontrivially match with the kinetic equation for phonons propagating on an arbitrary background, including relativistic inertial and Coriolis forces due to acceleration and vorticity of the flow. We also describe the procedure of renormalization of short-distance singularities which eliminates cutoff dependence, allowing efficient numerical implementation of these equations.

  147. HET Lunch Discussion

    "Ultra-Light Boson Dark Matter and Event Horizon Telescope Observations of M87"

    Presented by Hooman Davoudiasl

    Friday, May 3, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Aaron Meyer

  148. Special Particle Physics Seminar

    "Observation of CP violation in charm decays"

    Presented by Angelo Di Canto, BNL

    Friday, May 3, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Chao Zhang

    The existence of CP violation in the decays of strange and beauty mesons is well established experimentally by numerous measurements. By contrast, CP violation in the decays of charm particles has so far escaped observation. This seminar reports on the first observation of CP violation in charm decays thought the measurement of the difference between the time-integrated CP asymmetries in D0 -> K- K+ and D0 -> pi- pi+ decays. The measurement has been performed using the full data set of proton-proton collisions collected by LHCb in 2011-2018, which corresponds to an integrated luminosity of 9fb-1. In addition, a brief overview of recent measurements of mixing and mixing-induced CP violation in charm mesons at LHCb is also presented.

  149. Particle Physics Seminar

    "Dark Matter Searches with the ATLAS Detector at the LHC"

    Presented by Arely Cortes Gonzalez, CERN

    Thursday, May 2, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Michael Begel

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC proton-proton collisions. The results of these searches on the 13 TeV data, their interpretation, and the possible evolution of the search program will be presented.

  150. RIKEN Lunch Seminar

    "The Chiral Qubit: quantum computing with chiral anomaly"

    Presented by Dmitri Kharzeev, Stony Brook University and BNL

    Thursday, May 2, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    The quantum chiral anomaly enables a nearly dissipationless current in the presence of chirality imbalance and magnetic field – this is the Chiral Magnetic Effect (CME), observed recently in Dirac and Weyl semimetals. We propose to utilize the CME for the design of qubits potentially capable of operating at THz frequency, room temperature, and the coherence time to gate time ratio of about 10^4 . The proposed "Chiral Qubit" is a micron-scale ring made of a Weyl or Dirac semimetal, with the |0> and |1> quantum states corresponding to the symmetric and antisymmetric superpositions of quantum states describing chiral fermions circulating along the ring clockwise and counter-clockwise. A fractional magnetic flux through the ring induces a quantum superposition of the |0> and |1> quantum states. The entanglement of qubits can be implemented through the near-field THz frequency electromagnetic fields.

  151. HET Seminar

    "Unification and Precision Measurements"

    Presented by James Wells, University of Michigan

    Wednesday, May 1, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Sally Dawson

  152. Nuclear Physics Seminar

    "Reviewing the AGS Heavy Ion Program and Looking Forward to the Fixed-Target Program at STAR"

    Presented by Prof. Daniel Cebra, UC Davis

    Tuesday, April 30, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    In the 1980's and 90's the AGS initiated a heavy-ion beam program with both silicon and gold beams. A suite of dedicated experiments established the systematics for production of light charged particles, strangeness, light nuclei, and anti-particles, as well as systematics for flow and femtoscopy. Those experiments established the design of the RHIC detectors and trained the personnel who would become leaders in the RHIC program. Recently, there has been renewed interest in the energy region covered by the AGS heavy-ion program. New facilities are being built Germany and Russia and proposed in Japan and China. And a conclusion of the first beam energy scan at RHIC was that it would be necessary to revisit the AGS energy range by installing a fixed-target within the STAR experiment. This talk will review key results from the AGS heavy-ion program, and those to results from the STAR fixed-target test runs, and outline the proposed physics program.

  153. Particle Physics Seminar

    ""Measure what is measurable and make measurable what is not so - Uncover new physics with bosons at the LHC and upgrades of the CMS detector to maximize the discovery potential""

    Presented by Mia Liu, FNAL

    Monday, April 29, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    The Standard Model describes the building blocks of matter and their interactions. It has been tested extensively with experimental data and found to be incredibly successful in describing nature. Discovering the Higgs boson in 2012 at the LHC completed the picture of the SM. The LHC is at the forefront of directly searching for new physics which is Beyond-Standard-Model (BSM), and I will discuss searches for supersymmetric partners of the electroweak bosons, as well as measurement of an extremely rare process with three WWW bosons as stringent tests of the SM. I will also discuss the instrumentation which enables such studies. The discussion includes the recently completed CMS Phase-1 pixel upgrade, as well as the R&D studies towards solving the future trigger and computing challenges using innovative machine learning approaches in future high energy experiments.

  154. Particle Physics Seminar

    "Searching for Higgs Pair Production at the LHC"

    Presented by Elizabeth Brost, Northern Illinois University

    Thursday, April 25, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    Since the discovery of the Higgs boson in 2012, the particle physics community at the Large Hadron Collider (LHC) has been hard at work studying its properties, and comparing them to the predictions of the Standard Model (SM), including the couplings of the Higgs boson to itself and to other particles. The Higgs self-coupling can be measured directly in the Higgs pair production process, and will provide insight into the nature of electroweak symmetry breaking. In the SM, the di-Higgs cross section in proton-proton collisions is very small. However, a wide range of beyond-the-SM models predict enhancements to the di-Higgs production rate, which motivates searching for di-Higgs production even now, when the SM cross section is too small to measure in the current LHC dataset. Looking forward, the LHC Run 3 and HL-LHC will bring a new set of challenges, including more proton-proton collisions per bunch crossing. Extracting rare physics signatures from this busier environment will be difficult for the current ATLAS trigger system. In this talk, I will present current and future ATLAS searches for hh production using a variety of final states, and discuss the use of future track triggers in upgrades to the ATLAS trigger system.

  155. RIKEN Lunch Seminar

    "Partons from the Path-Integral Formalism of the Hadronic Tensor"

    Presented by Keh-Fei Liu, University of Kentucky

    Thursday, April 25, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

  156. NT/RIKEN Seminar

    "Parton distributions in Euclidean space"

    Presented by Anatoly Radyushkin, ODU/JLab

    Friday, April 19, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    To extract parton distributions from the lattice simulations, one needs to consider matrix elements M(z,p) of bilocal correlators of parton fields [generically written as φ(0)φ(z)] at spacelike separations z=(0,0,0,z_3). A transition to PDFs may be proceeded by taking a Fourier transform either with respect to z_3 for fixed p_3 (which gives X. Ji's quasi-PDFs), or with respect to the Lorentz-invariant variable ν=-(zp) for fixed values of another Lorentz invariant z^2 [which results in pseudo-PDFs].These functions are interesting on their own, and I will discuss, in the continuum case, their general properties, the connection between the two types of functions, and their relation with the usual light-cone PDFs. I will outline the algorithm of extracting the PDFs through the use of the so-called "reduced Ioffe-time distributions",and illustrate this pseudo-PDF-oriented approach on the example of exploratory lattice simulations performed by Orginos et al.

  157. Particle Physics Seminar

    "Dissecting the Higgs boson with ATLAS and leptons"

    Presented by Quentin Buat, CERN

    Thursday, April 18, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    Using data taken during the first years of the LHC Run2, ATLAS has firmly established the coupling of the Higgs boson to the tau lepton, thus directly confirming the existence of leptonic Yukawa interactions. In this talk, I will present the cross-section measurements performed by ATLAS in the di-tau final state with a partial Run2 dataset and discuss the prospects of the analysis with the full Run2 dataset and beyond. I will also discuss the status of the search for the muonic Yukawa interaction.

  158. Condensed-Matter Physics & Materials Science Seminar

    ""Superconductivity and magnetism at ferroelectric critical point""

    Presented by Alexander Balatsky, UConn Nordita

    Thursday, April 18, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Ilya Drozdov

    It is well established that multiple entangled orders emerge in quantum materials at criticality: eg superconducting states develop in the vicinity of magnetic phases. I will make the case that similar phenomena occur in quantum paraelectrics. Recent observations of strain and O18 isotope substitution in doped STO support the view of the key role critical ferroelectric fluctuations play in producing superconductivity. Looking beyond superconductivity, I will illustrate how quantum ferroelectric fluctuations can induce magnetic fluctuations due to recently proposed phenomenon of dynamic multiferroicity.

  159. Environmental & Climate Sciences Department Seminar

    "Using High-Resolution Observations to Improve a Low-Resolution Global Climate Model"

    Presented by Greg Elsaesser, NASA GISS

    Thursday, April 18, 2019, 11 am
    Large Conference Room, Bldg. 490

    Hosted by: Mike Jensen

    This talk will begin with an overview of recent development in the representation of deep convection in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). Global satellite remote sensing products are important references for continual GCM development and evaluation, but such products often provide data at coarse temporal and/or spatial resolutions, thus making it difficult to conceptualize and evaluate "process representations" in a GCM. I will discuss the various approaches I am taking to average global satellite retrievals in new ways, coincident with efforts to use new DOE/ARM observations, to derive composite high-resolution evolutions of deep convection and the nearby environment. These depictions will not only inform future development, but they are also crucial for ensuring that recent improved mean-state representations are not the result of errors cancelling at the process level.

  160. HET Seminar

    "Cores in Dwarf Galaxies from Fermi Repulsion"

    Presented by James Unwin, University of Illinois, Chicago

    Wednesday, April 17, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Sally Dawson

  161. Nuclear Physics Seminar

    "Recent Results from COMPASS"

    Presented by Ana-Sofia Nunes, BNL

    Tuesday, April 16, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Oleg Eyser

    COMPASS is a fixed target experiment at the CERN SPS that has been collecting data since 2002 and was already approved to run in 2021. It uses unique beams of naturally polarized muons and unpolarized hadrons of 160, 190 or 200 GeV impinging on polarized and unpolarized proton, isoscalar or heavy targets to study fundamental aspects of QCD, as the structure of nucleons, hadron spectroscopy and the pion polarizability. The collected data allow measurements on the spin structure of nucleons, not only in the collinear approximation but also on nucleon tomography, either via deeply virtual Compton scattering (DVCS) and deeply virtual meson production (DVMP) which give access to generalized parton distributions (GPDs), or via semi-inclusive deep inelastic scattering (SIDIS) and polarized Drell-Yan (DY) which give access to transverse-momentum dependent parton distribution functions (TMDs). Moreover, hadron multiplicities extracted from semi-inclusive deep inelastic scattering data can be used as input for the computation of fragmentation functions (FFs) in QCD fits. A selection of the latest published and preliminary results of COMPASS in the scope of the study of the structure of nucleons and the hadronization of quarks will be presented.

  162. Condensed Matter Physics and Materials Science - The Myron Strongin Seminar

    "Disappearance of Superconductivity Due to Vanishing Coupling in the Overdoped High-Temperature Cuprate Superconductors"

    Presented by Tonica Valla, BNL

    Monday, April 15, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Weiguo Yin and Jing Tao

    In high-temperature cuprate superconductors, superconductivity is accompanied by a "plethora of orders", and phenomena that may compete, or cooperate with superconductivity, but which certainly complicate our understanding of origins of superconductivity in these materials. While prominent in the underdoped regime, these orders are known to significantly weaken or completely vanish with overdoping. Here, we approach the superconducting phase from the more conventional highly overdoped side. We present angle-resolved photoemission spectroscopy (ARPES) studies of Bi2Sr2CaCu2O8+d (Bi2212) single crystals cleaved and annealed in ozone to increase the doping all the way to the metallic, non-superconducting phase. We show that the mass renormalization in the antinodal region of the Fermi surface, associated with the structure in the quasiparticle self-energy, that possibly reflects the pairing interaction, monotonically weakens with increasing doping and completely disappears precisely where superconductivity disappears. This is the direct evidence that in the overdoped regime, superconductivity is determined by the coupling strength. A strong doping dependence and an abrupt disappearance above the transition temperature (Tc) eliminate the conventional phononic mechanism of the observed mass renormalization and identify the onset of spin-fluctuations as its likely origin.

  163. Physics Colloquium

    "Future Circular Collider"

    Presented by Michael Benedikt, CERN

    Friday, April 12, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: George Redlinger & Maria Chamizo Llatas

    The global Future Circular Collider Study, launched in 2014 by CERN as host institute, has published its conceptual design report by the end of 2018, as input to the update of the European Strategy for Particle Physics. Today, a staged Future Circular Collider (FCC), consisting of a luminosity-frontier highest-energy electron-positron collider (FCC-ee) followed by an energy-frontier hadron collider (FCC-hh), promises the most far-reaching physics program for the post-LHC era. FCC-ee is a precision instrument to study the Z, W, Higgs and top particles, and o?ers unprecedented sensitivity to signs of new physics. Most of the FCC-ee infrastructure can later be reused for the subsequent hadron collider, FCC-hh. The FCC-hh provides proton-proton collisions at a centre-of-mass energy of 100 TeV and can directly produce new particles with masses of up to several tens of TeV. This collider will also measure the Higgs self-coupling and explore the dynamics of electroweak symmetry breaking. Heavy-ion collisions and ep collisions (FCC-eh) further contribute to the breadth of the overall FCC program. The integrated FCC infrastructure will serve the particle physics community through the end of the 21st century. This presentation will summarize the conceptual designs of FCC-ee and FCC-hh, covering the machine concepts, the R&D for key technologies, infrastructure planning, initial considerations for the experiments, and a possible implementation schedule.

