BNL Home
July 2020
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1

  1. Physics Department Summer Lectures 2020

    12 pm, https://bluejeans.com/832459133

    Hosted by: Peter Petreczky

    I give a pedagogical introduction to gauge theories, and how they appear in the theory of strong interactions, where quarks and gluons form neutrons, protons, and other particles. I make several historical detours, to emphasize how the lore of "As everyone who is anyone knows..." has failed in physics. A brief overview of results from the Relativistic Heavy Ion Collider will be outlined, but the emphasis is on why a Quark-Gluon Plasma, created at about a trillion degrees, is a subject of fundamental interest.

2

  1. No events scheduled

3

4

  1. No events scheduled

5

  1. No events scheduled

6

  1. No events scheduled

7

  1. JUL

    7

    Today

    Physics Department Summer Lectures 2020

    12 pm, https://bluejeans.com/832459133

    Tuesday, July 7, 2020, 12:00 pm

    Hosted by: Peter Petreczky

    In the first part, I give an elementary introduction to hadron physics and QCD (Quantum Chromodynamics), and explain how scattering experiments allow us to probe the internal structure of the proton. In the second part, I focus on spin physics. I introduce the notion of spin in particle physics and then point out that understanding the spin of a composite particle (in particular the proton) is an fascinating subfield of QCD. I give an overview of the basic problems and the current experimental/theoretical status, as well as an outlook for the future.

8

  1. JUL

    8

    Wednesday

    OECD/Nuclear Energy Agency Webinar

    7:30 am, bit.ly/3eNPsiP

    Wednesday, July 8, 2020, 7:30 am

    Thursday, 8 July 2020 at 13:30-14:30 Paris time OECD/Nuclear Energy Agency HQ (Paris, France) bit.ly/3eNPsiP Nuclear data are produced by dozens of organisations around the world and shared internationally for the safe operation of nuclear power reactors, waste and reprocessing facilities, and nuclear medicine applications. The most common nuclear data format is the Evaluated Nuclear Data File 6 (ENDF-6) format. Originally designed for 1960s era punch-card readers, this format poses artificial limitations, requires legacy programming techniques, and obliges new scientists and engineers to learn outdated techniques. Recognising the need for a new format that embraces modern computer programming paradigms and can address more sophisticated user requirements, the NEA launched a project in 2013 to review the requirements for an international replacement for the ENDF-6 format. The project convened experts from major nuclear data evaluation projects worldwide and culminated in a new format specification for a Generalised Nuclear Data Structure (GNDS). Following rigorous international review, the new international standard GNDS 1.9 was published in May 2020. The NEA is hosting an expert roundtable discussion on the GNDS 1.9, its use, specifications, and the strategic vision of the project moving forward. The discussion will be moderated by William D. Magwood, IV, NEA Director-General and Dr David Brown, Deputy Head of the United States National Nuclear Data Center (NNDC), Manager of the ENDF Library Project, and Chair of the NEA Expert Group on the Recommended Definition of a General Nuclear Database Structure (GNDS). Discussants * Dr Osamu Iwamoto, Head, Japan Atomic Energy Agency (JAEA) Nuclear Data Center * Dr Jean-Christophe Sublet, Head, International Atomic Energy Agency (IAEA) Nuclear Data Services Unit * Dr Dorothea Wiarda, Research and development, Oak Ridge National Laboratory (ORNL) * Dr Caleb Mattoon, Scientist, Lawrence Livermore National Laboratory (LLNL) * Dr Fausto Malvagi, Senior Expert, French Alternative Energies and Atomic Energy Commission (CEA) The event is free and open to the public, and will feature a Q&A session afterwards. Please note that the number of participants is limited and registrations are on a first-come, first-served basis.

9

  1. JUL

    9

    Thursday

    Physics Department Summer Lectures 2020

    12 pm, https://bluejeans.com/832459133

    Thursday, July 9, 2020, 12:00 pm

    Hosted by: Wlodzimierz Guryn

    Understanding the properties of nuclear matter and its emergence through the underlying partonic structure and dynamics of quarks and gluons requires a new experimental facility in hadronic physics known as the Electron-Ion Collider (EIC). The EIC will address some of the most profound questions concerning the emergence of nuclear properties by precisely imaging gluons and quarks inside protons and nuclei such as the distribution of gluons and quarks in space and momentum, their role in building the nucleon spin and the properties of gluons in nuclei at high energies. In January 2020 EIC received CD-0 and Brookhaven National Laboratory was chosen as site. This presentation will highlight the capabilities of an EIC and discuss its status, accelerator design and the concepts for the experimental equipment.

  2. JUL

    9

    Thursday

    BWIS 2020 Scharff Goldhaber Award Ceremony

    1 pm, See event description for virtual meeting link.

    Thursday, July 9, 2020, 1:00 pm

    Please join Brookhaven Women in Science (BWIS) as we present the Gertrude Scharff Goldhaber Award to this year's recipient. To join, select from the following options: 1) Web Browser a)https://primetime.bluejeans.com/a2m/live-event/hdvdhkhu 2) Laptop paired with room system (Best Experience) a) Dial: bjn.vc or 199.48.152.152 in the room system. b) Go to https://primetime.bluejeans.com/a2m/live-event/hdvdhkhu/room-system/ c) Enter the pairing code displayed on your room system screen into your browser. 3) Room System a) Dial: bjn.vc or 199.48.152.152 in the room system. b) Enter Meeting ID: 807462963 and Passcode: 6608 4)Joining via a mobile device? a) Open this link : https://primetime.bluejeans.com/a2m/live-event/hdvdhkhu b) Download the app if you don't have it already. c) Enter event ID : hdvdhkhu 5) Phone Dial one of the following numbers, enter the participant PIN followed by # to confirm: +1 (415) 466-7000 (US) PIN 6089634 # +1 (760) 699-0393 (US) PIN 3072239467 # Joining from outside the US? https://www.bluejeans.com/numbers/primetime-attendees/event?id=hdvdhkhu

  3. JUL

    9

    Thursday

    Particle Physics Seminar

    3 pm, Webcast

    Thursday, July 9, 2020, 3:00 pm

    Hosted by: Hanyu Wei

    T2K has been accumulating data corresponding to 3.6 × 10e21 POT over the past 10 years. It has been studying neutrino oscillations by observing a disappearance of muon flavored (anti)neutrinos and the appearance of electron flavored (anti)neutrinos. In particular, the collaboration has recently published the first substantial 3-sigma constraints on the CP-violating phase, δCP, in a Nature article. The results from this analysis have since been updated to include 33% more neutrino mode data and significant improvements to the neutrino interaction and flux models. This talk will present these new results and discuss some details of the Markov Chain Monte Carlo Bayesian analysis employed in order to extract measurements of the neutrino oscillation parameters from T2K's data.

10

  1. JUL

    10

    Friday

    virtual NT/RIKEN seminar

    9 am, Webcast

    Friday, July 10, 2020, 9:00 am

    Hosted by: Nikhil Karthik

    Jets are hard probes that originate from initial hard scatterings of the nuclei in heavy ion collisions. They acquire transverse momentum broadening through interaction with the evolving quark-gluon plasma. However, already the pre-equilibrium Glasma stage can contribute to transverse momentum broadening. In this talk, I present our recent work [1] where we calculate the contribution to transverse momentum broadening from the Glasma phase. We base our calculation on the boost-invariant 2+1D Glasma description which builds upon the Color Glass Condensate framework. Interestingly, we find strong time-dependence and anisotropic results with larger momentum broadening in the direction along the beam axis. [1] https://arxiv.org/abs/2001.10001 Bluejeans link: https://bnl.bluejeans.com/726276981

11

  1. No events scheduled

12

  1. No events scheduled

13

  1. No events scheduled

14

  1. JUL

    14

    Tuesday

    Nuclear Physics Seminar

    11 am, Webcast

    Tuesday, July 14, 2020, 11:00 am

    Hosted by: Rongrong Ma

    We present a detailed study of vector meson photoproduction in ultraperipheral heavy ion collisions (UPCs). Using the dipole model, we develop a framework for the joint impact parameter and transverse momentum dependent cross sections. We compute the unpolarized cross section and cos 2φ azimuthal angular correlation for ρ^0 photoproduction with φ defined as the angle between the ρ^0 's transverse spin vector and its transverse momentum. Our result on unpolarized coherent differential cross section gives excellent description to the STAR experimental data. A first comparison between theoretical calculation and experimental measurement on the cos 2φ azimuthal asymmetry, which results from the linearly polarized photons, is performed and reasonable agreement is reached. We find out the characteristic diffractive patterns at both RHIC and LHC energies and predict the impact parameter dependent cos 2φ azimuthal asymmetries for ρ^0 photoproduction by considering UPCs and peripheral collisions.

15

  1. No events scheduled

16

  1. No events scheduled

17

  1. JUL

    17

    Friday

    NT/RIKEN Seminar

    2 pm, Building 510, CFNS Room 2-38

    Friday, July 17, 2020, 2:00 pm

    Hosted by: Nikhil Karthik

18

  1. No events scheduled

19

  1. No events scheduled

20

  1. No events scheduled

21

  1. No events scheduled

22

  1. No events scheduled

23

  1. No events scheduled

24

  1. No events scheduled

25

  1. No events scheduled

26

  1. No events scheduled

27

  1. No events scheduled

28

  1. No events scheduled

29

  1. No events scheduled

30

  1. No events scheduled

31

  1. No events scheduled

  1. JUL

    7

    Today

    Physics Department Summer Lectures 2020

    "Introduction to high energy spin physics"

    Presented by Yoshitaka Hatta, BNL

    12 pm, https://bluejeans.com/832459133

    Tuesday, July 7, 2020, 12:00 pm

    Hosted by: Peter Petreczky

    In the first part, I give an elementary introduction to hadron physics and QCD (Quantum Chromodynamics), and explain how scattering experiments allow us to probe the internal structure of the proton. In the second part, I focus on spin physics. I introduce the notion of spin in particle physics and then point out that understanding the spin of a composite particle (in particular the proton) is an fascinating subfield of QCD. I give an overview of the basic problems and the current experimental/theoretical status, as well as an outlook for the future.

  2. JUL

    8

    Wednesday

    OECD/Nuclear Energy Agency Webinar

    "The Generalised Nuclear Database Structure: Establishing an International Nuclear Data Standard"

    Presented by William D. Magwood, IV and David Brown

    7:30 am, bit.ly/3eNPsiP

    Wednesday, July 8, 2020, 7:30 am

    Thursday, 8 July 2020 at 13:30-14:30 Paris time OECD/Nuclear Energy Agency HQ (Paris, France) bit.ly/3eNPsiP Nuclear data are produced by dozens of organisations around the world and shared internationally for the safe operation of nuclear power reactors, waste and reprocessing facilities, and nuclear medicine applications. The most common nuclear data format is the Evaluated Nuclear Data File 6 (ENDF-6) format. Originally designed for 1960s era punch-card readers, this format poses artificial limitations, requires legacy programming techniques, and obliges new scientists and engineers to learn outdated techniques. Recognising the need for a new format that embraces modern computer programming paradigms and can address more sophisticated user requirements, the NEA launched a project in 2013 to review the requirements for an international replacement for the ENDF-6 format. The project convened experts from major nuclear data evaluation projects worldwide and culminated in a new format specification for a Generalised Nuclear Data Structure (GNDS). Following rigorous international review, the new international standard GNDS 1.9 was published in May 2020. The NEA is hosting an expert roundtable discussion on the GNDS 1.9, its use, specifications, and the strategic vision of the project moving forward. The discussion will be moderated by William D. Magwood, IV, NEA Director-General and Dr David Brown, Deputy Head of the United States National Nuclear Data Center (NNDC), Manager of the ENDF Library Project, and Chair of the NEA Expert Group on the Recommended Definition of a General Nuclear Database Structure (GNDS). Discussants * Dr Osamu Iwamoto, Head, Japan Atomic Energy Agency (JAEA) Nuclear Data Center * Dr Jean-Christophe Sublet, Head, International Atomic Energy Agency (IAEA) Nuclear Data Services Unit * Dr Dorothea Wiarda, Research and development, Oak Ridge National Laboratory (ORNL) * Dr Caleb Mattoon, Scientist, Lawrence Livermore National Laboratory (LLNL) * Dr Fausto Malvagi, Senior Expert, French Alternative Energies and Atomic Energy Commission (CEA) The event is free and open to the public, and will feature a Q&A session afterwards. Please note that the number of participants is limited and registrations are on a first-come, first-served basis.

  3. JUL

    9

    Thursday

    Physics Department Summer Lectures 2020

    "The electron-ion collider: A collider to unravel the mysteries of visible matter"

    Presented by Elke Aschenauer, BNL

    12 pm, https://bluejeans.com/832459133

    Thursday, July 9, 2020, 12:00 pm

    Hosted by: Wlodzimierz Guryn

    Understanding the properties of nuclear matter and its emergence through the underlying partonic structure and dynamics of quarks and gluons requires a new experimental facility in hadronic physics known as the Electron-Ion Collider (EIC). The EIC will address some of the most profound questions concerning the emergence of nuclear properties by precisely imaging gluons and quarks inside protons and nuclei such as the distribution of gluons and quarks in space and momentum, their role in building the nucleon spin and the properties of gluons in nuclei at high energies. In January 2020 EIC received CD-0 and Brookhaven National Laboratory was chosen as site. This presentation will highlight the capabilities of an EIC and discuss its status, accelerator design and the concepts for the experimental equipment.

  4. JUL

    9

    Thursday

    Particle Physics Seminar

    "A Bayesian Analysis of T2K's Data for the Measurement of Neutrino Oscillation Parameters"

    Presented by Kevin Wood, Stony Brook University

    3 pm, Webcast

    Thursday, July 9, 2020, 3:00 pm

    Hosted by: Hanyu Wei

    T2K has been accumulating data corresponding to 3.6 × 10e21 POT over the past 10 years. It has been studying neutrino oscillations by observing a disappearance of muon flavored (anti)neutrinos and the appearance of electron flavored (anti)neutrinos. In particular, the collaboration has recently published the first substantial 3-sigma constraints on the CP-violating phase, δCP, in a Nature article. The results from this analysis have since been updated to include 33% more neutrino mode data and significant improvements to the neutrino interaction and flux models. This talk will present these new results and discuss some details of the Markov Chain Monte Carlo Bayesian analysis employed in order to extract measurements of the neutrino oscillation parameters from T2K's data.

  5. JUL

    10

    Friday

    virtual NT/RIKEN seminar

    "Transverse momentum broadening in the Glasma"

    Presented by Andreas Ipp, TU Wien

    9 am, Webcast

    Friday, July 10, 2020, 9:00 am

    Hosted by: Nikhil Karthik

    Jets are hard probes that originate from initial hard scatterings of the nuclei in heavy ion collisions. They acquire transverse momentum broadening through interaction with the evolving quark-gluon plasma. However, already the pre-equilibrium Glasma stage can contribute to transverse momentum broadening. In this talk, I present our recent work [1] where we calculate the contribution to transverse momentum broadening from the Glasma phase. We base our calculation on the boost-invariant 2+1D Glasma description which builds upon the Color Glass Condensate framework. Interestingly, we find strong time-dependence and anisotropic results with larger momentum broadening in the direction along the beam axis. [1] https://arxiv.org/abs/2001.10001 Bluejeans link: https://bnl.bluejeans.com/726276981

  6. JUL

    14

    Tuesday

    Nuclear Physics Seminar

    "The cos 2φ azimuthal asymmetry in ρ^0 meson production in ultraperipheral heavy ion collisions."

    Presented by Jian Zhou, Shandong University

    11 am, Webcast

    Tuesday, July 14, 2020, 11:00 am

    Hosted by: Rongrong Ma

    We present a detailed study of vector meson photoproduction in ultraperipheral heavy ion collisions (UPCs). Using the dipole model, we develop a framework for the joint impact parameter and transverse momentum dependent cross sections. We compute the unpolarized cross section and cos 2φ azimuthal angular correlation for ρ^0 photoproduction with φ defined as the angle between the ρ^0 's transverse spin vector and its transverse momentum. Our result on unpolarized coherent differential cross section gives excellent description to the STAR experimental data. A first comparison between theoretical calculation and experimental measurement on the cos 2φ azimuthal asymmetry, which results from the linearly polarized photons, is performed and reasonable agreement is reached. We find out the characteristic diffractive patterns at both RHIC and LHC energies and predict the impact parameter dependent cos 2φ azimuthal asymmetries for ρ^0 photoproduction by considering UPCs and peripheral collisions.

  7. JUL

    17

    Friday

    NT/RIKEN Seminar

    "TBA"

    Presented by Asmita Mukharjee, IIT Bombay

    2 pm, Building 510, CFNS Room 2-38

    Friday, July 17, 2020, 2:00 pm

    Hosted by: Nikhil Karthik

  1. Physics Department Summer Lectures 2020

    "A Golden Age in Physics: nuclear collisions at ultra-relativistic energies"

    Presented by Rob Pisarski, BNL

    Wednesday, July 1, 2020, 12 pm
    https://bluejeans.com/832459133

    Hosted by: Peter Petreczky

    I give a pedagogical introduction to gauge theories, and how they appear in the theory of strong interactions, where quarks and gluons form neutrons, protons, and other particles. I make several historical detours, to emphasize how the lore of "As everyone who is anyone knows..." has failed in physics. A brief overview of results from the Relativistic Heavy Ion Collider will be outlined, but the emphasis is on why a Quark-Gluon Plasma, created at about a trillion degrees, is a subject of fundamental interest.

  2. Physics Department Summer Lectures 2020

    "The Hunt for the Little Neutral One"

    Presented by Mary Bishai, BNL

    Tuesday, June 30, 2020, 12 pm
    https://bluejeans.com/832459133

    Hosted by: Wlodzimierz Guryn

    The neutrino - the "Little Neutral One" in Italian - is one of the most mysterious of the elementary particles of physics. In this lecture we will examine the fascinating history of the neutrino and its strange properties that lead to 4 Nobel prizes and multi-billion dollar experiments.

  3. Nuclear Physics Seminar

    "Recent STAR spin Results II"

    Presented by Ting Lin and Huanzhao Liu

    Tuesday, June 30, 2020, 11 am
    Webcast

    Hosted by: Salvatore Fazio

    This will consist of two talks. First talk by: Ting Lin, Cyclotron Institute, Texas A&M University Title: "Azimuthal Transverse Single-Spin Asymmetries of Charged Pions Within Jets from Polarized pp Collisions at sqrt(s) = 200 GeV" Abstract: Collins effect involves convolution of the quark transversity in the proton with the spin-dependent Collins fragmentation function, leading to azimuthal modulations of identified charged hadron yields about the jet axis. We report new preliminary results for the Collins asymmetry from 2015 proton+proton collisions at sqrt(s) = 200 GeV, which probe higher momentum scales (Q2 ~ 170 GeV2) than the measurements from semi-inclusive deep inelastic scattering (Q2 < 20 GeV2) and enable the test of the evolution, universality and factorization breaking in the transverse momentum dependent (TMD) formalisms. Second talk by: Huanzhao Liu, Indiana University, Center for Exploration of Energy and Matter Title: "Measurement of transverse single-spin asymmetries for di-jet production in polarized p+p collisions at sqrt(s) = 200 GeV at STAR" Abstract: We report a new measurement of the transverse single-spin asymmetries for pair-production of jets in collisions of transversely polarized protons at sqrt(s) = 200 GeV at STAR, with data taken in 2012 and 2015. The correlation between the transverse momentum of a parton (k_T) and the transverse spin (S) of its proton, moving in the longitudinal (p) direction, is probed in the measurement, together with an estimate of the corresponding Sivers calculated based on a simple kinematic model. By employing flavor-tagging to separate u- and d-quarks, we see non-zero Sivers effects for the first time in di-jet production in transversely polarized proton collisions.

  4. HET Lunch Seminar

    "Fine DWF ensembles: status and plans"

    Presented by Chulwoo Jung, BNL

    Friday, June 26, 2020, 12:15 pm
    https://bluejeans.com/507765681

    Hosted by: Peter Denton

  5. Physics Department Summer Lectures 2020

    "The Anomalous Magnetic Moment of the Muon"

    Presented by Bill Morse, BNL

    Friday, June 26, 2020, 12 pm
    Webcast

    Hosted by: Mary Bishai

    What is a muon? Who ordered that? What is a magnetic moment? What is anomalous about the magnetic moment of the muon? Most of the time, a muon is simply a muon, but very briefly, some of the time, by Quantum Mechanics, the muon is a muon, plus an electron, plus an anti-electron, for example. How can the vacuum know about all of the standard model, and all of the new physics beyond the standard model? You will know the answer to all these interesting questions after just one hour!