  164. NT / RIKEN Seminar

    "A Complex Path Around the Sign Problem"

    Presented by Paolo Bedaque, U Maryland

    Friday, April 12, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    The famous "sign problem" is the main roadblock in the path to a Monte Carlo solution of QCD at finite densities and the study of real time dynamics. We review a recent developed approach to this problem based on deforming the domain of integration of the oath integral into complex field space. After discussing the math involved in the complex analysis of multidimensional spaces we will talk about the advantages/disadvantages of using Lefschetz thimbles, "learnifolds" and "optimized manifolds" as the alternative integration manifold as well as the algorithms that go with them. Several examples of lower dimensional field theories will be presented.

  165. HET Lunch Seminar

    "Highlights from EW Moriond 2019"

    Presented by Amarjit Soni, BNL

    Friday, April 12, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Aaron Meyer

  166. Particle Physics Seminar

    "Neutrino Interaction Modeling and Tuning"

    Presented by Libo Jiang, University of Pittsburgh

    Thursday, April 11, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    GENIE is a well-knows event generator provides the simulation of neutrino interactions, and performs a highly-developed global analysis of neutrino scattering. It handles all neutrinos and targets, and all processes relevant from MeV to PeV energy scales. I am going to present the modelling of neutrino interactions and results of tuning against experimental data.

  167. Condensed-Matter Physics & Materials Science Seminar

    "Tailoring electronic and thermal properties of bulk Cu26T2(Ge,Sn)6S32 colusite through defects engineering and functionalization of the conductive network"

    Presented by Emmanuel Guilmeau, CRISMAT Laboratory, Caen, France

    Thursday, April 11, 2019, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: Qiang Li

    A complete study of the structure and thermoelectric properties of colusite Cu26T2(Ge,Sn)6S32 (T = V, Cr, Mo, W) is presented. A brief introduction provides a state-of-theart/survey of thermoelectric sulfides, with a special focus on the structural features and transport properties relationship in Cu-based sulfides. In the first part of this presentation, we highlight the key role of the densification process on the formation of short-to-medium range structural defects in Cu26V2Sn6S32 [1]. A simple and powerful way to adjust carrier concentration combined with enhanced phonon scattering through point defects and disordered regions is described. By combining experiments with band structure and phonons calculations, we elucidate, for the first time, the underlying mechanisms at the origin of the intrinsically low thermal conductivity in colusite samples as well as the effect of S vacancies and antisite defects on the carrier concentration. In the second part, we demonstrate the spectacular role of the substitution of V5+ by hexavalent T6+ cations (Cr, Mo and W) on the electronic properties, leading to high power factors [2]. In particular, Cu26Cr2Ge6S32 shows a value of 1.53 mW m-1 K-2 at RT that reaches a maximum value of 1.94 mW m-1 K-2 at 700 K. The rationale is based on the concept of conductive "Cu-S" network, which in colusites corresponds to the more symmetric parent sphalerite structure. The interactions within the mixed octahedral-tetrahedral [TS4]Cu6 complexes are shown to be responsible for the outstanding electronic transport properties. [1] C. Bourgès et al., J. Amer. Chem. Soc. 140 (2018) 2186 [2] V. Pavan Kumar et al., Adv. Energy Mater. 9 (2019) 1803249

  168. Environmental & Climate Sciences Department Seminar

    "Simulating Mixed-Phase Clouds at High Latitudes: Model Evaluation, Improvement, and Interactions with Aerosol"

    Presented by Xiahong Liu, Univ. Wyoming

    Thursday, April 11, 2019, 11 am
    Large Conference Room, Bldg. 490

    Hosted by: Damao Zhang

    Mixed-phase clouds are frequently observed in the Arctic and Antarctic and over the Southern Ocean, and have important impacts on the surface energy budget and regional climate. Global climate models (GCMs), an important tool for studying the climate change still have large biases in simulating the mixed-phase cloud properties, including supercooled liquid amount and liquid and ice phase partitioning. In this talk, I will present our recent works on mixed-phase clouds: (1) improving the representations of subgrid mixing and partitioning between cloud liquid and ice in mixed-phase clouds in the DOE's Energy Exascale Earth System Model (E3SM). Model simulations are evaluated against observation data obtained in the DOE Atmospheric Radiation Measurement (ARM) Program's field campaigns and long-term ground-based multi-sensor measurements; and (2) investigating the effects of aerosols, including dust and sea spray aerosol, on mixed-phase clouds. We found that dust, as ice nucleating particles (INPs), induces a global net warming via its indirect effect on mixed-phase clouds with a predominant warming in the NH midlatitudes and a cooling in the Arctic. INP sources of sea spray aerosol vary with time and geographic location with the maximum contribution in the marine boundary layer over the Southern Ocean, where dust has a limited influence. Modeled INP concentrations are compared with observations from different campaigns (e.g., MARCUS, SOCRATES, CAPRICORN).

  169. Condensed-Matter Physics & Materials Science Seminar

    "Importance of electron interactions in understanding the photo-electron spectroscopy and the Weyl character of MoTe2"

    Presented by Niraj Aryal, Florida State University

    Thursday, April 11, 2019, 11 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Weiguo Yin

    Weyl semimetals are crystalline materials that host pairs of chiral Weyl Fermions (WFs) as low energy excitations. Such WFs act as sources and sinks of Berry curvature and can contribute to many exotic transport properties. Recently, inversion symmetry broken transition metal dichalcogenide materials like MoTe2 and WTe2 have been predicted to host type-II WFs by DFT calculations and ARPES experiments. However, quantum oscillation experiments (QOE) disagree with the DFT calculations thus raising doubt about the existence of Weyl physics in these materials [1]. In order to address this discrepancy, we studied the role of electron interactions in Td-MoTe2 by employing DFT where the onsite Coulomb repulsion (Hubbard U) for the Mo 4d states is included within the DFT+U scheme. We found that in addition to explaining the QOE, inclusion of electron interaction is needed to explain the light-polarization dependence measured by ARPES [2]. We also found that while the number of Weyl points (WPs) and their position in the Brillouin Zone change as a function of U, a pair of such WPs very close to the Fermi level survive the inclusion of these important corrections. Our calculations suggest that the Fermi surface of Td-MoTe2 is in the vicinity of a correlations-induced Lifshitz transition which can be probed experimentally. If time allows, I will also present briefly our study of the interface between topological insulator and non-topological materials which are important for band engineering and studying emergent fundamental phenomena. References [1] D. Rhodes, R. Schonemann, N. Aryal, Q.R. Zhou et al., Bulk Fermi surface of the Weyl type-II semimetallic candidate ?-MoTe2, Phys. Rev. B 96, 165134 (2017). [2] N. Aryal and E. Manousakis, Importance of electron correlations in understanding the photo-electron spectroscopy and the Weyl character of MoTe2, Phys. Rev. B 99, 035123 (2019).

  170. Particle Physics Seminar

    "The Search for the dark vector boson"

    Presented by Diallo Boye, BNL

    Wednesday, April 10, 2019, 4 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricolli

    Hidden sector or dark sector states appear in many extensions to the Standard Model, to provide a particle candidate for dark matter in universe or to explain astrophysical observations such the as positron excess observed in the cosmic radiation flux. A hidden or dark sector can be introduced with an additional U(1)d dark gauge symmetry. The discovery of the Higgs boson during Run 1 of the Large Hadron Collider opens a new and rich experimental program based on the Higgs Portal. This discovery route uses couplings to the dark sector at the Higgs level, which were not experimentally accessible before. These searches use the possible exotic decays: H -> Z Zd -> 4l and H -> Zd Zd -> 4l. Here Zd is a dark vector boson. We have experience of this search from the Run 1 period of the LHC using the ATLAS detector at CERN. These results showed (tantalizingly) two signal events where none were expected, so that in the strict criteria of High Energy Physics, the result was not yet statistically significant. The Run 1 analysis for 8 TeV collision energy is further developed in Run 2 with 13 TeV collision energy, to expand the search area, take advantage of higher statistics, a higher Higgs production cross section, and substantially better performance of the ATLAS detector. The analysis is extended to search for heavier scalars decaying to dark vector bosons.

  171. CFN Special Colloquium

    "Discovering novel materials, and novel physics, with first-principles"

    Presented by Nicola Marzari, École Polytechnique Fédérale de Lausanne (EPFL)

    Wednesday, April 10, 2019, 3:30 pm
    CFN, Bldg 735, 2nd Floor Seminar Room

    Hosted by: Mark Hybertsen

    First-principles simulations are one of the greatest accelerators in the world of science and technology. To provide some context, one could mention that 30,000 papers on density-functional theory are published every year; that 12 of these are in the top-100 most-cited papers in the entire history of science, engineering, and medicine; or that the doubling in capacity every 14 months has been the underwriter of computational science for the past 30 years. I'll highlight some of my own scientific, structural, and policy perspectives on this, taking as a case study the discovery of novel two-dimensional materials and of their properties and applications. I'll then argue how the need to calculate materials properties often forces a critical evaluation of some stalwarts of condensed-matter physics: in this case, learning that phonons are just a high-temperature approximation for heat carriers, or discovering that the Boltzmann transport equation can be generalized to describe simultaneously the propagation and interference of phonon wavepackets, thus unifying the description of thermal transport in crystals and glasses. Bio: Nicola Marzari holds the chair of Theory and Simulation of Materials at the École Polytechnique Fédérale de Lausanne, where he is also the director of the Swiss National Centre for Competence in Research MARVEL, on Computational Design and Discovery of Novel Materials (2014-26). Previous tenured appointment include the Toyota Chair for Materials Engineering at the Massachusetts Institute of Technology and the first Statutory (University) Chair of Materials Modelling at the University of Oxford, where he was also the director of the Materials Modelling Laboratory. He is the current chairman of the Psi-k Charity and Board of Trustees, and holder of an Excellence Chair at the University of Bremen.

  172. BWIS Sponsored Event

    "How Beauty Leads Physics Astray"

    Presented by Sabine Hossenfelder, Frankfurt Institute for Advanced Studies, Germany

    Tuesday, April 9, 2019, 5 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Vivian Stojanoff

    To develop fundamentally new laws of nature, theoretical physicists often rely on arguments from beauty. Simplicity and naturalness in particular have been strongly influential guides in the foundations of physics ever since the development of the standard model of particle physics. In this lecture I argue that arguments from beauty have led the field into a dead end and discuss what can be done about it.

  173. Physics Colloquium

    "Do Women Get Fewer Citations Than Men?"

    Presented by Sabine Hossenfelder, Frankfurt Institute for Advanced Studies, Germany

    Tuesday, April 9, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Berndt Mueller

    I will talk about the results of a citation analysis on publication data from the arXiv and inspire in which we explored gender differences. I will further explain how we can use bibliometric analysis to improve the efficiency of knowledge discovery.

  174. Condensed-Matter Physics & Materials Science Seminar

    ""Charge and lattice entanglement in quantum materials observed by TEM: Tb2Cu0.83Pd0.17O4 and Cu2S""

    Presented by Wei Wang, Institute of Physics, Chinese Academy of Sciences, Beijing

    Tuesday, April 9, 2019, 3 pm
    Bldg. 480, Conference Room

    Hosted by: Jing Tao

    Plenty of physical properties in strongly electron correlated system are thought to arise from intricate interplay among charge, spin, orbital and lattice. Understanding the structural origin of these functionalities, such as superconductivity, multiferroics, etc, has attracted tremendous attention for decades. Using electron diffraction technique in TEM, we recently studied the modulated structure in Tb2Cu0.83Pd0.17O4 compound and phase transition in Cu2S. After a brief introduction of TEM techniques that I have employed for the study, I will report observations of electron-beam-induced smectic-nematic phase transitions in Tb2Cu0.83Pd0.17O4. Electron diffraction and HAADF-STEM images indicate a superlattice structure with Cu/Pd displacements perpendicular to the Cu-O plane on Cu sites. In addition, the superlattice modulation undergoes a reversible smectic-nematic phase transition under the electron beam illumination. Our in situ TEM results imply that the modulated structure root in a charge ordering at Cu sites. Then I will switch to an on-going study of the Cu2S at high temperature. Previous reports show that the crystal structural of Cu2S can be manipulated by electron beam illumination, suggesting a strong coupling between charge and lattice. To explore the structural phase transition and to have a better understanding of superionic behavior in this material, we focus on diffuse scattering in the electron diffraction patterns obtained at high temperatures, which results from short range ordering of Cu atoms. Electron diffraction tomographyic data were collected in order to reconstruct the real-space structure for Cu atoms. Preliminary results will be shown followed by a discussion with early-stage interpretations.

  175. High Energy Theory Seminar

    "Dark Matter — or What?"

    Presented by Sabine Hossenfelder, Frankfurt Institute for Advanced Studies, Germany

    Tuesday, April 9, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Berndt Mueller

    In this talk I will explain (a) what observations speak for the hypothesis of dark matter, (b) what observations speak for the hypothesis of modified gravity, and (c) why it is a mistake to insist that either hypothesis on its own must explain all the available data. The right explanation, I will argue, is instead a suitable combination of dark matter and modified gravity, which can be realized by the idea that dark matter has a super fluid phase.

  176. NT / RIKEN seminar

    "The Color Glass Condensate density matrix: Lindblad evolution, entanglement entropy and Wigner functional"

    Presented by Alex Kovner, U Connecticut

    Friday, April 5, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    We introduce the notion of the Color Glass Condensate (CGC) density matrix ρ̂ . This generalizes the concept of probability density for the distribution of the color charges in the hadronic wave function and is consistent with understanding the CGC as an effective theory after integration of part of the hadronic degrees of freedom. We derive the evolution equations for the density matrix and show that it has the celebrated Kossakowsky-Lindblad form describing the non-unitary evolution of the density matrix of an open system. Additionally, we consider the dilute limit and demonstrate that, at large rapidity, the entanglement entropy of the density matrix grows linearly with rapidity according to dSe/dy=γ, where γ is the leading BFKL eigenvalue. We also discuss the evolution of ρ̂ in the saturated regime and relate it to the Levin-Tuchin law and find that the entropy again grows linearly with rapidity, but at a slower rate. Finally we introduce the Wigner functional derived from this density matrix and discuss how it can be used to determine the distribution of color currents, which may be instrumental in understanding dynamical features of QCD at high energy.

  177. HET Lunch Discussion

    "Quantum Simulation of Gauge Theories"

    Presented by Taku Izubuchi, BNL HET

    Friday, April 5, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Aaron Meyer

  178. Physics Colloquium

    "Views and news on chiral transport"

    Presented by Karl Landsteiner

    Thursday, April 4, 2019, 4 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Niklas Mueller

    I present an effective action approach to chiral transport. Chiral Magnetic and Chiral Vortical Effect are treated in exact parallel and result in the known dependence on chemical potential and temperature. The approach sheds light on some of the more obscure features of chiral transport such as covariant and consistent anomalies and a seeming mismatch of the derivative expansion. As a related application I will comment on the thermal Hall effect on 2D topological insulators. Then I discuss a new example of chiral transport: anomalous Hall viscosity at the quantum critical point of the Weyl-semimetal/insulator transition. Results from a holographic model will be compared to a weak coupling quantum field theory analysis.

  179. Particle Physics Seminar

    "Flavour physics with dynamical chiral fermions"

    Presented by Peter Boyle, University of Edinburgh

    Thursday, April 4, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Hooman Davoudiasl

    I discuss recent simulations with dynamical chiral fermions. In particular I focus on neutral kaon mixing amplitudes in and beyond the standard model, calculated for the first time with physical quark masses. A puzzle in the non-perturbative renormalisation of the BSM operators is resolved. The prospects for extension of this calculation to B-meson mixing amplitudes is discussed, and initial results for the standard model B mixing amplitudes presented. Prospects for future calculations over the next five years are considered.

  180. Physics Colloquium

    "Prospects on nucleon tomography"

    Presented by Herve Moutard, Université Paris-Saclay

    Wednesday, April 3, 2019, 3 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Salvatore Fazio

    Much attention has been devoted in recent years to the three-dimensional quark and gluon structure of the nucleon. In particular the concept of Generalized Parton Distributions promises an understanding of the generation of the charge, spin, and energy-momentum structure of the nucleon by its fundamental constituents. Forthcoming measurements with unprecedented accuracy at Jefferson Lab and at a future electron-ion collider will presumably challenge our quantitative description of the three-dimensional structure of hadrons. To fully exploit these future experimental data, new tools and models are currently being developed. After a brief reminder of what make Generalized Parton Distributions a unique tool to understand the nucleon structure, we will discuss the constraints provided by the existing measurements and review recent theoretical developments. We will explain why these developments naturally fit in a versatile software framework, named PARTONS, dedicated to the phenomenology and theory of GPDs.

  181. HET Seminar

    "Lattice QCD Inputs For Neutrino-Nucleon Scattering"

    Presented by Raza Sufian, Jefferson Lab

    Wednesday, April 3, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Aaron Meyer

    We present lattice QCD calculation of nucleon axial and electromagnetic (up, down, strange and charm) form factors and discuss their impact on the understanding of neutrino-nucleon scattering. In a phenomenological study, using a combination of lattice QCD calculation of the strange-quark form factors, and MiniBooNE experimental neutrino scattering differential cross-section data in a limited kinematic regime, we obtain a precise determination of the weak axial form factor and of the corresponding neutral current weak-axial charge. We further show how a direct lattice QCD determination of neutral current weak-axial charge enable us to predict the BNL E734 data for the neutrino neutral current scattering differential cross section to high precision. We discuss how a direct lattice QCD calculation of neutrino-nucleon scattering cross sections can help to isolate nuclear effects in the neutrino-nucleus scattering.

  182. Condensed-Matter Physics & Materials Science Seminar

    "Topological semimetals predicted from first-principles and theoretical approaches"

    Presented by Jiawei Ruan, School of Physics, Nanjing University, China

    Monday, April 1, 2019, 11 am
    Building 734, Seminar Room 201

    Hosted by: Weiguo Yin

    Weyl semimetals are new states of matter which feature novel Fermi arcs and exotic transport phenomena. Based on first-principles calculations, we report that the HgTe-class materials [1] as well as four chalcopyrites [2] are ideal Weyl semimetals, having largely separated Weyl points and uncovered Fermi arcs that are amenable to experimental detections. We also construct a minimal effective model to capture the low-energy physics of this class of Weyl semimetals. Our discovery is a major step toward a perfect playground of intriguing Weyl semimetals and potential applications for low-power and high-speed electronics. Besides the ideal Weyl semimetals, I will talk about Non-Hermitian nodal-line semimetals with an anomalous bulk-boundary correspondence [3]. I will also present recent results of saddle surface in topological materials and a new method to construct a simplified tight-binding model based on group theory analysis. [1] JR et al., Nature communications 7, 11136 (2016). [2] JR et al., PRL 116, 226801 (2016). [3] H. Wang, JR, and H. Zhang, PRB 99, 075130 (2019).

  183. NT/RIKEN Seminar

    "Toward a unified description of both low and high ptparticle production in high energy collisions"

    Presented by Jamal Jalilian-Marian, Baruch College, City University of New York

    Friday, March 29, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    Inclusive particle production at high p_t is successfully described by perturbative QCD using collinear factorization formalism with DGLAP evolution of the parton distribution functions. This formalism breaks down at small Bjorken x (high energy) due to high gluon density (gluon saturation) effects. The Color Glass Condensate (CGC) formalism is an effective action approach to particle production at small Bjorken x (low p_t) which includes gluon saturation. The CGC formalism nevertheless breaks down at intermediate/large Bjorken x, corresponding to the high p_t kinematic region in high energy collisions. Here we describe the first steps taken towards the derivation of a new formalism, with the ultimate goal of having a unified formalism for particle production at both low and high p_t in high energy hadronic/heavy ion collisions.

  184. HET Lunch Discussion

    "Discussion on arXiv 1307.5458: Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments"

    Presented by Dr Gopolang Mohlabeng, Brookhaven National Laboratory

    Friday, March 29, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  185. High Energy / Nuclear Theory / RIKEN Seminars

    "Lattice Workshop for US -Japan Intensity Frontier Incubation (1/1)"

    Wednesday, March 27, 2019, 9 am
    TBD

    Hosted by: Sally Dawson

  186. Physics Colloquium

    "Quantum Information Science Landscape, Vision, and NIST"

    Presented by Carl Williams, NIST

    Tuesday, March 26, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Andrei Nomerotski

    The first part of the colloquium will provide an overview of United States government's interest in quantum information science from the National Strategic Overview for Quantum Information Science that established the policy objectives for this administration to the National Quantum Initiative Act that formalizes parts of this strategy for key civilian science agencies. This portion of the talk will conclude with placing the United States strategy in the global context and describe how the United States plans to establish the foundation for the quantum 2.0 economy. The second part of the colloquium will begin with a high-level overview of NIST, of NIST's interest in Quantum Information Science, before talking briefly about some interesting highlights from NIST laboratories. Moving from the highlights, the talk will explore ongoing and future metrological applications followed by some hypothetical conjectures of future technological applications with a focus on how quantum information science and its technology may impact fundamental physics from exploring potential time variation of fundamental constants to future probes of dark matter and gravitational waves.

  187. High Energy / Nuclear Theory / RIKEN Seminars

    "Lattice Workshop for US -Japan Intensity Frontier Incubation (1/1)"

    Tuesday, March 26, 2019, 9 am
    TBD

    Hosted by: Sally Dawson

  188. Particle Physics Seminar

    "Deep learning at the edge of discovery at the LHC"

    Presented by Javier Duarte, FNAL

    Monday, March 25, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    The discovery of the Higgs boson at the Large Hadron Collider in 2012 opened a new sector for exploration in the standard model of particle physics. Recent developments, including the use of deep learning to identify a complex but common decay of the Higgs boson to bottom quarks, have expanded our ability to study the production of Higgs bosons with very large momenta. By studying these Higgs bosons and measuring their momentum spectrum, we may be able to discover new physics at very high energy scales inaccessible directly at the LHC. I will explain these searches and the direction that deep learning is taking in particle physics, especially how it's changing the way we think about the trigger, event reconstruction, and our computing paradigm.

  189. High Energy / Nuclear Theory / RIKEN Seminars

    "Lattice Workshop for US -Japan Intensity Frontier Incubation (1/1)"

    Monday, March 25, 2019, 9 am
    TBD

    Hosted by: Sally Dawson

  190. CANCELED - NT/RIKEN Seminar

    "TBA"

    Presented by Alex Kovner, University of Connecticut

    Friday, March 22, 2019, 2 pm
    Building 510, Room 2-38

    Hosted by: Niklas Mueller

  191. HET Lunch Discussion

    "Quantum-assisted optical interferometry"

    Presented by Paul Stankus, Oak Ridge National Laboratory

    Friday, March 22, 2019, 12:15 pm
    Building 510, Room 2-160

  192. Particle Physics Seminar

    "Installation and preliminary results from ProtoDUNE Single Phase experiment at CERN"

    Presented by Maura Spanu, BNL

    Thursday, March 21, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Chao Zhang

    DUNE is a leading-edge, international experiment for neutrino science and proton decay. Its ambitious physics program requires a careful prototyping of the engineering solutions envisaged for the scale-up of the LArTPC technology, as well as a careful control of the systematics through the acquisition of a deep knowledge of the detector response and performances. ProtoDUNE is an extensive prototype program (ProtoDUNE) development at the European Research Center (CERN) Neutrino Platform facility with the aim to answer to all the open questions about DUNE design. The Single Phase prototype (ProtoDUNE SP) has been assembled in the EHN1 extension at CERN between 2016 and 2018 and it successfully took its first beam data from a dedicated SPS tertiary line from September to November 2018.

  193. HET Seminar

    "Probing the Higgs Yukawa coupling to the top quark at the LHC via single top+Higgs production"

    Presented by Ya-Juan Zheng, University of Kansas

    Wednesday, March 20, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Gopolang Mohlabeng

  194. Physics Colloquium

    "Development of LArTPC for Neutrino Physics"

    Presented by Xin Qian, BNL

    Tuesday, March 19, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Andrei Nomerotski

    Liquid Argon Time Projection Chamber (LArTPC), with its mm-scale position resolution and the full-active-volume imaging-aided calorimetry, is an excellent device to detect accelerator neutrinos at GeV energy range. This technology may hold the key to search for new CP violation in the lepton sector, to determine the neutrino mass hierarchy, to search for baryon number violation, and to search for sterile neutrino(s). In this talk, I will review the existing achievements and current status of the detector development.