  6. virtual NT/RIKEN seminar

    "Postmerger gravitational-wave signatures of phase transitions in binary mergers"

    Presented by Lukas Weih, ITP Frankurt

    Friday, June 26, 2020, 9 am
    Webcast

    Hosted by: Nikhil Karthik

    With the first detection of gravitational waves from a binary system of neutron stars, GW170817, a new window was opened to study the properties of matter at and above nuclear-saturation density. Reaching densities a few times that of nuclear matter and temperatures up to 100 MeV, such mergers represent potential sites for a phase transition from confined hadronic to deconfined quark matter. While for GW170817 the postmerger signal could not be detected, such a signal will be a powerful observable in the near future. In this seminar I will present the possible scenarios of how a phase transition to quark-gluon plasma can take place in the postmerger phase of a binary neutron star merger. I will focus on the most recently explored scenario of a so-called ``delayed phase transition'', where the merger remnant transitions from a purely hadronic hypermassive neutron star to a meta-stable hypermassive hybrid star with a dense quark core. This process promises to yield the strongest signature in the gravitational-wave signal for the production of quark matter in the present Universe. Bluejeans link: https://bnl.bluejeans.com/726276981

  7. Particle Physics Seminar

    "Direct CP violation and the Delta I=1/2 rule in K to pi pi decay from the Standard Model"

    Presented by Christopher Kelly, BNL

    Thursday, June 25, 2020, 3 pm
    Webcast

    Hosted by: Viviana Cavaliere

    I discuss our recent publication [arXiv:2004.09440] of a lattice QCD calculation of the ΔI=1/2, K→ππ decay amplitude A0 and ?′, the measure of direct CP-violation in K→ππ decay. This quantity is highly sensitive to new sources of CP violation that might help to explain the matter/antimatter asymmetry in the observable Universe. This calculation dramatically improves on our 2015 results [Phys.Rev.Lett. 115 (2015) 21, 212001], including nearly four times the statistics and numerous technical improvements allowing us to more reliably isolate the ππ ground-state and more accurately relate the lattice operators to those defined in the Standard Model. Join Zoom Meeting https://cern.zoom.us/j/94462510754?pwd=Ri9ZUFRIaFFnMFFEMThPeDFzUFJiUT09 Meeting ID: 944 6251 0754 Password: 540367 One tap mobile +41432107042,,94462510754# Switzerland +41432107108,,94462510754# Switzerland Dial by your location +41 43 210 70 42 Switzerland +41 43 210 71 08 Switzerland +41 31 528 09 88 Switzerland +33 1 7037 9729 France +33 7 5678 4048 France +33 1 7037 2246 France Meeting ID: 944 6251 0754 Find your local number: https://cern.zoom.us/u/a8kjRRik8 Join by SIP 94462510754@188.184.85.92 94462510754@188.184.89.188 Join by H.323 188.184.85.92 188.184.89.188 Meeting ID: 944 6251 0754 Password: 540367

  8. RIKEN Seminar

    "Nonperturbative quark-flavor breaking at chiral crossover criticality in hot QCD"

    Presented by Mamiya Kawaguchi, Fudan University

    Thursday, June 25, 2020, 9 am
    Webcast

    Hosted by: Akio Tomiya

    We discuss the violation of quark-flavor symmetry at high temperatures, induced from axial anomaly and nonperturbative thermal loop corrections. To perform the nonperturbative analysis, we employ a three-flavor linear-sigma model based on the Cornwall-Jackiw-Tomboulis formalism, in which the flavor breaking induced by the axial anomaly plays a significant role in the light scalar meson spectrum and the vacuum structure of the chiral symmetry. In this talk, we will show the flavor breaking effects on the quark condensates and the meson spectroscopy. The critical flavor violation in the topological susceptibility will be also presented. BJ link: https://bluejeans.com/871723105

  9. HET Seminar

    "Axion like particles at Kaon experiments"

    Presented by Stefania Gori, University of Chicago

    Wednesday, June 24, 2020, 2:30 pm
    Webcast

    Hosted by: Peter Denton

    The two Kaon factories, KOTO and NA62, are at the cutting edge of the intensity frontier, with an unprecedented number of long lived and charged Kaons being measured and analyzed. These experiments have a unique opportunity to search for dark sectors. In this seminar, I will explore the complementarity of NA62 and KOTO in probing axion-like-particle (ALP) models, where the ALP is produced from Kaon decays. I will highlight theoretical progress in the calculation of the rates for K -> pi ALP, and possible ways to violate the Grossman-Nir bound that relates K^+ and K_L decays. I will also propose possible new experimental searches that can be performed in the future by the two collaborations, and compare their reach with the reach of other high intensity experiments. Finally, I will also discuss possible models that address the current KOTO anomaly.

  10. Physics Department Summer Lectures 2020

    "Standard Model: Necessary but not Sufficient"

    Presented by Hooman Davoudiasl, BNL

    Tuesday, June 23, 2020, 12 pm
    Webcast

    Hosted by: Mary Bishai

    Although the Standard Model of particle physics, in conjunction with General Relativity, explains a wide range of physical phenomena, there are good reasons to believe that it does not represent a complete description of Nature. In this lecture, we will introduce the Standard Model and discuss some of its empirical and conceptual shortcomings. Some of the ideas that have been proposed to address these open questions will also be briefly discussed.

  11. Nuclear Physics Seminar

    "Recent STAR SPIN results I"

    Presented by Zhanwen Zhu and Maria Zurek, Shandong University/Lawrence Berkeley National Laboratory

    Tuesday, June 23, 2020, 11 am
    Webcast

    Hosted by: Rongrong Ma

    Measurement of transverse single spin asymmetries at forward rapidities by the STAR experiment at √s = 200 and 500 GeV Zhanwen Zhu, Shandong University We present recent results of transverse single spin asymmetries (TSSA) for neutral pions using the Forward Meson Spectrometer at STAR at center of mass energies of 200 and 500 GeV in proton-proton collision. In order to separate the contribution of initial and final state effects at both energies, we also measured for the electromagnetic jet TSSA and the Collins asymmetry for neutral pions inside the electromagnetic jet. These results together provide rich information to understand the origin of neutral pion TSSA. Longitudinal double-spin asymmetries for inclusive jets produced in √s = 200 GeV proton-proton collisions Maria Zurek, Lawrence Berkeley National Laboratory STAR measures double-spin asymmetries ALL in longitudinally polarized proton-proton collisions to determine the gluon helicity distribution ?G(x,Q2). Previously published inclusive jet results based on √s = 200 GeV data collected in 2009 provided first evidence for positive gluon polarization for a momentum fraction x > 0.05 at a hard perturbative scale Q2 = 10 GeV2. This talk will present new preliminary results from 2015 data with an approximately twice larger figure of merit and correspondingly better precision.

  12. virtual NT/RIKEN seminar

    "Prompt, pre-equilibrium, and thermal photons in relativistic nuclear collisions"

    Presented by Akihiko Monnai, JWU Tokyo

    Friday, June 19, 2020, 9 am
    Webcast

    Hosted by: Nikhil Karthik

    The direct photon emission model in relativistic nuclear colliders has been improved in recent years for reducing the discrepancy between theoretical estimations and experimental data and for understanding the properties of the QCD matter. In this talk, the contribution of pre-equilibrium photons are investigated in addition to those of prompt and thermal photons in the framework of a relativistic hydrodynamic model. The numerical simulations at an LHC energy suggest that the pre-equilibrium photons may be relevant at intermediate transverse momentum near the saturation momentum scale, increasing particle spectra and reducing elliptic flow of direct photons. Bluejeans link: https://bnl.bluejeans.com/726276981

  13. Particle Physics Seminar

    "CUORE, CUPID, and the Nature of Neutrino Mass"

    Presented by Dr Pranava Teja Surukuchi, Yale University

    Thursday, June 18, 2020, 3 pm
    Webcast

    Hosted by: Hanyu Wei

    The nature of neutrino masses is one of most important open questions in particle physics and has implications of physics beyond the standard model that could hint towards the observed particle-antiparticle asymmetry in the universe. Neutrinoless double-beta decay (0ννβ) is a very rare, hypothesized nuclear process, and is the only practical mechanism that could demonstrate if neutrinos have a Majorana nature. The Cryogenic Underground Observatory for Rare Events (CUORE) located at Laboratori Nazionali del Gran Sasso (LNGS) in Italy is the first ton-scale bolometer experiment that searches for neutrinoless double-beta decay in 130Te. CUORE started collecting data in 2017, and after operational upgrades in 2018, is stably operating with a current exposure of 724.3 kg-yr, with the aim of reaching 5 yr of live time. Using an exposure of 372.5 kg-yr, CUORE set a lower limit of 3.2×1025 yr (90% C.I) on the half-life of 130Te. In this talk, recent results from the latest CUORE analysis campaign will discussed. The current status of CUPID (CUORE Upgrade with Particle IDentification), the proposed experimental upgrade to CUORE, will also be discussed. ZOOM connection: https://fnal.zoom.us/j/98257631764?pwd=MisxZHErTHJBemVsckJFU1VMWWQxQT09 Meeting ID: 982 5763 1764 Password: 493303

  14. Condensed-Matter Physics & Materials Science Seminar

    "Nonequilibrium Dynamics of Collective Excitations in Quantum Materials"

    Presented by Edoardo Baldini, Massachusetts Institute of Technology

    Thursday, June 18, 2020, 11 am
    https://bluejeans.com/956965585

    Hosted by: Mark Dean

    Revealing the dynamics of collective excitations in strongly correlated electron systems is a subject of pivotal importance, as collectivity lies at the origin of several cooperative phenomena that cause profound transformations, instabilities, and phase transitions. In this talk, I will discuss the dynamics of collective excitations (e.g., excitons, magnons, phonons) from the perspective of ultrafast science [1-3]. In particular, I will focus on the role that specific collective excitations play in the formation of hidden phases of matter, i.e. phases that do not have counterparts in the equilibrium phase diagrams of quantum materials. As an example, I will describe our recent discovery of a transient antiferromagnetic metallic phase in a prototypical layered Mott insulator [4]. We observed this phase upon photoexciting a sub-Mott gap exciton-magnon mode, an exotic state of bound electron-hole pairs dressed with the spin degree of freedom [5]. Driving this peculiar exciton also allowed us to realize the coherent control of the underlying antiferromagnetic order for tens of picoseconds, a feature that can lead to the development of novel all-optical magnonic devices. [1] E. Baldini, Nonequilibrium Dynamics of Collective Excitations in Quantum Materials, Springer (2018) [2] E. Baldini*, C. A. Belvin* et al., Nat. Phys. 16, 541-545 (2020) [3] X. Li et al., Science 364, 1079-1082 (2019) [4] C. A. Belvin*, E. Baldini* et al., in review (2020) [5] S. Kang et al., Nature, in press (2020) https://bluejeans.com/956965585

  15. RIKEN Seminar

    "Deep learning black hole metrics from shear viscosity"

    Presented by Prof. Shao-Feng Wu, Hanghai University, Yangzhou University

    Thursday, June 18, 2020, 9 am
    https://bluejeans.com/871723105

    Hosted by: Nikhil Karthik

    Based on the AdS/CFT correspondence, we build up a simple deep neural network to learn the black-hole metrics from the complex frequency-dependent shear viscosity. The network architecture provides a discretized representation of the holographic renormalization group flow of the shear viscosity and is applicable for a large class of strongly coupled field theories. Given the existence of the horizon and guided by the smoothness of spacetimes, we show that the Schwarzschild and Reissner-Nordstrom metrics can be learned accurately. Moreover, we illustrate that the generalization ability of the deep neural network can be excellent, which indicates that using the black hole spacetime as a hidden data structure, a wide spectrum of the shear viscosity can be generated from a narrow frequency range. Our work might not only suggest a data-driven way to study holographic transports, but also shed new light on the emergence mechanism of black hole spacetimes from field theories.