  195. Nuclear Physics Seminar

    "Modified Structure of Protons and Neutrons in Correlated Pairs"

    Presented by Dr. Barak Schmookler, Center for Frontiers in Nuclear Science, Stony Brook University

    Tuesday, March 19, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jin Huang

    It has been known for several decades that the inelastic structure of the nucleon is modified by the presence of the nuclear medium. This modification is called the EMC effect. However, there is still no consensus as to the underlying QCD-based quark-gluon dynamics driving the effect. One approach to describe the EMC effect is to slightly modify the structure of all the nucleons in the nucleus. Recent evidence, however, suggests that the EMC effect may arise due to two-nucleon Short Range Correlations (SRC), which are pairs of nucleons close together in the nucleus. If this is true, it implies that nucleons are largely unmodified most of the time, but have their structure significantly modified when they temporarily fluctuate into SRC pairs. In this presentation, I will discuss the experimental evidence linking the EMC effect to two-nucleon SRCs. I will then describe a new data-driven phenomenological model of the EMC effect based on neutron-proton SRC pairs, and I will show that this model can consistently describe the effect across nuclei.

  196. NT/RIKEN Seminar

    "Baryons as Quantum Hall Droplets"

    Presented by Zohar Komargodski, Simons Center, Stony Brook

    Friday, March 15, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    We revisit the problem of baryons in the large N limit of Quantum Chromodynamics. A special case in which the theory of Skyrmions is inapplicable is one-flavor QCD, where there are no light pions to construct the baryon from. More generally, the description of baryons made out of predominantly one flavor within the Skyrmion model is unsatisfactory. We propose a model for such baryons, where the baryons are interpreted as quantum Hall droplets. An important element in our construction is an extended, 2+1 dimensional, meta-stable configuration of the η′ particle. Baryon number is identified with a magnetic symmetry on the 2+1 dimensional sheet. If the sheet has a boundary, there are finite energy chiral excitations which carry baryon number. These chiral excitations are analogous to the electron in the fractional quantum Hall effect. Studying the chiral vertex operators we are able to determine the spin, isospin, and certain excitations of the droplet. In addition, balancing the tension of the droplet against the energy stored at the boundary we estimate the size and mass of the baryons. The mass, size, spin, isospin, and excitations that we find agree with phenomenological expectations.

  197. HET Lunch Discussion

    "TBA"

    Presented by William Marciano, BNL

    Friday, March 15, 2019, 12:15 pm
    Building 510, Room 2-160

  198. Joint Nuclear/High Energy Physics Seminar

    "Precision measurements of fundamental interactions with (anti)neutrinos"

    Presented by Professor Roberto Petti, University of South Carolina

    Tuesday, March 12, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Milind Diwan

  199. Condensed-Matter Physics & Materials Science Seminar

    "Neutron scattering study of strongly correlated systems"

    Presented by Yao Shen, Fudan University, China

    Monday, March 11, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Mark Dean

    In strongly correlated systems, interactions between various microscopic degrees of freedom with similar energy scales can induce strong competition and frustration, leading to exotic phenomena. Here we use neutron scattering technique to study several strongly correlated systems to show how the competition and interplay between these degrees of freedom can induce different phases and properties. 1) In the pressure-induced superconductor CrAs, the competition between various magnetic interactions lead to a noncollinear helimagnetic order. In addition, CrAs exhibits a spin reorientation at a critical pressure (Pc ~ 0.6 GPa), which is accompanied by a lattice anomaly and coincides with the emergence of bulk superconductivity, indicating the strong interplay between magnetic, structural and electronic degrees of freedom. 2) FeSe, the structurally simplest iron-based superconductor, shows nematic order at 90 K, but no magnetic order in the parent phase. Our neutron scattering experiments reveal both stripe and Neel spin fluctuations that are coupled to the nematicity. The competition between these two phases suppress the magnetic order and drive the system into a nematic quantum disordered paramagnet. Similar phenomenon is observed in YFe2Ge2, in which the magnetic order is suppressed by the competition between stripe type AFM phase and in-plane FM phase. 3) In the heavily electron-doped FeSe based superconductor Li0.8Fe0.2ODFeSe (Tc=41 K), a twisted dispersion of spin excitations is observed which may be caused by the competition between itinerant and local electrons, analogous to the hole-doped cuprates which host remarkably high Tc as well. 4) In the two-dimensional triangular lattice antiferromagnet YbMgGaO4, due to the strong spin-orbit coupling and crystalline electric field (CEF), the low-lying crystal field ground state is a Kramers doublet. The geometric frustration is enhanced by the anisotropic interactions and a quantum sp

  200. HET Lunch Discussions@BNL

    "B->D* Semileptonic Decays Form Factors and CKM Matrix Element Vcb"

    Presented by Yong-Chull Jang, BNL

    Friday, March 8, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  201. PubSci

    "PubSci: Big Bang Physics and the Building Blocks of Matter"

    Thursday, March 7, 2019, 7 pm
    The Snapper Inn 500 Shore Dr, Oakdale, NY 11769

  202. Particle Physics Seminar

    "The PROSPECT Antineutrino Detector and Early Physics Results"

    Presented by Xianyi Zhang, Illinois Institute of Technology

    Thursday, March 7, 2019, 1:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Elizabeth Worcester

    PROSPECT, Precision Reactor Oscillation and SPECTrum, is a short baseline reactor antineutrino experiment. The PROSPECT antineutrino detector is an optically segmented liquid scintillator detector deployed ~7 m from a highly enriched U-235 reactor. This detector was designed to investigate discrepancies in the reactor antineutrino flux and spectrum by model-independently probing the eV-scale sterile neutrino oscillation from nuclear fission reactor, as well as precisely measuring the U-235 antineutrino spectrum. The particle multi-segment scattering in PROSPECT detector brought a typical challenge in characterizing the scintillator nonlinearity. This talk details the energy scale study for PROSPECT with data-MC comparison of detector calibrations. The detector construction, commissioning, and its early physics measurements are also presented.

  203. HET Seminar

    "Breaking Mirror Hypercharge in Twin Higgs Models"

    Presented by Brian Batell

    Wednesday, March 6, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Sally Dawson

  204. Particle Physics Seminar

    "Neutrino cross sections"

    Presented by Callum Wilkinson, University of Bern

    Tuesday, March 5, 2019, 2 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Elizabeth Worcester

    Current and planned neutrino oscillation experiments operate in the 0.1-10 GeV energy regime and use a variety of nuclear targets. At these energies, the neutrino cross section is not well understood: a variety of interaction processes are possible and nuclear effects play a significant role. This talk will give an overview of the state of neutrino cross sections, and explore their relationship with neutrino oscillation experiments.

  205. Particle Physics Seminar

    "Measurement of LAr purity using Cosmic Muons"

    Presented by Monica Nunes, IFGW/UNICAMP, Brazil

    Monday, March 4, 2019, 3 pm
    3-209B, Bldg. 510

    Hosted by: Mary Bishai

    LArIAT is an experiment based on a LArTPC aiming to study relevant cross sections of charged particles with argon as well as the development of the related instrumentation. Charged particle crossing the detector excite and ionize the argon atoms and the electrons generated by the ionization are drifted in an electric field towards the anodic wire planes of the TPC. With electronegative impurities in the liquid argon, the amount of charge collected by the wires is going to be smaller and affect the quality of the results obtained in the experiment. Cosmic muons that cross the TPC between beam spills is a valuable tool for measuring the liquid argon purity inside the detector. With the electron lifetime obtained with the purity analysis based on cosmics, is possible to correct data used for all other studies based on charge collection of the LArTPC. In this seminar, I'll present the method and the results obtained in the LArIAT experiment. I'll also present other tasks that I performed on LArIAT during my PhD research.

  206. HET Lunch Discussion

    "Dark matter beams at neutrino facilities"

    Presented by Claudia Frugiuele, CERN

    Friday, March 1, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  207. Joint NT/RIKEN/CFNS Seminar

    "Measuring color memory in a color glass condensate"

    Presented by Ana-Maria Raclariu, Harvard University

    Thursday, February 28, 2019, 4 pm
    Building 510, Room 2-38 CFNS Seminar Room

    Hosted by: Niklas Mueller

  208. Particle Physics Seminar

    "Status and physics potential of the JUNO experiment"

    Presented by Zeyuan Yu, Institute of High Energy Physics, China

    Thursday, February 28, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Chao Zhang

    The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton multi-purpose liquid scintillator detector with an unprecedented energy resolution of 3% at 1 MeV being built in a dedicated underground laboratory in China and expected to start data taking in 2021. The main physics goal of the experiment is the determination of the neutrino mass ordering with a significance of 3-4 sigma within six years of running using electron anti-neutrinos coming from two nuclear power plants at a baseline of about 53 km. Beyond this fundamental question, JUNO will also have a very rich physics program including the precise measurement at a sub-percent level of the solar neutrino oscillation parameters, the detection of low-energy neutrinos coming from galactic core-collapse supernova, diffuse supernova background, the Sun, the Earth (geo-neutrinos) but also proton decay searches. This talk will give an overview on the JUNO physics potential and the current status of the project.

  209. HET Seminar

    "Probing New Physics with Neutrino Scattering"

    Presented by Ian Shoemaker, Virginia Tech

    Wednesday, February 27, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Gopolang Mohlabeng

    Current experimental sensitivities allow for neutrino scattering to be probed over a range of energy scales. In this talk, I'll discuss phenomenological probes of new physics using neutrino scattering at zero, GeV, and EeV momentum transfer. At zero momentum transfer, the forward coherent scattering of neutrinos on background particles provides novel sensitivity to Dark Matter. At MeV-GeV energies, the solar/atmospheric fluxes allow for the production of heavy sterile neutrinos at IceCube and direct detection experiments, resulting in distinctive signatures. Lastly, I'll discuss sterile neutrino scattering in the Earth as a possible explanation of the anomalous EeV events reported by ANITA.

  210. Physics Colloquium

    "Precision measurement of neutrinos at Hyper-Kamiokande"

    Presented by Akira Konaka, TRIUMF

    Tuesday, February 26, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: George Redlinger

    Hyper-Kamiokande (HyperK) is a water Cherenkov neutrino detector whose construction in Japan was recently approved. The fiducial mass is 187kton, eight times larger than the Super-Kamiokande detector. The upgraded J-PARC accelerator located 295km away will provide high intensity neutrino and anti-neutrino beams tuned at the oscillation maximum. In this talk, I will describe the challenges of the systematic uncertainties in future neutrino oscillation experiments and how HyperK plans to address them. In addition to the observation of CP violation, Hyper-Kamiokande will explore directions that may become the main research topic in the future if something new is discovered: Precision neutrino oscillations to test the unitarity of the lepton flavour mixing, neutrino astronomy, such as supernova neutrinos and searches for astrophysical point sources of neutrinos, and searches for phenomena beyond the standard model, such as dark matter and nucleon decays.

  211. Condensed-Matter Physics & Materials Science Seminar

    "Unconventional superconductivity and complex tensor order in half-Heusler superconductors"

    Presented by Igor Boettcher, University of Maryland

    Tuesday, February 26, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Laura Classen

    A revolutionary new direction in the field of superconductivity emerged recently with the synthesis of superconductors with strong inherent spin-orbit coupling such as the half-Heusler alloys. Due to band inversion, the low-energy degrees of freedom are electrons at a three-dimensional quadratic band touching point with an effective spin 3/2, which allows for higher-spin Cooper pairing and potentially topological superconductivity. I will illuminate some possibilities for unconventional superconductivity in this system, in particular a novel superconducting quantum critical point and the transition into a phase with complex tensor order, which is a superconducting state captured by a complex second-rank tensor valued order parameter describing Cooper pairs having spin 2. Here the interplay of both tensorial and complex nature results in a rich and intriguing phenomenology. I will highlight how optical response measurements can shed light on the phase structure of individual compounds.

  212. NT / RIKEN Seminar

    "Quantum Chaos, Wormholes and the Sachdev-Ye-Kitaev Model"

    Presented by Jacobus Verbaarschot, Stony Brook University

    Friday, February 22, 2019, 2 pm
    2-38 CFNS Seminar Room

    Hosted by: Niklas Mueller

    The Sachdev-Ye-Kitaev (SYK) model has a long history in nuclear physics where its precursor was introduced as a model for the two-body nuclear interaction to describe the spectra of complex nuclei. Most notably, its level density is given by the Bethe formula and its level correlations are consistent with chaotic motion of the nucleons. Recently, this model received a great of attention as a solvable model for the quantum states of a black hole, exactly because of these properties. In this lecture we introduce the SYK model from a nuclear physics perspective and discuss its chaotic nature and its relation with black hole physics. We end with a summary of recent work on two SYK models coupled by a spin-spin interaction as a model for wormholes.

  213. Particle Physics Seminar

    "Probing New Physics and the Nature of the Higgs Boson at ATLAS"

    Presented by Lailin Xu, University of Michigan

    Thursday, February 21, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    The long-sought Higgs boson discovered at the LHC completes the Standard Model of the particle physics. During the last six years, substantial achievements have been made to probe the nature of the Higgs boson. Participle physics is however at an impasse: deep mysteries of the Electroweak symmetry breaking remain unanswered, and long-awaited new physics phenomena beyond the SM have not shown up yet. In this talk, I start with a brief overview on the current profile of measurements of the Higgs boson properties and couplings. I then present Higgs measurements in the four-lepton channel, and how we use the Higgs boson as a portal in the quest for new physics. In the end, I discuss the prospect of the Higgs measurements including the Higgs self-coupling at future colliders.

  214. Physics Colloquium

    "Physics education research in higher education: What can we learn from the top cited papers in the Physical Review?"

    Presented by Charles Henderson, Western Michigan University

    Tuesday, February 19, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    The journal Physical Review Physics Education Research was started in 2005 as the archival research journal for the field of Physics Education Research (PER). In this talk I will identify some important findings from the field of PER based on highly cited articles from the journal. For example, there is strong evidence that in typical physics courses many students do not learn the core concepts of the discipline; student beliefs about physics become less expert like; and there is a significant gender gap, with men outperforming women. Many PER-based instructional strategies can improve student knowledge and some instructional strategies can improve student beliefs. However, implementation of these strategies is low because the field often uses ineffective dissemination strategies.

  215. HET Lunch Discussion

    "Opportunities in Reactor Neutrino Physics"

    Presented by Chao Zhang, BNL

    Friday, February 15, 2019, 12:15 pm
    Building 510, Room 2-160

  216. Condensed-Matter Physics & Materials Science Seminar

    ": Electronic structure of d-metal systems as revealed by ab initio modeling of resonant inelastic X-ray scattering"

    Presented by Lei Xu, Leibniz Institute for Solid State and Materials Research Dresden, Germany

    Friday, February 15, 2019, 11 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Weiguo Yin

    I will present our work on the theoretical investigation of the electronic structure, magnetic interactions and resonant inelastic X-ray scattering (RIXS) in 3d or 4d-5d transition metal (TM) compounds by using wave-function-based many-body quantum chemistry (QC) methods. My presentation contains two parts. In the first part, I will discuss the magnetic properties of 4d and 5d TM ions with a formally degenerate t12g electron configuration in the double-perovskite (DP) materials Ba2YMoO6, Ba2LiOsO6 and Ba2NaOsO6. Our analysis indicates that the sizable magnetic moments and g-factors found experimentally are due to both strong TM d – ligand p hybridization and dynamic Jahn-Teller effects. Our results also point out that cation charge imbalance in the DP structure allows a fine tuning of the gap between the t2g and eg levels. In another example of t12g electron configuration, spin-Peierls (SP) TiPO4 compound, we assign excitation peaks of experimental RIXS spectra and find that the d1 ground state is composed of an admixture of dz2 and dxz orbital character. In the second part, I will discuss a computational scheme for computing intensities as measured in X-ray absorption and RIXS experiments. We take into account the readjustment of the charge distribution in the 'vicinity' of an excited electron for the modeling of RIXS. The computed L3-edge RIXS spectra for Cu2+ 3d9 ions in KCuF3 and for Ni2+ 3d8 ions in La2NiO4 reproduce trends found experimentally for the incoming-photon incident-angle and polarization dependence.

  217. Particle Physics Seminar

    "Measuring CCQE-like Cross Sections in MINERvA: when statistics meet precision"

    Presented by Mateus F. Carneiro, Oregon State University

    Thursday, February 14, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Elizabeth Worcester

    MINERvA is a detector build to measure neutrino-nucleus cross sections. As we move towards more precise measurements, cross sections are of extreme importance to the future of neutrino physics. This talk will walk through all the steps necessary to simulate, select signal and measure a CCQE cross section while we test different nuclear models. New preliminary MINERvA results using the new configuration of the NuMI beam will be presented.

  218. RIKEN Lunch Seminar

    "Chiral Photocurrents and Terahertz Emission in Dirac and Weyl Materials"

    Presented by Mr. Sahal Kaushik, Stony Brook University

    Thursday, February 14, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Recently, chiral photocurrents have been observed in Weyl materials. We propose a new mechanism for photocurrents in Dirac materials in the presence of magnetic fields, that does not depend on any asymmetries of the crystal. This Chiral Magnetic Photocurrent would be an independent probe of the chiral anomaly. We also also discuss an observation of terahertz emission in the Weyl material TaAs with tunable ellipticity, due to chiral photocurrents induced by an ultrafast near infrared laser.

  219. Condensed-Matter Physics & Materials Science Seminar

    "Resonant inelastic X-ray scattering (RIXS) as a probe of exciton-phonon coupling"

    Presented by Andrey Geondzhian, European Synchrotron Radiation Facility (ESRF), France (UTC+1)

    Thursday, February 14, 2019, 9:30 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Weiguo Yin

    Phonons contribute to resonant inelastic X-ray scattering (RIXS) as a consequence of the coupling between electronic and lattice degrees of freedom. Unlike other techniques that are sensitive to electron-phonon interactions, RIXS can give access to momentum dependent coupling constants. This Information is highly desirable in the context of understanding anisotropic conventional and unconventional superconductivity. In my talk, I will consider the phonon contribution to RIXS from the theoretical point of view. In contrast to previous studies, we emphasize the role of the core-hole lattice coupling. Our model, with parameters obtained from first principles, shows that even in the case of a deep core-hole, RIXS probes exciton-phonon coupling rather than a direct electron-phonon coupling. Further, to address the needs of predictive approach and overcome limitations of the model studies we developed a Green's function formalism to capture electron-phonon contributions to RIXS and other core-level spectroscopies (X-ray photoemission spectroscopy (XPS), X-ray absorption spectroscopy (XAS)). Our approach is based on the cumulant expansion of the Green's function combined with many-body theory calculated vibrational coupling constants. In the case of the XAS and RIXS, we use a two-particle exciton Green's function, which accounts implicitly for particle-hole interference effects that have previously proved difficult. Finally, to demonstrate the methodology, we successfully applied our formalism to small molecules, for which unambiguous experimental data exist.

  220. Condensed-Matter Physics & Materials Science Seminar

    "Phase transition in functional materials and structural dynamics as studied by UTEM"

    Presented by Ming Zhang, Institute of Physics, Chinese Academy of Sciences

    Tuesday, February 12, 2019, 10 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Jing Tao

    My presentation contains 3 parts. First, I will briefly introduce the pump-probe technique and Ultrafast Transmission Electron Microscopy (UTEM). Then I will demonstrate our development project of the UTEM, including the modifications of the configuration, the establishment of optical system, the generation of photoelectrons, and specific cases are discussed to show the capability of our UTEM. At last, I will highlight the application of UTEM via two examples: (1) The photoinduced martensitic (MT) transition and reverse transition in a shape memory alloy Mn50Ni40Sn10 have been examined by UTEM, and imaging and diffraction observations clearly show a variety of structural dynamic features at picosecond time scales; (2) The Lorentz UTEM for direct imaging photoinduced ultrafast magnetization dynamics, revealing remarkable features of magnetic transient states after a femtosecond pulsed laser excitation, and three successive dynamical processes involving four distinct magnetic states are evidently observed in MnNiGa crystals.

  221. NT / RIKEN Seminar

    "Realizing relativistic dynamics with slow light polaritons at room temperature"

    Presented by Eden Figueroa, Stony Brook University

    Friday, February 8, 2019, 2 pm
    CFNS Seminar Room

    Hosted by: Niklas Mueller

    Experimental verification of relativistic field theory models requires accelerator experiments. A possible pathway that could help understanding the dynamics of such models for bosons or fermions is the use of quantum technology in the form of quantum analog simulators. In this talk we will explore the possibility of generating nonlinear Dirac-type Hamiltonians using coherent superpositions of photons and spin wave excitations of atoms. Our realization uses a driven slow-light setup, where photons mimic the Dirac fields and different dynamics can be implemented and tuned by adjusting optical parameters. We will show our progress tin building a quantum simulator of the Jackiw-Rebbi model using highly-interacting photons strongly coupled to a room temperature atomic ensemble. We have identified suitable conditions in which the input photons dispersion relations can be tuned to a spinor of light configuration, mimicking the Dirac regime and providing a framework to create tunable interactions and varying mass terms. Lastly, we will show our vision to scale these ideas to multiple interacting fermions.

  222. HET Lunch Discussion

    "Precision Electroweak Measurements at the LHC"

    Presented by Sally Dawson

    Friday, February 8, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  223. RIKEN Lunch Seminar

    "Modification of the nucleon-nucleon potential and nuclear correlations due to the QCD critical point"

    Presented by Juan M. Torres-Rincon, Stony Brook University

    Thursday, February 7, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Enrico Rinaldi

    The scalar-isoscalar mode of QCD becomes lighter/nearly massless close to the chiral transition/second-order critical point. This mode is the main responsible for the attractive part of the nucleon-nucleon potential at distances of 1-2 fm. Therefore, a long-range strong attraction among nucleons is predicted to develop close to the QCD critical point. Using the Walecka-Serot model for the NN potential we study the effects of the critical mode in a system of nucleons and mesons using a Molecular Dynamics+Langevin equations for the freeze-out conditions of heavy-ion collisions. Beyond mean field, we observe strong nucleon correlations leading to baryon clustering. We propose that light-nuclei formation, together with an enhancement of cumulants of the proton distribution can signal the presence of the QCD critical point.

  224. Condensed-Matter Physics & Materials Science Seminar

    "Stimulation of quantum phases by time-dependent perturbations"

    Presented by Victor Galitski, University of Maryland

    Thursday, February 7, 2019, 11 am
    ISB Bldg. 734, Conf. Room 201 (upstairs)

    Hosted by: Mark Dean

    I will review our theory work on dynamic stimulation of various quantum phases. A key idea here is that the equilibrium distribution is rarely optimal for occurrence of a given quantum state and dynamic perturbations can be used to "deform" an electron population in a favorable way in order to enhance quantum coherence. To illustrate this idea, I will show how both Cooper pairing and phase coherence can be dynamically enhanced in both conventional superconductors and bosonic superlfuids. Then, I will discuss dynamic enhancement of high-temperature superconductivity in the cuprates, as it reported in experiments by the Andrea Cavalleri group in Hamburg. It will be shown that an optical pump can suppress charge order and simultaneously enhance superconductivity, due to the inherent competition between the two. In the second part of my talk, I will generalize these ideas to quantum cavities, where the light-matter coupling can be strongly enhanced. In particular, I will discuss the hybridization of cavity photons with collective modes in interacting two-dimensional materials, including the formation of Higgs polaritons and the closest analogue to excitons in a superconductor - Bardasis-Schrieffer modes - hybridized with light.

  225. Condensed-Matter Physics & Materials Science Seminar

    "Novel Electrochemistry for Fuel Cell Reactions: Efficient Synthesis and New Characterization Methods"

    Presented by Zhixiu Liang

    Wednesday, February 6, 2019, 4:30 pm
    Bldg. 480 Conference Room

    Hosted by: Jing Tao

    The ever increasing consumption of fossil fuels for transportation causes climate change causing a growing concern about their future availability and further adverse environmental effects. To address this issue, the concept of CO2 neutral fuels-based energy cycle was brought out. The key reactions in that concept are electrochemical methanol oxidation (MOR), ethanol oxidation reaction (EOR), and CO2 reduction reaction (CO2RR). These all are elctrocatalysis research challenges being slow even at the best catalyst that hamper application of fuel cells, and bring environmental benefits. My research made these improvements of catalysts for the key reactions. In-situ electrochemical infrared reflective absorbance spectrum (EC-IRRAS) reveals that at lower temperature, such reaction is not complete and generates more formate; at elevated temperature, such reaction is complete to carbonate. Ethanol is one of the ideal fuels for fuel cells, but requires highly improved catalysts. Au@PtIr/C catalyst was synthesized with a surfactant-free wet-chemistry approach. Transmission electron microscope (TEM) characterization confirms the monolayer/sub-monolayer Pt-Ir shell, gold core structure. The catalyst has a very high mass activity of 58 A/mg at peak current. In situ EC-IRRAS reveals that C-C bond is cleaved upon contact with the catalyst surface leading to ethanol complete oxidation to CO2. Related researches on methodologies, included in situ TEM to help obtaining catalysts improvements, give morphologic, structural and spectroscopic information at wide range from hundreds of microns to sub-nanometer coupled with various detectors. Microelectromechanical System (MEMS) based chips technology enables TEM observation in operando, with liquid-flow-cell chips and electrochemistry chips designed and fabricated. Ag@Au hollow cubes synthesis via galvanic replacement of Au on Ag cubes was investigated with in situ TEM. The results demonstrate abnormal react

  226. HET Seminar

    "Searching for flavour symmetries: old data new tricks"

    Presented by Jessica Turner, Fermilab

    Wednesday, February 6, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Gopolang Mohlabeng

    The observed pattern of mixing in the neutrino sector may be explained by the presence of a non-Abelian, discrete flavour symmetry broken into residual subgroups at low energies. These flavour models require the presence of Standard Model singlet scalars, namely flavons, which decay to charged leptons in a flavour-conserving or violating manner. In this talk, I will present the constraints on the model parameters of an A4 leptonic flavour model using a synergy of g-2, charged lepton flavour conversion and collider data. The most powerful constraints derive from the MEG collaboration's result and the reinterpretation of an 8 TeV ATLAS search for anomalous productions of multi-leptonic final states.