  16. HET Seminar

    "Catching scalar singlets at colliders"

    Presented by Matthias Schlaffer, University of Chicago

    Wednesday, June 17, 2020, 2:30 pm
    Webcast

    Hosted by: Peter Denton

    Scalar extensions of the Standard Model provide simple yet phenomenologically rich models for BSM physics that can be looked for at current and future colliders. In my talk I will focus on the renormalizable scalar singlet extension and the relaxion as two benchmark models. Using these benchmarks I will discuss the various strategies needed at the LHC and future colliders to explore their vast parameter space. In particular I will discuss direct search strategies with prompt, displaced, and invisible signatures as well as indirect searches. https://bluejeans.com/767813754

  17. Nuclear Physics Seminar

    "Machine learning based reconstruction of jet transverse momentum in ALICE"

    Presented by Hannah Bossi, Yale

    Tuesday, June 16, 2020, 11 am
    https://bluejeans.com/165700359.

    Hosted by: Alba Soto Ontoso

    Jets in heavy-ion collisions are expected to lose energy through strong interactions with the QGP medium, a phenomena referred to as jet quenching. Experimental observations of jet quenching through observables such as the nuclear modification factor ($R_{\rm AA}$) rely on the precise reconstruction of jet transverse momentum ($p_{\rm T}$). However, jet $p_{\rm T}$ reconstruction is made difficult in heavy-ion collisions due to the large fluctuating background from the underlying event. One common treatment of this background is to perform a pedestal subtraction of the event-averaged momentum density. While this method effectively corrects for the average background, it does not account for region-to-region fluctuations. A novel method to correct the jet $p_{\rm T}$ using machine learning (ML) techniques will be presented. This method utilizes ML techniques to reconstruct the jet $p_{\rm T}$ from jet parameters, including the constituents of the jet. With an ML-based correction, residual fluctuations are reduced, allowing for measurements of the nuclear modification factor at lower $p_{\rm T}$ and larger jet radii (\textit{R}) than previously possible in ALICE. Extending measurements to these regions could help disentangle competing mechanisms of jet energy loss and the recovery of said energy due to the response of the medium. Studies that investigate and estimate the potential fragmentation bias of this ML approach will also be presented. Keeping such studies in mind, comparisons to models will be shown, with the aim of constraining such models at the previously unexplored region of lower $p_{\rm T}$.

  18. virtual NT/RIKEN seminar

    "The quest for precision across scales"

    Presented by Gregory Soyez, IPhT

    Friday, June 12, 2020, 9 am
    Webcast

    Hosted by: Nikhil Karthik

    Monte Carlo event generators are among the most used tools in high-energy physics today. As an introduction, I will explain what is their role in modern collider phenomenology. The talk will focus on a central part of Monte Carlo generators, the parton shower, which essentially covers all the scales between the hard scale of the collision and the non-perturbative scale. I will describe how typical parton-shower algorithms are built. I will then report on a recent work (arXiv:2020:11114) where we introduced a new set of parton showers aimed at achieving an unprecedented (logarithmic) accuracy. https://bnl.bluejeans.com/726276981

  19. Particle Physics Seminar

    "Stop(Zh) Neural Networks! A case study in 3rd generation SUSY searches using Machine Learning"

    Presented by Gabriele D'Amen, BNL

    Thursday, June 11, 2020, 3 pm
    Webcast

    Hosted by: Viviana Cavaliere

    The widespread use of Machine Learning techniques in the high energy physics community is driving the creation of tools to simplify the implementation of Neural Network methods in a wide variety of analyses. We have developed an artificial neural network framework (HTag) to identify bb pairs coming from the decay of Higgs bosons in events with large jet multiplicities. The use of HTag is expected to improve reconstruction efficiency in a wide kinematic region and to reduce invariant mass bias with respect to traditional reconstruction methods. Information reconstructed with HTag has been used in a search for direct top squark pair production in events with missing transverse momentum plus either a pair of jets consistent with the Standard Model Higgs boson decay to b-quarks or a same-flavour opposite-sign dilepton pair with invariant mass consistent with a Z boson. The analysis is performed using the proton-proton collision data at √s=13 TeV collected by the ATLAS experiment during the LHC Run-2, corresponding to an integrated luminosity of 139 fb−1. No excess is observed in the data with respect to the Standard Model predictions. Zoom information: https://cern.zoom.us/j/97420636116?pwd=N083bERNQ3d4RTBFS0hXU1M5Vytvdz09 Meeting ID 974 2063 6116 Meeting Password 040606

  20. RIKEN Seminar

    "Transport and hydrodynamics in the chiral limit"

    Presented by Alexander Soloviev, Stony Brook University

    Thursday, June 11, 2020, 9 am
    Webcast

    Hosted by: Yuta Kikuchi

    I will discuss the evolution of hydrodynamic fluctuations for QCD matter below T_c in the chiral limit. The theoretical description is ordinary hydrodynamics at long distances and superfluid-like at short distances. The latter is represented by pions (the Goldstone modes), reflecting the broken SU(2)_L x SU(2)_R symmetry. The superfluid degrees of freedom contribute to the transport coefficients of the ordinary theory at long distances. This determines the leading dependence of some transport parameters of QCD on the pion mass. I will make some comments on the predictions of this computation near the O(4) critical point. https://bluejeans.com/724325293

  21. HET Seminar

    "Chat"

    Wednesday, June 10, 2020, 2:30 pm
    Webcast

    This week's seminar will be replaced with a casual conversation motivated by: https://www.particlesforjustice.org. There is no scheduled content, just a place for interested parties to discuss racial issues. https://bluejeans.com/767813754

  22. HET Seminar: SPECIAL DAY

    "The Higgs Portal: Constraints on New Physics"

    Presented by Milada Mühlleitner, KIT

    Tuesday, June 9, 2020, 2:30 pm
    Webcast

    Hosted by: Peter Denton

    One of the main goals of the LHC is the search for New Physics. So far, the only new particle that has been discovered at the LHC is the Higgs boson. There is no direct sign of any particle beyond the Standard Model (SM) so far. In view of this situation we have to ask ourselves how we can exploit the Higgs sector to search indirectly for New Physics. I will discuss the role that the effective field theory (EFT) approach plays in this context. EFT is a possibility to smoothly depart from the SM and parametrize our ignorance about NP by assuming that NP appears at some high energy scale. I will focus on the top-Higgs interface and Higgs pair production and discuss the role of global fits. Since EFT assumes NP to be heavy, the combined analysis within EFT and specific UV-complete models is important in order not to miss any sign of NP. I will hence also present some specific examples of Higgs pair production in UV-complete models. https://bluejeans.com/767813754

  23. Nuclear Physics Seminar

    "Highlights of the charge separation measurements using the $R_{\Psi_m}(\Delta S)$ correlator implications for the chiral magnetic effect"

    Presented by Niseem Abdelrahman, Stony Brook University

    Tuesday, June 9, 2020, 11 am
    Webcast

    Hosted by: Jiangyong Jia

    The study of anomalous transport in QGP can give fundamental insight not only on the complex interplay of chiral symmetry restoration, axial anomaly, and gluon topology but also on the evolution of magnetic fields in the early Universe. A primary anomalous process predicted to occur in the magnetized QGP, created in RHIC collisions is the chiral magnetic effect (CME). In this talk, I will discuss the rudiments and the results from studies involving the use of a new charge sensitive correlator $R_{\Psi_m}(\Delta S)$, designed to detect and characterize the CME. The experimental measurements performed with the $R_{\Psi_m}(\Delta S)$ correlator, show the expected patterns for background-driven charge separation for the measurements relative to $\Psi_3$ and those relative to $\Psi_2$ for the $p$($d$)+Au systems. By contrast, the Au+Au measurements relative to $\Psi_2$, show event-shape-independent $R_{\Psi_2}(\Delta S)$ distributions consistent with a CME-driven charge separation, quantified by widths having an inverse relationship to the Fourier dipole coefficient $\tilde{a}_1$, which evaluates the CME. The $R_{\Psi_2}(\Delta S)$ results and their dependencies on the system-size, centrality, and event-shape, as well as the future use of the correlator, will be discussed in details. https://bluejeans.com/165700359.

  24. HET Lunch Seminar

    "Gravitational Interactions and Neutrino Masses"

    Presented by Hooman Davoudiasl, BNL

    Friday, June 5, 2020, 12:15 pm
    Webcast

    Hosted by: Peter Denton

    We describe a scenario where the smallness of neutrino masses is related to a global symmetry that is only violated by quantum gravitational effects. Here, the coupling of neutrinos to gauge singlet right-handed fermions is attributed to symmetry preserving gravitational operators suppressed by the Planck mass. The proposed scenario leads to axion particles that decay into neutrinos, which could be probed through cosmological measurements and may help explain the Hubble parameter tension. The scenario could potentially provide axion dark matter candidates. https://bluejeans.com/507765681

  25. RIKEN Seminar

    "From quarks to nuclei: machine learning the structure of matter"

    Presented by Phiala Shanahan, MIT

    Thursday, June 4, 2020, 12 pm
    Webcast

    Hosted by: Akio Tomiya

    I will discuss the status and future of lattice Quantum Chromodynamics (QCD) calculations for nuclear physics. With advances in supercomputing, we are beginning to quantitatively understand nuclear structure and interactions directly from the fundamental quark and gluon degrees of freedom of the Standard Model. Recent studies provide insight into the neutrino-nucleus interactions relevant to long-baseline neutrino experiments, double beta decay, and nuclear sigma terms needed for theory predictions of dark matter cross-sections at underground detectors. The rapid progress in this field has been possible because of new algorithms but challenges still remain to reach the large nuclei used in many of these experiments. Recently, machine learning tools have been shown to provide a potentially revolutionary way to address these challenges and allow a Standard Model understanding of the physics of nuclei. Bluejeans link: https://bluejeans.com/806818825

  26. HET Lunch Seminar

    "Work In Progress: Lattice QCD in the Nucleon Resonance Region"

    Presented by Aaron Meyer, Brookhaven National Lab

    Friday, May 29, 2020, 12:15 pm
    Webcast

    Hosted by: Peter Denton

    Bluejeans link is https://bluejeans.com/507765681.