  227. Nuclear Physics Seminar

    "Probing the Sea Quark Polarization at RHIC/STAR"

    Presented by Jinlong Zhang, Stony Brook University

    Tuesday, February 5, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Oleg Eyser

    Polarized proton-proton collision experiments at RHIC have provided unique opportunities to study the spin structure of the nucleon. One of the primary motivations of RHIC spin program is to probe sea quark spin-flavor structure via W-boson production in proton-proton collisions at a center of mass energy of 500 GeV. Measurements of the longitudinal single-spin asymmetry, A_L, of W-bosons with the STAR detector have provided significant constraints on the polarized parton distribution functions and especially the first experimental indication of a flavor asymmetry of polarized sea. In this seminar, I will present the analyses and latest results from STAR, as well as their impact on our knowledge of the sea quark helicity distributions.

  228. HET Lunch Discussion

    "Multiparticle States in Lattice QCD and Prospects for Neutrino Physics"

    Presented by Aaron Meyer, BNL

    Friday, February 1, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  229. RIKEN Lunch Seminar

    "Sorting out jet quenching in heavy-ion collisions"

    Presented by Jasmine Brewer, Massachusetts Institute of Technology

    Thursday, January 31, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Enrico Rinaldi

    We introduce a new "quantile'' analysis strategy to study the modification of jets as they traverse through a droplet of quark-gluon plasma. To date, most jet modification studies have been based on comparing the jet properties measured in heavy-ion collisions to a proton-proton baseline at the same reconstructed jet transverse momentum pT. It is well known, however, that the quenching of jets from their interaction with the medium leads to a migration of jets from higher to lower pT, making it challenging to directly infer the degree and mechanism of jet energy loss. Our proposed quantile matching procedure is inspired by (but not reliant on) the approximate monotonicity of energy loss in the jet pT. In this strategy, jets in heavy-ion collisions ordered by pT are viewed as modified versions of the same number of highest-energy jets in proton-proton collisions. Despite non-monotonic fluctuations in the energy loss, we use an event generator to validate the strong correlation between the pT of the parton that initiates a heavy-ion jet and the pT of the vacuum jet which corresponds to it via the quantile procedure. We demonstrate that this strategy both provides a complementary way to study jet modification and mitigates the effect of pT migration in heavy-ion collisions.

  230. Environmental & Climate Sciences Department Seminar

    "What can we learn from cloudy convection in a box? Laboratory meets LES with cloud microphysics"

    Presented by Raymond Shaw, MTU

    Thursday, January 31, 2019, 11 am
    Conference Room Bldg 815E

    Hosted by: Fan Yang

    Inspired by early convection-tank experiments (e.g., Deardorff and Willis) and diffusion-chamber experiments, we have developed a cloud chamber that operates on the principle of isobaric mixing within turbulent Rayleigh-Bénard convection. The "Pi cloud chamber" has a height of 1 m and diameter of 2 m. An attractive aspect of this approach is the ability to make direct comparison to large eddy simulation with detailed cloud microphysics, with well characterized boundary conditions, and statistical stationarity of both turbulence and cloud properties. Highlights of what we have learned are: cloud microphysical and optical properties are representative of those observed in stratocumulus; aerosol number concentration plays a critical role in cloud droplet size dispersion, i.e., dispersion indirect effect; aerosol-cloud interactions can lead to a condition conducive to accelerated cloud collapse; realistic and persistent mixed-phase cloud conditions can be sustained; LES is able to capture the essential features of the turbulent convection and warm-phase cloud microphysical conditions. It is worth considering what more could be learned with a larger-scale cloudy-convection chamber. Turbulence Reynolds numbers and Lagrangian-correlation times would be scaled up, therefore allowing more enhanced role of fluctuations in the condensation-growth process. Larger vertical extent (of order 10 m) would approach typical collision mean free paths, thereby allowing for direct observation of the transition from condensation- to coalescence-growth. In combination with cloudy LES, this would be an opportunity for microphysical model validation, and for synergistic learning from model-measurement comparison under controlled experimental conditions.

  231. HET Seminar

    "Matrix Elements for Neutrinoless Double Beta Decay from Lattice QCD"

    Presented by David Murphy, MIT

    Wednesday, January 30, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Aaron Meyer

    While neutrino oscillation experiments have demonstrated that neutrinos have small, nonzero masses, much remains unknown about their properties and decay modes. One potential decay mode —- neutrinoless double beta decay ($0 \nu \beta \beta$) —- is a particularly interesting target of experimental searches, since its observation would imply both the violation of lepton number conservation in nature as well as the existence of at least one Majorana neutrino, in addition to giving further constraints on the neutrino masses and mixing angles. Relating experimental constraints on $0 \nu \beta \beta$ decay rates to the neutrino masses, however, requires theoretical input in the form of non-perturbative nuclear matrix elements which remain difficult to calculate reliably. In this talk we will discuss progress towards first-principles calculations of relevant nuclear matrix elements using lattice QCD and effective field theory techniques, assuming neutrinoless double beta decay mediated by a light Majorana neutrino.

  232. Condensed-Matter Physics & Materials Science Seminar

    "Strongly-correlated systems: Controllable field-theoretical approach"

    Presented by Igor Tupitsyn, University of Massachusetts Amherst

    Tuesday, January 29, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    Accurate account for interactions in theoretical models for strongly correlated many-body systems is the key for understanding real materials and one of the major technical challenges of modern physics. To accept this challenge, new and more effective methods, capable of dealing with interacting systems/models in an approximation-free manner, are required. One of such methods is the field-theoretical Diagrammatic Monte Carlo technique (DiagMC). While a conventional Quantum Monte Carlo samples the configuration space of a given model Hamiltonian, the DiagMC samples the configuration space of the model-specific Feynman diagrams and obtains final results with controlled accuracy by accounting for all the relevant diagrammatic orders. In contrast to conventional QMC, it does not suffer from the fermionic sign problem and can be applied to any system with arbitrary dispersion relation and shape of the interaction potential (both doped and undoped). In the first part of my talk I will introduce the technique, based on its bold-line (skeleton) implementation, and benchmark it against known results for the problem of semimetal-insulator transition in suspended graphene. In the second part I will briefly demonstrate its applications to various strongly-correlated systems/problems (stability of the 2d Dirac liquid state against strong long-range Coulomb interaction; interacting Chern insulators; phonons in metals; 1d chain of hydrogen atoms; uniform electron gas (jellium model), optical conductivity, etc).

  233. Nuclear Physics Seminar

    "Measurements and Calculations of $\hat{q}L$ via transverse momentum broadening in RHIC collisions using di-hadron correlations"

    Presented by Michael Tannenbaum, BNL

    Tuesday, January 29, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jin Huang

    The renewed interest in analyzing RHIC data on di-hadron correlations as probes of final state transverse broadening as shown at Quark Matter 2018 by Miklos Gyulassy citing theoretical calculations compared to experimental measurements which didn't look right on Miklos' figure led me to take a closer look at this issue using published PHENIX data . The measured values of $\hat{q}L$ show the interesting effect of being consistent with zero for values of the associated particle transverse momentum pTa >3 GeV/c. This is shown to be related to the well-known effect of the variable IAA, the ratio of the Au+Au to p+p pTa distributions for a given trigger pTt.

  234. Office of Educational Programs Event

    "High School Science Bowl"

    Saturday, January 26, 2019, 8 am
    Berkner Hall Auditorium

    Hosted by: Amanda Horn

  235. Nuclear Theory / RIKEN Seminar

    "Effective field theory of hydrodynamics"

    Presented by Paolo Glorioso, Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago

    Friday, January 25, 2019, 2 pm
    CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    I will give an overview of our work on developing an effective field theory of dissipative hydrodynamics. The formulation is based on the Schwinger-Keldysh formalism, which provides a functional approach that naturally includes dissipation and fluctuations. Hydrodynamics is implemented by introducing suitable degrees of freedom and symmetries. I will then discuss two important by-products. First, the second law of thermodynamics, which in the traditional approach is imposed at phenomenological level, is here obtained from a basic symmetry principle together with constraints from unitarity. Second, I will show consistency with unitarity and causality of the hydrodynamic path-integral at all loops, which leads to the first systematic framework to compute hydrodynamic fluctuations.

  236. HET Lunch Discussion

    "Hubble Parameter Tension"

    Presented by Anze Slosar, BNL

    Friday, January 25, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  237. RIKEN Lunch Seminar

    "Quarkonium production in heavy ion collisions: open quantum system, effective field theory and transport equations"

    Presented by Xiaojun Yao, Duke University

    Thursday, January 24, 2019, 12 pm
    Building 510, Room 1-224

    Hosted by: Yuta Kikuchi

    In this talk, I will present a connection between two approaches of studying quarkonium dynamics inside quark-gluon plasma: the open quantum system formalism and the transport equation. I will discuss insights from the perspective of quantum information. I will show that under the weak coupling and Markovian approximations, the Lindblad equation turns to a Boltzmann transport equation after a Wigner transform is applied to the system density matrix. I will demonstrate how the separation of physical scales justifies the approximations, by using effective field theory of QCD. Finally, I will show some phenomenological results based on the derived transport equation.

  238. Instrumentation Division Seminar

    "A Roadmap for the Best PMTs and SiPM in Physics Research"

    Presented by Razmik Mirzoyan, Max Planck Institute for Physics, Germany

    Wednesday, January 23, 2019, 2:30 pm
    Large Conference Room, Bldg. 535

    Photomultiplier Tubes (PMT) are the most wide spread detectors for measuring fast and faint light signals. In cooperation with the companies Hamamatsu Photonics K.K. (Japan) and Electron Tubes Enterprises Ltd. (England) we pursued an improvement program for the PMTs for the Cherenkov Telescope Array (CTA) project. CTA is the next major Imaging Atmospheric Cherenkov Telescopes (IACT) array for ground-based very high energy gamma-ray astrophysics. A total of ∼100 telescopes of sizes of 23m, 12m and 4m in diameter will be built in northern and southern hemispheres. The manufacturers succeeded producing 1.5′ PMTs of enhanced peak quantum efficiency of ∼38-42 % and after pulsing below 0.02% (threshold ≥ 4 photoelectrons). The novel 1.5′ PMTs have the world-wide best parameters. It is interesting to compare the performance of PMTs with the current generation of SiPMs. In the imaging camera of the MAGIC IACT, consisting of 1039 PMTs, since many months we are operating composite clusters of SiPMs from the three well-known manufacturers. A critical comparison of these two types of sensors will be presented. Prospects for further significant improvements of PMTs and SiPMs will be discussed, also in the frame of the supported by the EU SENSE Roadmap for the best fast light sensors.

  239. Condensed-Matter Physics & Materials Science Seminar

    "Recent Progress in Non-perturbative methods for QFTs"

    Presented by Lorenzo Vitale, Boston University

    Wednesday, January 23, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    Quantum field theories (QFT) are notoriously hard to solve in the strongly coupled regime, and few tools are available in space dimension larger than one. In this talk I discuss recent progress and ideas in characterizing certain QFTs in dimension d >= 1, based on the Hamiltonian Truncation and S-matrix bootstrap techniques. Some of the applications I will mention are Landau-Ginzburg theories and the Chern-Simons-matter theories.

  240. Particle Physics Seminar

    "Exploring the HEP frontier with the Cosmic Microwave Background and 21cm cosmology"

    Presented by Laura Newburgh, Yale University

    Friday, January 18, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Anze Slosar

    Current cosmological measurements have left us with deep questions about our Universe: What caused the expansion of the Universe at the earliest times? How many standard model particles are there? What is the underlying nature of Dark Energy and dark matter? New experiments like CMB-StageIV, Simons Observatory, and CHIME are poised to address these questions through measurements of the polarized Cosmic Microwave Background and 3-dimensional maps of structure. In this talk, I will describe efforts in the community to deploy enormous experiments that are capable of turning CMB measurements into probes of high energy particle physics. I will also discuss how we can broaden the potential science returns by including 21 cm measurements of large scale structure as a new means to probe Dark Energy with experiments like CHIME and HIRAX.