  27. virtual NT/RIKEN seminar

    "First-principles calculation of electroweak box diagrams from lattice QCD"

    Presented by Luchang Jin, U. Conn

    Friday, May 29, 2020, 9 am
    Webcast

    Hosted by: Nikhil Karthik

    Bluejeans link: https://bnl.bluejeans.com/726276981

  28. Particle Physics Seminar

    "Dijet resonance search with weak supervision using √s = 13 TeV pp collisions in the ATLAS detector"

    Presented by Aviv Cukierman, SLAC

    Thursday, May 28, 2020, 3 pm
    Webcast

    Hosted by: Viviana Cavaliere

    We present a search for resonant new physics using a machine learning anomaly detection procedure that does not rely on a signal model hypothesis. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a 3-dimensional search A → BC, for mA ∼ O(TeV), mB,mC ∼ O(100 GeV) and B,C → large-radius jet, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full Run 2 √s = 13 TeV pp collision dataset of 139 fb−1 recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence for a localized excess in the dijet invariant mass spectrum between 1.8 and and 8.2 TeV. Cross section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA = 3 TeV and mB ≥ 200 GeV, a production cross section between 1 and 5 fb is excluded, depending on mC. These limits are up to 20 times more sensitive than those obtained by the inclusive dijet search. Details for connection: on Zoom: Direct link https://cern.zoom.us/j/99990161911?pwd=Wk5xVzhzSTd4MXV2ZHllMHl0TDVoUT09 Meeting ID 999 9016 1911 Password: 893053

  29. Virtual BNL RIKEN Seminar

    "Sign Problem in Monte Carlo Simulations and the Tempered Lefschetz Thimble Method"

    Presented by Masafumi Fukuma, Kyoto U.

    Thursday, May 28, 2020, 9 am
    Webcast

    Hosted by: Akio Tomiya

    The tempered Lefschetz thimble method (TLTM) [arXiv:1703.00861] is a parallel-tempering algorithm towards solving the numerical sign problem. It uses the deformation parameter of integration surface (the flow time of the antiholomorphic gradient flow) as a tempering parameter, and is expected to tame both the sign and ergodicity problems simultaneously that exist intrinsically in thimble methods. In this talk, I explain the basics of TLTM, and apply the method to various problems, including the quantum Monte Carlo simulation of the Hubbard model away from half filling and the chiral random matrix models with finite temperature and finite chemical potential. This talk is based on collaboration with Nobuyuki Matsumoto and Naoya Umeda [arXiv: 1703.00861, 1906.04243, 1912.13303]. Bluejeans Link: https://bluejeans.com/871723105

  30. HET Lunch Seminar

    "Visible Decay of Astrophysical Neutrinos at IceCube"

    Presented by Peter Denton, BNL

    Friday, May 22, 2020, 12:15 pm
    https://bluejeans.com/507765681

  31. virtual NT/RIKEN seminar

    "Why is chemical freezeout at the chiral cross over temperature?"

    Presented by Sourendu Gupta, TIFR Mumbai

    Friday, May 22, 2020, 9 am
    Webcast

    Hosted by: Nikhil Karthik

    Studies of the composition of the fireball produced in very high energy heavy-ion collisions show that the composition is that of an equilibrium gas of hadrons at a temperature of about 155 MeV, and zero chemical potential. At the same time, lattice computations show that the chiral cross over of QCD occurs at a temperature of about 155 MeV. The composition of the fireball is a question of the dynamics of hadron reactions, whereas the location of a cross over is a question about the equilibrium free energy density. I describe a computation which shows why they coincide. Bluejeans link: https://bnl.bluejeans.com/726276981

  32. RIKEN Seminar

    "From anomalous correlations to dark matter: the effects of higher topological charge"

    Presented by Fabian Rennecke, BNL

    Thursday, May 21, 2020, 9 am
    Bluejeans link: https://bluejeans.com/651508428

    Hosted by: Yuta Kikuchi

    Topological gauge field configurations play an important role in the phenomenology of QCD. The axial anomaly is inextricably linked to topological effects. They give rise to anomalous meson masses, affect the order of the chiral phase transition, and lead to the chiral magnetic effect which is relevant for condensed matter and heavy-ion physics. On the flip side, topological gauge field configurations can also give rise to CP violating effects in QCD. A potential resolution of this strong CP problem involves a new particle, the axion. Incidentally, axions are also viable dark matter candidates and their properties are largely determined by the distribution of topological charge in QCD. At high energies in the deconfined regime, the topological structure of QCD is well described by a dilute gas of instantons. In this regime all the effects mentioned above are typically studied based on instantons of unit topological charge. As discussed in this talk, there are also effects uniquely related to instantons of higher topological charge. On the one hand, they give rise to higher-order anomalous quark correlations which manifest themselves in anomalous hadronic interactions. On the other hand, they modify the distribution of topological charge. This, in turn, affects the properties of axions and can lead to a topological mechanism to increase the amount of axion dark matter.

  33. HET Seminar

    "Probing High-Energy Light Dark Matter with IceCube"

    Presented by Meng-Ru Wu, Institute of Physics, Academia Sinica

    Wednesday, May 20, 2020, 10 am
    https://bluejeans.com/767813754

    Hosted by: Peter Denton

    The direct detection of particle dark matter through its scattering with nucleons is of fundamental importance to understand the nature of dark matter. In our recent work 2004.03161, we proposed that the high-energy neutrino detectors like IceCube can be used to uniquely probe the dark matter — nucleon cross-section for high-energy DM of ~ PeV, up-scattered by the high-energy cosmic rays. We derive for the first time constraints on the dark matter — nucleon cross-section down to ~ 10^-32 cm^2 at this energy scale for sub-GeV dark matter. Such independent probe at energy exceeding other existing direct detection experiments can provide useful insights complementary to other searches.

  34. Particle Physics Seminar

    "First Detection of Coherent Elastic Neutrino-Nucleus Scattering on Argon"

    Presented by Dr Jacob Daughhetee, University of Tennessee

    Tuesday, May 19, 2020, 3 pm
    Webcast

    Hosted by: Hanyu Wei

    In 2017, the COHERENT collaboration made the first observation of coherent elastic neutrino-nucleus scattering (CEvNS) using a 14.6 kg CsI scintillating crystal detector located at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. In addition to neutrons, the 1.4 MW pulsed (60 Hz) proton beam at the SNS produces charged pions which subsequently decay to yield a large neutrino flux with a well-known energy spectrum and time structure. COHERENT employs a suite of detectors at the SNS to search for CEvNS in different target nuclei and to measure potential backgrounds. This multi-target program allows for testing of Standard Model predictions for CEvNS as well as for verifying the N^2 -dependence of the cross section of this interaction. CENNS-10, a 24 kg liquid argon scintillation detector, has been actively taking data at the SNS since the spring of 2017. This talk will detail the methods and results of a search for and detection of CEvNS in CENNS-10 data. Zoom link is https://fnal.zoom.us/j/99418285608?pwd=T05PMFcyZ1ZjY2hscU9zTzNsUTFTQT09

  35. Nuclear Physics Seminar

    "New Results on Short-Range Correlations from 48 GeV/c 12C+p Reactions - from the Nuclotron to FAIR and the"

    Presented by Prof. Or Hen, MIT

    Tuesday, May 19, 2020, 11 am
    Webcast

    Hosted by: Alba Soto Ontoso

    New results from a measurement of 12C+p reactions performed at the JINR in Dubna with a 48 GeV/c Carbon-12 beam demonstrate the feasibility of accessing properties of short-range correlated nucleons in nuclei with hadronic probes and by using inverse kinematics. We extract the ground-state distributions of single nucleons and correlated nucleon pairs (SRC) in quasi-free kinematics in an exclusive measurement by detecting the two scattered protons at large angles in coincidence with an intact heavy fragment. The post-selection of heavy fragments is shown to suppress the otherwise large contributions from final-state interactions. This allowed for the first time to select and study properties of correlated nucleon pairs in inverse kinematics. This new measurement showcases a new ability to relate short-distance nuclear and partonic dynamics via fragment tagging at the EIC and to study the short-distance structure of short-lived neutron-rich nuclei at the forthcoming FRIB and FAIR facilities. Bluejeans link is https://bluejeans.com/165700359.

  36. HET Lunch Seminar

    "Getting a THUMP from a WIMP"

    Presented by Dr Gopolang Mohlabeng, BNL

    Friday, May 15, 2020, 12:15 pm
    Webcast

    Hosted by: Peter Denton

    Bluejeans link:https://bluejeans.com/507765681

  37. virtual NT/RIKEN seminar

    "Quantum criticality in fermion-bag inspired Hamiltonian lattice field theories"

    Presented by Emilie Huffman, Perimeter Institute

    Friday, May 15, 2020, 11 am
    Webcast

    Hosted by: Nikhil Karthik

    Motivated by the fermion bag approach—a quantum Monte Carlo approach that takes advantage of grouped local degrees of freedom—we consider a new class of Hamiltonian lattice field theories that can help us study fermionic quantum critical points. We construct the partition function of a lattice Hamiltonian in 2+1 dimensions in discrete time, with a temporal lattice spacing \varepsilon. When \varepsilon \rightarrow 0, we obtain the partition function of the original lattice Hamiltonian. But when \varepsilon = 1, we obtain a new type of space-time lattice field theory which treats space and time differently, but still lacks fermion doubling in the time dimension, in contrast to Lagrangian lattice field theories. Here we show that both continuous-time and discrete-time lattice field theories derived from the t-V model have a fermionic quantum critical point with critical exponents that match within errors. The fermion bag algorithms run relatively faster on the discrete-time model and allow us to compute quantities even on 100^3 lattices near the quantum critical point. Bluejeans link: https://bnl.bluejeans.com/726276981

  38. HET Seminar

    "Dark Sector Decays in the DUNE Multipurpose Near Detector"

    Presented by Kevin Kelly, FNAL

    Wednesday, May 13, 2020, 2:30 pm
    Webcast

    Hosted by: Peter Denton

    The upcoming Deep Underground Neutrino Experiment will enable precision measurements of physics in the neutrino sector, a long-standing goal since the phenomenon of neutrino oscillations was observed. In order to meet its ambitious goals, DUNE will consist of argon-based detectors: a 40 kiloton liquid argon far detector, and several components at its near detector site at Fermilab. Included in this near detector plan is the Multi-Purpose Detector, a gaseous argon detector surrounded by an electromagnetic calorimeter, all situated within a magnetic field. I will demonstrate how this MPD can be used for physics beyond neutrino oscillations, specifically, searching for the decays of new particles that could be associated with dark matter. The MPD is able to improve current experimental limits in searches for Dark Photons, Dark Higgs Bosons, Leptophilic gauge bosons, and Heavy Neutral Leptons. I will also show an intriguing possibility if a Heavy Neutral Lepton is discovered by DUNE, where the possibility of determining whether such a new particle is a Dirac or Majorana fermion is possible. Bluejeans link : https://bluejeans.com/767813754

  39. virtual NT/RIKEN seminar

    "Open QFTs from holography"

    Presented by R. Loganayagam, ICTS, Bangalore

    Friday, May 8, 2020, 9 am
    Webcast

    Hosted by: Nikhil Karthik

    In this talk, I will outline a formalism to study open quantum field theories using holographic methods. More precisely, I will consider a quantum field theory (the system) coupled to a holographic field theory at finite temperature (the environment). The aim here is to integrate out the holographic environment with an aim of obtaining an effective dynamics for the resulting open quantum field theory. This is done using semiclassical gravitational Schwinger-Keldysh saddle geometries obtained by complexifying black hole spacetimes. In addition to shedding light on open quantum systems coupled to strongly correlated thermal environments, these results also provide a principled computation of Schwinger-Keldysh observables in gravity and holography. In particular, these influence functionals capture both the dissipative physics of black hole quasinormal modes, as well as that of the fluctuations encoded in outgoing Hawking quanta, and interactions between them. This talk will be based on https://arxiv.org/abs/2004.02888 Bluejeans link: https://bnl.bluejeans.com/726276981

  40. Condensed-Matter Physics & Materials Science Seminar

    "Towards Novel Quantum Materials: Design, Synthesis and Characterizations"

    Presented by Ruidan Zhong, Princeton University

    Thursday, May 7, 2020, 1:30 pm
    Zoom CMPMSD Seminar

    Hosted by: Qiang Li

    Quantum materials are materials where the extraordinary effects of quantum mechanics give rise to exotic and often incredible properties. To understand their basic behavior if we are to enable optimization for a specific purpose, discovering novel quantum materials is a primary task for scientists in the field of condensed matter physics and materials science. In this seminar, research strategies toward novel quantum materials in experiment will be introduced from the perspective of chemistry, materials science and physics. Such research process leads to fruitful results, and two recent discovered candidates of quantum spin liquid (QSL) will be presented as an example. The first candidate is a geometric frustrated magnet, Na2BaCo(PO4)2, which is structurally perfect without intrinsic disorder. Experimental results, including magnetization, specific heat, and neutron scattering, have indicated that this compound is an ideal QSL candidate. The second compound, BaCo2(AsO4)2, are believed to be a Kitaev QSL candidate. This is the first time that Kitaev physics are proposed to be realized in 3d-transition-metal honeycomb in experiment. Non-Kitaev interactions can be fully suppressed by low field, yielding nonmagnetic ground state and many other similarities with the well-studied Kitaev QSL α-RuCl3. https://us02web.zoom.us/j/89625989696

  41. HET Lunch Seminar

    "Flavorful Higgs Physics from the MeV to TeV scale"

    Presented by Samuel Homiller, YITP, Stony Brook

    Friday, May 1, 2020, 12:15 pm
    Webcast

    Hosted by: Peter Denton

    I will discuss two related opportunities for searching for new physics with flavorful couplings to the Standard Model, both intimately related to the Higgs boson. First, I will discuss the recently observed events at the KOTO experiment, and how they could be explained by Higgs portal extensions to the Standard Model. I will then discuss the interplay of BSM flavor physics and the Higgs more generally, with an emphasis on the usual theoretical biases about how new physics may couple to the Standard Model. This will lead me to an introduction to the Spontaneous Flavor Violation (SFV) framework, which avoids some of these biases while allowing for large couplings between new physics and any SM quark generation in a robust and UV complete way. In the context of extended Higgs sectors, the SFV Ansatz leads to strikingly different phenomenology compared to typical models at both the energy and intensity frontiers, and provides strong motivation for developing new techniques such as light quark taggers at colliders. Bluejeans link:https://bluejeans.com/507765681

  42. virtual NT/RIKEN seminar

    "Transverse momentum distributions: predictive power and flavor structure"

    Presented by Andrea Signori, Jlab

    Friday, May 1, 2020, 9 am
    Webcast

    Hosted by: Nikhil Karthik

    Transverse momentum distributions (TMDs) allow one to map the hadronic structure in a three-dimensional momentum space, exploring all the possible spin and momentum correlations between a hadron and its elementary constituents. I will discuss their predictive power as a function of the kinematics and, in particular, I will show that the flavor structure of the TMDs can have an impact on the determination of the W boson mass at the Large Hadron Collider, providing a new connection between 3D hadron tomography and high-energy physics. Bluejeans link: https://bnl.bluejeans.com/726276981

  43. HET Seminar

    "Lepton flavour violating decays into axion-like particles"

    Presented by Lorenzo Calibbi, Nankai University

    Wednesday, April 29, 2020, 10 am
    Webcast

    Hosted by: Peter Denton

    Pseudo Nambu-Goldstone bosons (also known as axion-like particles) with flavour-violating couplings to the Standard Model (SM) fermions are a rather generic consequence of spontaneously-broken global U(1) symmetries, e.g. if the SM fermions carry flavour non-universal charges. A possible consequence is the occurrence of flavour-violating decays of hadrons and leptons into light axion-like particles. These exotic signatures are a powerful probe of such kind of scenarios. I will discuss the phenomenological consequences at future experiments, focusing in particular on searches for lepton flavour violation, and compare their sensitivity to the symmetry-breaking scale with bounds from stellar evolution. Bluejeans link is https://bluejeans.com/767813754.

  44. HET Lunch Seminar

    "Validity of SMEFT studies of VH and VV Production at NLO"

    Presented by Samuel Lane, University of Kansas

    Friday, April 24, 2020, 12:15 pm
    https://bluejeans.com/507765681

    Hosted by: Peter Denton

    The production of W±H, ZH, W+W−, and W±Z pairs probes non-Standard-Model interactions of quarks, gauge bosons, and the Higgs boson. New effects can be parameterized in terms of an effective field theory (EFT) where the Lagrangian is expanded in terms of higher-dimension operators suppressed by increasing powers of a high scale Λ. We examine the importance of including next-to-leading-order QCD corrections in global fits to the coefficients of the EFT. The numerical implications on the fits due to different approaches to enforcing the validity of the EFT are quantified. We pay particular attention to the dependence of the fits on the expansion in 1/Λ2 since the differences between results calculated at O(1/Λ2) and O(1/Λ4) may give insight into the possible significance of dimension-8 effects

  45. virtual NT/RIKEN seminar

    "3D Tomography of Parton Motion inside Hadrons"

    Presented by Jianwei Qiu, Jefferson Lab

    Friday, April 24, 2020, 9 am
    Bluejeans: https://bnl.bluejeans.com/726276981

    Hosted by: Nikhil Karthik

    The TMD Topical Collaboration, funded by the DOE Office of Nuclear Physics, was formed by pulling together expertise in QCD theory, phenomenology and lattice QCD from 10 universities and 4 national labs to address the challenge to develop new theoretical and phenomenological tools that are urgently needed for precision extraction of 3D tomography of parton motion inside hadrons from current and future data. In this talk, I will briefly summarize the challenge to extract the true parton motion inside a bound hadron once it is broken by the collisions, and how the TMD Collaboration integrates our knowledge in QCD theory, phenomenology and lattice QCD to overcome the challenge.

  46. HET Seminar

    "The Boundary of the SMEFT"

    Presented by Grant Remmen, UC Berkeley

    Wednesday, April 22, 2020, 2:30 pm
    Webcast

    Hosted by: Peter Denton

    Hints of new physics are encoded as higher-dimension operators in effective field theory. The couplings of these operators, "dial settings" in the low-energy laws of physics, can be bounded using methods independent of the ultraviolet completion, relying only on principles like causality, unitarity of quantum mechanics, and properties of scattering amplitudes. In this talk, I will show how such infrared consistency techniques can be used to constrain operators in the EFT of the standard model. For quartic bosonic and fermionic operators at mass dimension 8, I will construct the bounds and discuss phenomenological consequences. These constraints give compelling near-term experimental implications for CP and flavor violation as well as collider physics, and provide us with powerful means to test the tenets of quantum field theory itself.

  47. HET Lunch Seminar

    "Unruh effect and quantum computing"

    Presented by Taku Izubuchi

    Friday, April 17, 2020, 12:15 pm
    Bluejeans:https://bluejeans.com/507765681

    Hosted by: Peter Denton

  48. Virtual NT/RIKEN seminar

    "Exploring aspects of QCD from Quantum Link Models"

    Presented by Debasish Banerjee, PNNL

    Friday, April 17, 2020, 9 am
    Bluejeans:https://bnl.bluejeans.com/726276981

    Hosted by: Nikhil Karthik

    QCD has been extensively studied in various regimes and using various methodologies. While the lattice regularized version is the most popular ab-initio version, this approach has problems dealing with dense, as well as non-equilibrium QCD matter. In this talk, I will introduce the so-called Quantum Link Models, which offer a different approach to the problem. We will explore some qualitative aspects of QCD and nuclear physics using these models.

  49. HET Lunch Seminar

    "Electroweak Baryogenesis, Higgs rates and EDMs with dim-6 complex Yukawas"

    Presented by Elina Fuchs, University of Chicago

    Wednesday, April 15, 2020, 2:30 pm
    Webcast

    Hosted by: Peter Denton

    Complex dimension-six Yukawa couplings of the Higgs boson to quarks and leptons have interesting implications for collider rates of Higgs production and decay, EDMs and CP violation for electroweak baryogenesis. We explore if there are viable regions fulfilling all of these three complementary constraints, considering real and imaginary dimension-six terms of the tau, muon, top and bottom, each flavor separately and combinations thereof that allow for cancellations in the EDM and an enhancement of the baryogenesis. We find that a complex tau Yukawa can account for the observed baryon asymmetry. Furthermore we highlight that a complex muon Yukawa large enough to account for the observed baryon asymmetry of the universe is allowed by the current bound on the electron EDM, but clearly ruled out by the recent upper bound on the Higgs decay rate to a pair of muons.

  50. Nuclear Physics Seminar

    "Exploration of the properties of the medium produced in large and small collision-systems with azimuthal anisotropy scaling functions"

    Presented by Roy Lacey, SBU

    Tuesday, April 14, 2020, 10 am
    Bluejeans: https://bnl.bluejeans.com/726276981

    Hosted by: Alba Soto Ontoso

  51. HET Lunch Seminar

    "Update on double Higgs production"

    Presented by Sally Dawson, BNL

    Friday, April 10, 2020, 12:15 pm
    Webcast

    Hosted by: Peter Denton

  52. NT/RIKEN Seminar

    "A mode by mode approach to heavy ion collision"

    Presented by Eduardo Grossi, SBU

    Friday, April 10, 2020, 9 am
    Bluejeans: https://bnl.bluejeans.com/726276981

    Hosted by: Nikhil Karthik

  53. Particle Physics Seminar

    "Maximizing the potential of neutrino experiments"

    Presented by Philip Rodrigues, University of Oxford

    Thursday, April 9, 2020, 3 pm
    Webcast

    Hosted by: Chao Zhang

    Present and future neutrino experiments will search for CP violation in the lepton sector, detect neutrinos from a galactic supernova, and search for evidence of sterile neutrinos. I will discuss two strands of work aimed at maximizing the success of these experiments: on DUNE, developing the far detector trigger system is vital to achieving the physics goals of the experiment; while on the SBN project, neutrino cross section uncertainties are a major systematic in the sterile neutrino oscillation analysis.

  54. CSI Q Seminar

    "CANCELLED Quantum-driven classical optimization"

    Presented by Helmut Katzgraber, Microsoft Research

    Wednesday, April 8, 2020, 1:30 pm
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    The advent of the first useful quantum computing devices has resulted in an arms race with classical algorithms on traditional computing hardware. While near-term quantum devices might revolutionize, e.g., optimization and quantum chemistry, tackling many applications will directly depend on either hybrid or purely classical computing techniques. Inspired by these recent exciting developments, a variety of new classical algorithms have emerged. In this talk an overview on quantum inspired methods and their applications is given.