  241. Nuclear Theory / RIKEN Seminar

    "Chiral Vortical Effect For An Arbitrary Spin"

    Presented by Andrey Sadofyev, Los Alamos National Lab

    Friday, January 18, 2019, 2 pm
    CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    Chiral effects attracted significant attention in the literature. Recently, a generalization of chiral vortical effect (CVE) to systems of photons was suggested. In this talk I will discuss the relation of this new transport to the topological phase of photons and show that, in general, CVE can take place in rotating systems of massless particles with any spin.

  242. Instrumentation Division Seminar

    "Timing circuits for high-energy physics applications"

    Presented by Jeffrey Prinzie, KU Leuven University, Belgium

    Friday, January 18, 2019, 11 am
    Large Conference Room, Bldg. 535

    In the era of complex systems on chip (SoCs), clock and timing generation is required in nearly any application. These timing generators supply clock signals to digital modules, act as heartbeats for serial communication links or provide picosecond accurate reference information to time-interval sensors. Phase Locked Loops are the main building block that provide clock signals. However, in the high-energy physics community, ionizing radiation effects degrade these circuits significantly and produce soft-errors which can disturb an entire system. In this seminar, the application of these timing blocks in the high-energy physics are discussed together with the mitigation techniques for ionizing radiation.

  243. RIKEN Lunch Seminar

    "Proton decay matrix elements on lattice"

    Presented by Mr. Jun-sik Yoo, Stony Brook University

    Thursday, January 17, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Enrico Rinaldi

    Proton decay is one of possible signatures of baryon number violation, which has to exist to explain the baryon asymmetry and the existence of nuclear matter. Proton decay is one of natural implications of the Grand Unification Theory. After integrating out the high energy degrees of freedom, the baryon number violation operator that mediates proton decay can be found as the composite operator of standard model fields. We discuss the hadronic matrix elements of this BV operator made of three quarks and a lepton. We will start from the current experimental bound of proton lifetime. We present preliminary results of matrix element calculation done with the 2+1 dynamical flavor domain wall fermions at the physical point. We will discuss the proton decay channels that no matrix element has been calculated on the lattice.

  244. Condensed-Matter Physics & Materials Science Seminar

    "Effect of ion irradiation on the mechanical behavior and microstructural evolution of nanoscale metallic alloys"

    Presented by Gowtham Sriram Jawaharram, University of Illinois at Urbana - Champaign

    Wednesday, January 16, 2019, 11 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Jing Tao

    Nanostructured alloys are considered as potential candidates for next generation (Generation IV) nuclear reactors because the high densities of interfacial defect sinks present in these materials. The effect of irradiation on the mechanical behavior of such alloys has received limited attention, likely resulting from the experimental challenges associated with performing such experiments. The first part of the talk will report on our recent efforts to perform high temperature irradiation induced creep (IIC) measurements in focused ion beam fabricated FCC alloys (single crystalline Ag nanopillars and nanocrystalline high entropy alloys (HEA) microbeams) by combining in-situ TEM based small-scale mechanical testing with ion irradiation and in-situ laser heating using the in-situ ion irradiation transmission electron microscope (I3TEM) at Sandia National Laboratories. The effect of pillar size, grain size, and temperature on the observed creep mechanism will be discussed. The second part of the talk will focus on the microstructural evolution of model highly immiscible CuW alloys during thermal annealing and high temperature irradiation characterized using high angle annular dark field (HAADF) imaging. The results will be discussed from the context of evolution and spatial distribution of W precipitates and its effect on hardness as a function of irradiation dose and temperature.

  245. Physics Colloquium

    "Liquid Argon Detectors and Readout Electronics: From R&D to Physics Discovery"

    Presented by Hucheng Chen, BNL

    Tuesday, January 15, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Andrei Nomerotski

    BNL has a long history of R&D in noble liquid based detectors, from the invention of the first liquid argon (LAr) calorimeter in 1974, to the construction of large liquid argon time projection chambers (LAr TPC) leading to Deep Underground Neutrino Experiment (DUNE) by 2026, in a time span over half a century. Readout electronics has always been an integral part of the detector, in both ATLAS LAr Calorimeter where high precision has played an essential role in the 2012 Higgs discovery, and in LAr TPC based neutrino detectors where cryogenic electronics proved to be an enabling technology. The development of noble liquid based detectors and readout electronics systems at BNL will be presented, focused on integrated detector-readout design, as motivated by our physics interests and experiment requirements, in energy frontier LHC experiments, and in intensity frontier short baseline and long baseline neutrino experiments. As both experiments present challenges in data acquisition, the FELIX based DAQ system for high-bandwidth detector readout developed at BNL, also being adopted in various particle physics experiments worldwide, will be discussed as well.

  246. Particle Physics Seminar

    "Cross section measurements and new physics searches with WZ vector boson scattering events at CMS"

    Presented by Kenneth Long, University of Wisconsin - Madison

    Thursday, January 10, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricolli

    As the standard model (SM) Higgs boson looks increasingly like its SM expectation, expanded tests of the electroweak (EW) sector of the SM are a focal point of the long-term LHC program. Production of massive vector bosons via vector boson scattering provides a direct probe of the self-interactions of the massive vector bosons, which are intimately connected to the Higgs-Englert-Brout mechanism of EW symmetry breaking. A search for vector boson scattering of W and Z bosons has recently been performed by the CMS experiment using data collected in 2016. I will present this search as well as WZ cross section measurements, which are less dependent on theoretical inputs. This process is also sensitive to New Physics in the EW sector. I will present interpretations of these results in terms of explicit models predicting additional charged Higgs bosons and in the generalized framework of dimension-8 effective field theory.

  247. RIKEN Lunch Seminar

    "A novel background subtraction method for jet studies in heavy ion collisions"

    Presented by Alba Soto Ontoso, BNL

    Thursday, January 10, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

  248. Condensed-Matter Physics & Materials Science Seminar

    "Exact Solution and Semiclassical Analysis of BCS-BEC Crossover in One Dimension"

    Presented by Tianhao Ren, Columbia University

    Monday, January 7, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    In this talk, I will introduce a new type of model for two-component systems in one dimension subject to exact solutions by Bethe ansatz. It describes the BCS-BEC crossover in one dimension and its integrability is obtained by fine-tuning the model parameters. The new model has rich many-body physics, where the Fermi momentum for the ground state distribution is constrained to be smaller than a certain value and the zero temperature phase diagram with an external field has a critical field strength for polarization. Also the low energy excitation spectra of the new model present robust features that can be related to solitons at BCS-BEC crossover in one dimension, as shown by the semiclassical analysis.

  249. Particle Physics Seminar

    "DM-Ice17 and COSINE-100 NaI(Tl) Dark Mater Experiment: Testing DAMA's Claim for a Dark Matter Discovery"

    Presented by Jay Hyun Jo, Yale University

    Thursday, January 3, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Chao Zhang

    Astrophysical observations give overwhelming evidence for the existence of dark matter, yet we do not know what it is. For over 20 years, the DAMA collaboration has asserted that they observe a dark matter-induced annual modulation signal but their observation has yet to be confirmed by an independent measurement. DM-Ice17 is a prototype experiment consisting of 17 kg of NaI(Tl) detectors to test the DAMA's claimed detection of the dark matter annual modulation, which has been continuously operating at the South Pole since 2011. COSINE-100 is a joint experiment between DM-Ice and KIMS collaboration, situated at the Yangyang Underground Laboratory in South Korea. COSINE-100 consists of eight low background NaI(Tl) crystals with a total mass of 106 kg and 2000 liters of liquid scintillator as an active veto, and the physics run of the experiment began in September 2016. The recent results from DM-Ice17 and COSINE-100, including the status of the field, will be presented.

  250. Instrumentation Division Seminar

    "Data Acquisition Systems for High-Speed and High-Dynamic Range Pixel Array Detectors"

    Presented by Prafull Purohit, Cornell University

    Friday, December 28, 2018, 10:30 am
    Large Conference Room, Bldg. 535

    Pixel array detectors (PADs) have seen significant increase in performance and operational complexity in recent years due to advances in microelectronics technology and photon science needs. These advances in detector technology put equal complexity and performance requirements on the data acquisition and control systems for successful operation. A Field Programmable Gate Array (FPGA) with its high-speed processing and reconfiguration capabilities can be utilized to meet current requirements and future needs. In this talk, I will present some of the recent work done at Cornell University on FPGA-based data acquisition systems for high-speed, high dynamic range detectors as well as detectors for time resolved experiments.

  251. Particle Physics Seminar (Leona Woods Distinguished Postdoctoral Lectureship Award)

    "Measurement of top quark pair production in association with a Higgs or gauge boson at the LHC with the ATLAS detector"

    Presented by María Moreno Llácer, CERN

    Thursday, December 20, 2018, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    The top quark is unique among the known quarks since it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. Given its large mass (the heaviest fundamental particle), the top quark may play a special role in the electroweak symmetry breaking mechanism and therefore, new physics related to this might be found first in top quark precision measurements. Possible new physics signals would cause deviations of the top quark couplings from the Standard Model (SM) prediction. It couples to the SM fields through its gauge and Yukawa interactions. The high statistics top quark sample at the LHC has allowed to access the associated production of a top quark pair with a boson: tt+photon, tt+W, tt+Z and tt+H. The latest measurements carried out by the ATLAS detector for these physics processes will be presented, highlighting the main challenges.

  252. Physics Colloquium (Leona Woods Distinguished Postdoctoral Lectureship Award)

    "On top of the top: challenging the Standard Model with precise measurements of top quark properties"

    Presented by María Moreno Llácer, CERN

    Tuesday, December 18, 2018, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Andrei Nomerotski

    The understanding of the Electro-Weak Symmetry Breaking mechanism and the origin of the mass of fundamental particles is one of the most important questions in particle physics today. The top quark is unique among the known quarks since it is the heaviest fundamental particle in the Standard Model. Its large mass makes the top quark very different from all other particles, with a Yukawa coupling to the Higgs boson close to unity. For these reasons, the top quark and the Higgs boson play very special roles in the SM and in many extensions thereof. An accurate knowledge of their properties can bring key information on fundamental interactions at the electroweak breaking scale and beyond. The Large Hadron Collider is providing an enormous dataset of proton-proton collisions at the highest energies ever achieved in a laboratory. With the unprecedentedly large sample of top quarks, a new frontier has opened, the flavour physics of the top quark, allowing to study whether the Higgs field is the unique source of the top quark's mass and whether there are unexpected interactions between the top quark and the Higgs boson. The answers to these questions will shed light on what may lie beyond the Standard Model and can even have cosmological implications.

  253. Condensed-Matter Physics & Materials Science Seminar

    "Uncovering the interactions behind quantum phenomena"

    Presented by Keith Taddei, Oak Ridge National Laboratory

    Tuesday, December 18, 2018, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Ian Robinson/Mark Dean

    Quantum computing, spintronics and plasmonics are nascent fields with potential to radically change our technological landscape. Fundamental to advancing these technologies is a mastery of quantum materials such as superconductors, quantum-spin-liquids and multiferroics. Ideally, we would know exactly what interactions give rise to these phenomena and design materials suitable for applications however, such an understanding as of yet eludes us. Instead we are stuck digging around in the phase space of known quantum materials slowly uncovering pertinent details to their design, filling in pieces of our incomplete picture. In this presentation, I will discuss recent bits I have found in my use of neutron scattering to study quantum materials. Starting with a novel new family of quasi-one-dimensional (Q1D) superconductors (A1,2TM3As3 with A = alkali metal and TM = Cr, Mo) I will present findings of short-range structural order and a proximate magnetic instability which, due the radically different structure, allow for new insights to the pertinence to such orders to superconductivity. Importantly, in these materials the two orders break different symmetries and so their interactions with the superconducting order can be studied independently. Next, I will discuss an interesting yet neglected family of frustrated magnetic materials – the rare-earth pyrogermanates (REPG). We find the Er2Ge2O7 REPG to exhibit 'local-Ising' type magnetism in direct analogy to the spin-ice pyrochlores suggesting effects of local anisotropies and dipole interactions. Finally, I will present ongoing work investigating spin-driven polarization effects in the magnetically and structurally straightforward multiferroic BiCoO3. These results demonstrate the essential role of neutron and x-ray scattering techniques in studying these complex materials and the fruitful opportunities these systems present to advance our understanding of quantum materials.