  55. Particle Physics Seminar

    "Event reconstruction for high precision neutrino physics in LArTPCs"

    Presented by Hanyu Wei, Brookhaven National Laboratory

    Tuesday, April 7, 2020, 3 pm
    web cast

    Hosted by: Steve Kettell

  56. HET Lunch Seminar

    "A testable hidden-sector model for Dark Matter and neutrino masses"

    Presented by Julia Gehrlein, BNL

    Friday, April 3, 2020, 12:15 pm
    Webcast

    Hosted by: Peter Denton

  57. HET Lunch Seminar

    ""Physics Opportunities with Potential DUNE Beam Upgrades""

    Presented by Mary Bishai (BNL)

    Friday, March 27, 2020, 12:15 pm
    Bluejeans

    Hosted by: Peter Denton

    Bluejeans link is https://bluejeans.com/507765681 Bluejeans: You can call in from the US with: tel:+1.888.748.9073 and the meeting ID is 507 765 681.

  58. Particle Physics Seminar

    "Overcoming Neutrino Interaction Mis-modeling with DUNE-PRISM"

    Presented by Luke Pickering, Michigan State University

    Thursday, March 26, 2020, 3 pm
    web cast

    Hosted by: George Redlinger

    The expected precision of current long-baseline neutrino oscillation experiments (T2K, NOνA) will be limited by uncertainties in neutrino interaction models in addition to sample statistics. The interaction uncertainties will also play a significant role in next-generation experiments (DUNE, Hyper-K), which aim to collect much larger samples of oscillated neutrinos. Without significant advancements in neutrino-nucleus interaction modeling, traditional analyses will be susceptible to biased oscillation measurements. The DUNE-PRISM (Precision Reaction Independent Spectrum Measurement) technique offers a complementary approach to the oscillation analysis methods used by T2K, NOνA, and MINOS. DUNE-PRISM uses direct extrapolation of near detector data to infer oscillation probabilities with significantly less dependence on the validity of neutrino interaction models. This is achieved by combining multiple near detector measurements, each taken with the detector at a different off beam axis position, in order to sample a variety of neutrino energy spectra. This talk will introduce DUNE-PRISM and show how the oscillation parameters extracted using this technique are robust to unknown interaction modeling errors.

  59. CSI Q Seminar

    "CANCELLED"

    Presented by Evan Philip, Stony Brook University

    Wednesday, March 25, 2020, 6:30 pm
    Conference Room A, Bldg. 725

    Hosted by: Layla Hormozi

    TBA

  60. Particle Physics Seminar

    "Exploring the neutrino physics with the Deep Underground Neutrino Experiment"

    Presented by Jingbo Wang, University of California, Davis

    Tuesday, March 24, 2020, 3 pm
    Webcast

    Hosted by: Chao Zhang

    One of the biggest surprises in particle physics is that the neutrinos have mass, which was discovered by the neutrino oscillation experiments. This fundamental property of neutrinos leads to some new questions. What is the ordering of the neutrino mass states? Do the neutrinos violate the matter/antimatter symmetry? What characteristics does the neutrino mixing matrix have? The Deep Underground Neutrino Experiment (DUNE) will address these questions with the high-precision Liquid Argon Time Projection Chamber (LArTPC) technology. In this talk, I will give a brief overview of neutrino oscillations, then describe DUNE and its physics programs. I will also talk about the Pulsed Neutron Source as an innovative calibration technique for liquid argon TPCs. The precision measurements of the neutrinos will open a window to new physics beyond the standard model. We will discuss the future and prospects of neutrino physics.

  61. Particle Physics Seminar

    "Probing ν interactions for ν physics"

    Presented by Adi Ashkenazi, MIT

    Friday, March 20, 2020, 10:30 am
    web cast

    Hosted by: Vladmir Tischenko

    The ability of current and next generation accelerator based neutrino oscillation measurements to reach their desired sensitivity requires a high-level of understanding of the neutrino-nucleus interactions. These include precise estimation of the relevant cross sections and the reconstruction of the incident neutrino energy from the measured final state particles. Incomplete understanding of these interactions can skew the reconstructed neutrino spectrum and thereby bias the extraction of fundamental oscillation parameters and searches for new physics. In this talk I will present the first exclusive differential cross section measurement using neutrino-Argon Quasi Elastic like interactions from the MicroBooNE experiment. In addition, using wide phase-space electron scattering data, collected using the CLAS spectrometer at the Thomas Jefferson National Accelerator Facility (JLab), the reconstruction of the incoming lepton energy from the measured final state is being tested. Disagreements with current event generators, used in the analysis of neutrino oscillation measurements, are observed which indicate underestimation of nuclear effects. The impact of these findings on bias in oscillation analyses will be discussed.

  62. CSI Q Seminar

    "CANCELLED"

    Presented by Javad Shabani, NYU

    Wednesday, March 18, 2020, 1:30 pm
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    TBA

  63. NT/RIKEN Seminar- CANCELLED

    "A mode by mode approach to heavy ion collision"

    Presented by Eduardo Grossi, SBU

    Friday, March 13, 2020, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Nikhil Karthik

  64. RIKEN Lunch Seminar

    "Ioffe time behavior of PDFs and GPDs"

    Presented by Abha Rajan, BNL

    Thursday, March 12, 2020, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Ioffe time essentially quantifies the distance along the lightcone that the quark fields that enter the correlator describing the Parton Distribution Function (PDF) are separated by. In this sense, it is a natural candidate for clearly separating the short and long distance physics. We study how the behavior of the parton distribution in Ioffe time can be mapped out given its Mellin moments. Pseudo PDFs describe the nucleon matrix elements of quark field operators separated by a space like distance z. These are calculable in lattice QCD and as z^2 approaches zero, pseudo PDFs approach the actual PDFs. Complimentary to lattice efforts, we study the behavior of of pseudo PDFs as a function of z in a spectator diquark model. We also extend the study to Generalized Parton Distributions (GPDs), which involves taking into account an extra degree of freedom because of the non diagonal nature of the hadronic matrix element in the case of GPDs.

  65. Physics Colloquium

    "A tale told by hard probes in high energy nuclear collisions – from PHENIX to sPHENIX and on toward the EIC"

    Presented by Jin Huang, BNL

    Tuesday, March 10, 2020, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Bjoern Schenke

    Hard probes such as heavy flavor quarks, jets, and virtual and real photons convey valuable information from the heart of high energy nuclear collisions, opening a window into the microscopic nature of QCD matter. These probes have been used to study both hadronic states and also nuclear matter under extreme conditions. In addition, the spin degree of freedom of the colliding proton provides a fresh perspective on the quantum nature of nuclear matter, enabled by the unique capabilities of RHIC. The rareness of hard probes demands detectors capable of high precision and high rate, which in turn drives the design and the innovation of the next generation of nuclear physics collider experiments, such as sPHENIX and future EIC detectors. I will recount a story told by hard probes of nuclear collisions through selected results from PHENIX, the plans for sPHENIX, and the possibilities at the EIC.

  66. Nuclear Physics Seminar

    "Jet quenching tests of the QCD Equation of State"

    Presented by Xabier Feal, BNL

    Tuesday, March 10, 2020, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    We re-analyze the bremsstrahlung problem in a background field consisting of several sources. We explain how these processes can be represented as a sum of diagrams, generally interfering and thus leading to the well known LPM effect. Then we show how these diagrams can be properly resummed at high energies to go beyond the most common approximations in phenomenological analyses to date: the perturbative (GLV), the Gaussian (BDMPS) or the semi-infinite medium (AMY) approximations. Finally we present some QED and QCD results, and show how the improvement is able to cure some of the puzzles found in data, namely the temperature issues in the determination of the QGP color opacity, encoded usually in the transport coefficient, $\hat{q}$. This finding indicates that full resummations are required for a proper extraction of the QCD matter parameters, and may open up an additional handle on the study of the QCD Equation of State.

  67. HET Lunch Discussion

    "Windows into the Muon HVP from Staggered Lattice QCD"

    Presented by Aaron Meyer, BNL

    Friday, March 6, 2020, 12:15 pm
    Building 510, Room 2-95

    Hosted by: Peter Denton

  68. RIKEN Lunch Seminar

    "Nonperturbative Collins-Soper Kernel from Lattice QCD"

    Presented by Yong Zhao, BNL

    Thursday, March 5, 2020, 12 pm
    Building 510, Room 2-160

    Hosted by: Akio Tomiya

    The transverse momentum dependent parton distribution functions (TMDPDFs) measure the transverse momentum of partons in a fast moving hadron, and is an important observable for the Electron-Ion Collider. The energy evolution of TMDPDFs is given by the Collins-Soper (CS) anomalous dimension, or the CS kernel, which is essential to the fitting of TMDPDFs from global cross section data at different energies. At small transverse momentum, the CS kernel is nonperturbative and can only be determined from global fitting or first principle calculations. In this talk, I present an exploratory calculation of the CS kernel from lattice QCD using the large-momentum effective theory, which is a systematic approach to extract light-cone parton physics. Our preliminary results show that it is promising to achieve precision calculation with currently available computing resources, which has the potential to be used in the global fitting of TMDPDFs in the future.

  69. Particle Physics Seminar

    "What is the Higgs boson hiding"

    Presented by Caterina Vernieri, SLAC National Accelerator Laboratory

    Wednesday, March 4, 2020, 4 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Viviana Cavaliere

    The Higgs boson discovery at the LHC marked a historic milestone in the study of fundamental particles and their interactions. Over the last eight years, we have begun measuring its properties, which are essential to build a deep understanding of the Higgs sector of the Standard Model and to potentially uncover new phenomena. The Standard Model is far from being a complete theory of nature and many of its predictions have yet to be tested. In particular, the energy potential of the Higgs boson field, responsible for the electroweak symmetry breaking mechanism, has not yet been measured by any experiment. A measurement of the Higgs boson self-coupling at the LHC would shed light into the actual structure of the potential, whose exact shape can have deep theoretical consequences. This coupling can be accessed directly through the very challenging measurement of Higgs pair production. In this talk the experimental status of the di-Higgs boson production searches and constraints on the self-coupling at the LHC will be presented and the special role played by the decay to b-quark, the largest Higgs branching fraction, and its distinctive signature will be described.

  70. HET Seminar

    "Teaching a Computer to Integrate"

    Presented by Christina Gao, Fermilab

    Wednesday, March 4, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Peter Denton

    We present a novel integrator based on normalizing flows which can be used to improve the unweighting efficiency of Monte-Carlo event generators for collider physics simulations. In contrast to the machine learning approaches based on surrogate models, our method generates the correct result even if the underlying neural networks are not optimally trained. We exemplify the new strategy using the example of Drell-Yan type processes at the LHC.