  254. Physics Colloquium

    "The Science of the Sudbury Neutrino Observatory (SNO) and SNOLAB"

    Presented by Art McDonald, Queens University

    Monday, December 17, 2018, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: David Asner

    A description of the science associated with the Sudbury Neutrino Observatory, performed with substantial contributions from BNL scientists, and its relation to other neutrino measurements will be given, along with a discussion of the new set of experiments that are at various stages of development or operation at SNOLAB. These experiments will perform measurements of neutrino properties and seek direct detection of Weakly-Interacting Massive Particles (WIMPS) as Dark Matter candidates. Specific examples will include SNO+ (with BNL participation), in which the central element of the SNO detector will now be liquid scintillator with Te dissolved for neutrino-less double beta decay and DEAP-3600 using liquid argon for single phase direct Dark Matter detection. Future directions for Dark Matter detection with liquid argon will also be discussed.

  255. NT/RIKEN Seminar

    "Lattice QCD Input for Fundamental Symmetry Tests"

    Presented by Micheal Wagman, MIT

    Friday, December 14, 2018, 2 pm
    Building 510, Room 2-38

    Hosted by: Niklas Mueller

    Experimental detection of fundamental symmetry violation would provide a clear signal for new physics, but theoretical predictions that can be compared with data are needed in order to interpret experimental results as measurements or constraints of beyond the Standard Model physics parameters. For low-energy experiments involving protons, neutrons, and nuclei, reliable theoretical predictions must include the strong interactions of QCD that confine quarks and gluons. I will discuss experimental searches for neutron-antineutron oscillations that test beyond the Standard Model theories of matter-antimatter asymmetry with low-scale baryon-number violation. Lattice QCD can be used to calculate the neutron-antineutron transition rate using a complete basis of six-quark operators describing neutron-antineutron oscillations in effective field theory, and I will present the first lattice QCD results for neutron-antineutron oscillations using physical quark mass simulations and fully quantified uncertainties. Other experiments searching for neutrinoless double-beta decay and dark matter direct detection use large nuclear targets that are more difficult to simulate in lattice QCD because of an exponentially difficult sign(al-to-noise) problem. I will briefly describe the state-of-the-art for lattice QCD calculations of axial, scalar, and tensor matrix elements relevant to new physics searches with nuclei and outline my ongoing efforts to improve signal-to-noise problems using phase unwrapping.

  256. HET Lunch Discussion

    "Review of the Physics of the Near Detector at DUNE Workshop"

    Presented by Peter Denton, BNL

    Friday, December 14, 2018, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Christoph Lehner

  257. Condensed-Matter Physics & Materials Science Seminar

    "Discussion of opportunities related to Quantum Information initiative"

    Presented by Alexei Tsvelik, BNL

    Friday, December 7, 2018, 3 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Alexei Tsvelik will be sharing his thoughts on how we can answer to the DOE initiative on Quantum Information

  258. HET Lunch Discussion

    "The Neutron Lifetime Puzzle Solution"

    Presented by Bill Marciano, BNL

    Friday, December 7, 2018, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Christoph Lehner

  259. NSLS-II Friday Lunchtime Seminar

    "Magnetic skyrmions at room temperature - statics, dynamics, and high resolution imaging"

    Presented by Dr. Felix Buttner, Dept of Mat Sci & Eng , MIT

    Friday, December 7, 2018, 12 pm
    NSLS-II Bldg 743 Room 156

    Hosted by: Ignace Jarrige

    Magnetic skyrmions are the smallest non-trivial entities in magnetism with great potential for data storage applications. These chiral and topological quasi-particles furthermore exhibit fascinating static and dynamical properties that render them the ideal candidates to study new physics in high spin-orbit coupling materials. In this talk, I will first give a general introduction to the field of skyrmionics and the fundamental properties of skyrmions that derive from their energetics. I will then discuss various ways of creating and stabilizing room-temperature skyrmions experimentally, as well as how we can move them and observe their topological dynamics via high resolution time-resolved x-ray imaging. I will conclude with perspectives of future research in this field and related areas.

  260. Particle Physics Seminar

    "The Global Electroweak Fit in the light of the new results from the LHC"

    Presented by Matthias Schott, University of Mainz

    Thursday, December 6, 2018, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    With the high integrated luminosities recorded at the LHC and the very good understanding of the LHC detectors, it is possible to measure electroweak observables to the highest precision. In this talk, I review the measurement of the W boson mass as well as the measurement of the electroweak mixing angle with the ATLAS detector, both achieving highest precision after several years of intense effort. Special focus is drawn on a discussion of the modeling uncertainties as well as the physics potential of the latest low-mu runs, recorded at in 2017 and 2018. The results will be interpreted in terms of the overall consistency of the Standard Modell by the global electroweak fit, performed by the Gfitter Collaboration.

  261. RIKEN Lunch Seminar

    "On QCD and its Phase Diagram from a Functional RG Perspective"

    Presented by Mario Mitter, BNL

    Thursday, December 6, 2018, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

  262. Condensed-Matter Physics & Materials Science Seminar

    "Laser induces dynamics in complex oxides with visible/NIR and X-ray probe (Note: This will be a skype presentation)"

    Presented by Sergii Parchenko, Swiss Light Source, Paul Scherrer Institute, Switzerland

    Tuesday, December 4, 2018, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Ian Robinson/Mark Dean

    **********Note: This will be a Skype Presentation************ recent achievements in generation of ultrashort and intense light pulses allow observation of the physical process on the ultrafast regime. exploring fundamental physical processes on the time scales of interactions, responsible for them, is the key for future understanding of the physical principles and implementation then to the technological application. with this talk, i'm going to present the study of laser induced dynamics in complex oxides with focus on several physical objects: magnetic exchange interaction, insulator to metal transition and magneto-electric coupling. it will be discussed how the study of laser induced changes with different probing methods could help to understand the microscopic mechanisms of physical processes on the ultrafast time scale.

  263. Condensed-Matter Physics & Materials Science Seminar

    "First-principles description of correlated materials with strong spin-orbit coupling: the analytic continuation and branching ratio calculation"

    Presented by Jae-Hoon Sim, Department of Physics, KAIST, Korea, Republic of (South)

    Monday, December 3, 2018, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Sangkook Choi

    The DFT+DMFT combined with the continuous-time quantum Monte Carlo (CT-QMC) impurity solver is one of the successful approaches to describe correlated electron materials. However, analytic continuation of the QMC data written in the imaginary frequency to the real axis is a difficult numeric problem mainly due to the ill-conditioned kernel matrix. While the maximum entropy method is one of the most suitable choices to gain information from the noisy input data, its applications to the materials with strong spin-orbit coupling are limited by the non-negative condition of the output spectral function. In the first part of this talk, I will discuss the newly developed methods for analytic continuation problem, the so-called maximum quantum entropy method (MQEM) [1]. It is the extension of the conventional method, introducing quantum relative entropy as a regularization function. The application of the MQEM for a prototype j_eff=1/2 Mott insulator, Sr2IrO4, shows that it provides a reasonable band structure without introducing a material specific base set. I will also introduce the application of machine learning technique to the same problem [2]. In the second part, a simple technique to branching ratio from the first-principles calculation will be discussed [3]. The calculated ?L·S? and branching ratio of the different 5d iridates, namely Sr2IrO4, Sr2MgIrO6, Sr2ScIrO6, and Sr2TiIrO6 are in good agreement with recent experimental data. Its reliability and applicability also be carefully examined in the recent study. [1] J.-H. Sim and M. J. Han, Phys. Rev. B 98, 205102 (2018). [2] H. Yoon, J.-H. Sim, and M. J. Han, Phys. Rev. B (in press). [3] J.-H. Sim, H. Yoon, S. H. Park, and M. J. Han, Phys. Rev. B 94, 115149 (2016).

  264. Condensed-Matter Physics & Materials Science Seminar

    "Localized-to-itinerant crossovers in Kondo materials"

    Presented by Daniel Mazzone, Brookhaven National Laboratory, NSLS-II

    Monday, December 3, 2018, 11 am
    ISB Bldg. Conf. Room 201 (upstairs)

    Hosted by: Ian Robinson/Mark Dean

    While charge carriers in crystalline structures can be located close to the nuclei or establish a delocalized character, they often epitomize strong fluctuations at intermediate regimes where emergent quantum phases show an intricate coupling among various degrees of freedom. Kondo materials are particularly interesting model systems to investigate strongly correlated phenomena, because they often possess small energy scales that are highly susceptible to macroscopic constraints. I will present recent neutron and X-ray scattering results on the series Nd1-xCexCoIn5 and Sm1-xYxS, where the ground state properties were tuned either via chemical substitution or magnetic field. We find that Nd substitution in CeCoIn5 affects the magnetic coupling parameters, triggering a change in the magnetic symmetry that is offset from the emergence of coherent heavy bands and unconventional superconductivity. Intriguingly, another magneto-superconducting phase with altered coupling is observed in Nd0.05Ce0.95CoIn5 at large magnetic fields. Sm1-xYxS features a transition towards an intermediate valence state under yttrium doping. Our results unravel a Kondo-triggered Lifshitz-transition in the mixed-valence state, which dives an unusually strong charge localization at low temperatures.

  265. Nuclear Theory / RIKEN Seminar

    "Novel probes of small-x QCD"

    Presented by Juan Rojo, VU University

    Friday, November 30, 2018, 2 pm
    CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    The small Bjorken-x regime of QCD is of great interest since a variety of different phenomena are known or expected to emerge, from BFKL small-x effects and non-linear and saturation dynamics to shadowing corrections in heavy nuclei. In this talk we present recent developments in our understanding of perturbative and non-perturbative QCD at small-x: the evidence for BFKL dynamics in the HERA structure function data, the precision determination of collinear PDFs from charm production at LHCb, and the first results on neural-network based fits of nuclear PDFs. We also highlight the remarkable connection between small-x QCD and high-energy astrophysics, in particular for the theoretical predictions of signal and background event rates at neutrino telescopes such as IceCube and KM3NET

  266. HET Lunch Discussion

    "Galactic Dark Matter as the Source for Neutrino Masses"

    Presented by Dr. Gopolang Mohlabeng, BNL

    Friday, November 30, 2018, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Christoph Lehner

  267. Particle Physics Seminar

    "The structure of the proton in the LHC precision era"

    Presented by Juan Rojo, Vrije Universiteit Amsterdam and Nikhef

    Thursday, November 29, 2018, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    The determination of the partonic structure of the proton is a central component of the precision phenomenology program at the Large Hadron Collider (LHC). This internal structure of nucleons is quantified in the collinear QCD factorization framework by the Parton Distribution Functions (PDFs), which encode the probability of finding quarks and gluons inside the proton carrying a given amount of its momentum. PDFs cannot currently be computed from first principles, and therefore they need to be determined from experimental data from a variety of hard-scattering cross-sections in lepton-proton and proton-proton collisions. This program, known as the global QCD analysis, involves combining the most PDF-sensitive data and the highest precision QCD and electroweak calculations available within a statistically robust fitting methodology. In this talk I review our current understanding of the quark and gluon structure of the proton, which emphasis for the implications for precision LHC phenomenology and searches for new physics, but also exploring other aspects of the nucleon structure such as their impact on high-energy neutrino telescopes, the connection with lattice QCD calculations, and the onset of novel small-x dynamics beyond the collinear framework. Finally, I highlight the prospects for improving our understanding of the quark/gluon structure of the nucleon at the high-luminosity LHC era.

  268. HET Seminar

    "FASER: ForwArd Search ExpeRiment at the LHC"

    Presented by Felix Kling, Arizona State University

    Wednesday, November 28, 2018, 2 pm
    Small Seminar Room, Bldg. 510

    New physics has traditionally been expected in the high-pT region at high-energy collider experiments. If new particles are light and weakly-coupled, however, this focus may be completely misguided: light particles are typically highly concentrated within a few mrad of the beam line, allowing sensitive searches with small detectors, and even extremely weakly-coupled particles may be produced in large numbers there. We have propose a new experiment, ForwArd Search ExpeRiment, or FASER, which will be placed downstream of the ATLAS interaction point in the unused service tunnel TI12 and operated concurrently there. FASER will complement the LHC's existing physics program and extend its discovery potential to a host of new particles, such as dark photons and axion-like particles. In this talk, I will describe FASER's location and discovery potential, the detector's layout and components, as well as the experiment's timeline.

  269. Physics Colloquium

    "Studying Quantum Matter on Near-Term Quantum Computers"

    Presented by Brian Swingle, University of Maryland and Institute of Advanced Study

    Tuesday, November 27, 2018, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Rob Pisarski

    From the point of view of fundamental physics, one of the greatest promises of quantum information science is a new set of quantum computational tools for addressing previously intractable problems. However, at present we find ourselves in an age of embodied quantum information, where the substrate carrying the information cannot yet be abstracted away and effects of noise cannot be neglected. Nevertheless, I will argue that such noisy, intermediate size quantum devices may be useful for addressing open problems in quantum many-body physics, and potentially quantum field theory. Using two case studies, I will show how quantum information is informing our understanding of quantum matter and how near-term quantum computers might realistically help.

Currently showing events from the past year. See all past events »