  71. Nuclear Physics Seminar

    "Direct Photon Production in Au+Au collisions at 200GeV"

    Presented by Wenqing Fan, Stony Brook University

    Tuesday, March 3, 2020, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    The PHENIX experiment operates as one of the major detectors at the RHIC collider to identify and study Quark Gluon Plasma (QGP). Direct photons have long been considered as unique probes to study properties of QGP due to their small interaction cross section with the collision produced medium, hence carrying direct information of their creation point. Taking advantage of the precise tracking system and high granularity electromagnetic calorimeter, PHENIX has made comprehensive measurements of direct photons across different collision species and a wide range of beam energies. In this talk I will show new measurements with high statistics Au+Au data taken in 2014 at 200GeV using the photon conversions at the silicon vertex detector (VTX). This dataset provides a 10-fold increase in statistics for the measurements of direct photon yields and their anisotropy.

  72. NT/RIKEN Seminar

    "Studying supranuclear matter with gravitational waves from neutron star binaries"

    Presented by Katerina Chatziioannou

    Friday, February 28, 2020, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Nikhil Karthik

  73. HET Lunch Discussion

    "LMA-Dark: Large New Physics Effects in Neutrino Oscillations"

    Presented by Peter Denton, BNL

    Friday, February 28, 2020, 12:15 pm
    Building 510, Room 3-192

  74. Particle Physics Seminar

    "HUNTER: a search for keV-scale sterile neutrinos using trapped atoms"

    Presented by Prof. Peter Meyers

    Wednesday, February 26, 2020, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Hanyu Wei

    The HUNTER experiment is a search for sterile neutrinos with masses in the 10-300 keV range. The neutrino missing mass will be reconstructed from 131-Cs electron capture decays occurring in a magneto-optically trapped, laser-cooled sample. Reaction-microscope spectrometers will be used to measure the vector momenta of all charged decay products with high solid angle acceptance, and LYSO scintillators read out by silicon photomultiplier arrays detect x-rays, each with sufficient resolution to reconstruct the neutrino missing mass as a peak separated from the near-zero-mass active neutrinos. The stand-alone apparatus to do this has dimensions of a few meters.

  75. HET Seminar - Joint BNL/YITP Seminar (at BNL)

    "Anomaly free Froggatt-Nielsen models of flavor"

    Presented by Jure Zupan, University of Cincinnati

    Wednesday, February 26, 2020, 1:30 pm
    Small Seminar Room, Bldg. 510

  76. Physics Colloquium

    "From actions to answers: flavour physics from lattice gauge theory"

    Presented by Peter Boyle, BNL

    Tuesday, February 25, 2020, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Hooman Davoudiasl

    Lattice gauge theory is a numerical approach to the Feynman path integral, and is the only systematically improvable approach to make theoretical predictions of hadronic properties from the underlying theory of quarks and gluons. I will present theoretical numerical calculations of hadronic properties that represent theoretical input to flavour physics, quark flavour mixing, and standard model CP violation in the Kaon, D and B mesons. These lead to constraints on CKM flavour mixing constants of the standard model, and searches for new physics.

  77. Nuclear Physics Seminar

    "Balance function as a unique probe to the quark gluon plasma: overview and outlook"

    Presented by Jin Jin Pan, Wayne State University

    Tuesday, February 25, 2020, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jiangyong Jia

    In relativistic heavy-ion collisions, correlations of hadrons with opposite quantum numbers provide insight into general charge creation mechanisms, the time scales of quark production, collective motion of the Quark Gluon Plasma (QGP), and re-scattering in the hadronic phase. The longitudinal and azimuthal widths of general charge balance functions for charged pion (??±), kaon (??±) and (anti-)proton (??/??¯) are used to examine the two-wave quark production scenario recently proposed to explain quark-antiquark productions within the QGP, which predicts a large increase in up and down quark pairs relative to strange quark pairs around the time of hadronization. Balance function as a function of relative azimuthal angle is a good probe to the diffusion effect, which is a signature of the QGP. In addition, the balance function integrals measure hadron pairing probabilities, which provide a key constraint for hadron productions in models. Furthermore, balance function is also a key observable to study net-proton fluctuations and the Chiral Magnetic Effect (CME). In this talk, I will present a state-of-the-art overview on experimental measurements of balance function by STAR and ALICE, along with an outlook for the future experimental measurements.

  78. Condensed-Matter Physics & Materials Science Seminar

    "Tuning of spin-orbital interactions and charge gap by epitaxial strain in Sr2IrO4"

    Presented by Thorsten Schmitt, Photon Science Division, Paul Scherrer Institut, Switzerland

    Monday, February 24, 2020, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Mark Dean

    The nature of the highly spin-orbit coupled Mott state of Sr2IrO4 suggests the ground state as well as the collective entangled spin and orbital excitations to be strongly dependent on the lattice degree of freedom. For this reason, Sr2IrO4 provides an ideal platform for controlling the physical properties of a correlated material by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry and perform momentum-dependent Resonant Inelastic X-ray Scattering (RIXS) both at the metal and ligand sites to unveil the response of the low energy elementary excitations. By applying tensile strain, we observe a large softening of the spin(-orbital) wave dispersion along the [h,0] direction and a simultaneous hardening along the [h,h] direction. This evolution entails a strain-driven crossover from anisotropic to isotropic interactions between the magnetic moments. We also show how the charge excitations are coupled to the lattice in Sr2IrO4. To this end, using O K-edge RIXS, we unveil the evolution of a dispersive electron-hole pair excitonic mode which shifts to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. We show that this behavior originates in the modified hopping elements between the t2g orbitals induced by strain. Our work highlights the central role played by the lattice in determining both the spin(-orbital) as well as the charge excitations of Sr2IrO4 and confirms epitaxial strain as a promising route towards the control of the ground state of complex oxides in the presence of high spin-orbit coupling.

  79. Condensed-Matter Physics & Materials Science Seminar

    "Field-theoretical approach to strongly-correlated problems: RIXS in metals and Spin fermion model"

    Presented by Igor Tupitsyn, University of Massachusetts Amherst

    Monday, February 24, 2020, 11 am
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    In this talk I am going to touch two interesting strongly-correlated problems: Resonant inelastic x-ray scattering (RIXS) in metals and Spin fermion (SF) model. RIXS is a very promising technique for studying collective excitations in condensed matter systems. However, extraction of information from the RIXS signal is a difficult task and the standard approach to solution of RIXS problem is based on approximations that are inaccurate in metals (short-range/contact potentials and non-interacting Fermi-sea). Simultaneously, the SF model has a wide range of applications in the physics of cuprates and iron-based superconductors. However, all developments and applications of the SF model are also based on various, often uncontrollable, approximations. In my talk I am going to address both problems within the general "field-theoretical approach to strongly-correlated problems" framework. In the first part I will consider the RIXS in metals problem within a diagrammatic approach that fully respects the long-range Coulomb nature of interactions between all charged particles. In particular, I will demonstrate how the single-plasmon dispersion can be extracted from the multi-excitation RIXS spectra. In the remaining time I will briefly discuss how to deal with the SF model in the approximation-free manner by employing the Diagrammatic Monte Carlo technique, combining the advantages of Feynman diagrammatic techniques and Quantum Monte Carlo simulations. I will also show what one can get in the first skeleton order – in the widely used in materials science GW approximation.

  80. NT/RIKEN Seminar

    "Soft Fragmentation on the Celestial Sphere"

    Presented by Duff Neill

    Friday, February 21, 2020, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Nikhil Karthik

    We develop two approaches to the problem of soft fragmentation of hadrons in a gauge theory for high energy processes. The first approach directly adapts the standard resummation of the parton distribution function's anomalous dimension (that of twist-two local operators) in the forward scattering regime, using kT-factorization and BFKL theory, to the case of fragmentation function by exploiting the mapping between the dynamics of eikonal lines on transverse-plane to the celestial-sphere. Critically, to correctly resum the anomalous dimension of the fragmentation function under this mapping, one must pay careful attention to the role of regularization, despite the manifest collinear or infra- red finiteness of the BFKL equation. The anomalous dependence on energy in the celestial case, arising due to the mismatch of dimensionality between positions and angles, drives the differences between the space-like and time-like anomalous dimension of parton densities, even in a conformal theory. The second approach adapts an angular-ordered evolution equation, but working in 4 − 2epsilon dimensions at all angles. The two approaches are united by demanding that the anomalous dimension in 4 − 2epsilon dimensions for the PDF determines the kernel for the angular-ordered evolution to all orders.

  81. HET Lunch Discussion

    "Multigrid for chiral fermions"

    Presented by Peter Boyle, BNL

    Friday, February 21, 2020, 12:15 pm
    Building 510, Room 1-224

  82. NSLS-II Friday Lunchtime Seminar

    "Effect of Metal (Pt, Ir) Nuclearity in the Subnanometer Regime on CO Oxidation Activity"

    Presented by Ayman M. Karim, Department of Chemical Engineering, Virginia Polytechnic Institute and State University

    Friday, February 21, 2020, 12 pm
    NSLS-II Bldg. 743 Room 156

    Hosted by: Ignace Jarrige

    Supported noble metal catalysts are extensively used in industry and their catalytic performance is strongly affected by particle size and shape. In the last decade, supported single atoms and clusters in the subnanometer size regime have attracted a lot of interest since they maximize the metal utilization and have also shown extraordinary catalytic properties for many reactions. However, to tailor the catalyst properties for specific reactions and determine possible limitations, there is a need to understand, on the atomic scale, the origin of reactivity in the subnanometer regime. In this seminar, I will present my group's efforts in understanding the role of metal nuclearity and electronic properties in catalyzing CO oxidation as a model reaction. Using a suite of advanced characterization techniques (aberration-corrected electron microscopy, microcalorimetry, in-situ and in-operando DRIFTS, XPS, EXAFS and HERFD-XANES) complemented by DFT calculations and detailed kinetics measurements, the catalyst structural and electronic properties are identified and correlated with the reaction kinetics. In the talk, CO oxidation on Ir and Pt single atoms and subnanometer clusters supported on MgAl2O4 and CeO2, respectively, will be presented. We identified the active Ir and Pt single atom complexes and show that the reaction follows a combination of Eley-Rideal and Mars-van Krevelen mechanisms. Moreover, we show that despite considered a non-reducible support, CO oxidation on MgAl2O4 supported Ir subnanometer clusters follows a similar mechanism as on a reducible oxide where O2 is activated at the metal-support interface. Finally, the role of metal-support interaction in O2 activation and effect of CO binding strength on the catalytic activity will be discussed.

  83. Particle Physics Seminar

    "Precision neutrino oscillation physics and DUNE"

    Presented by Callum Wilkinson, University of Bern

    Thursday, February 20, 2020, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Hanyu Wei

    Neutrino oscillations have been established as an energy and distance dependent phenomena, beyond the Standard Model of Particle Physics. However, a number of key questions remain, which have implications for our understanding of the origin and development of our Universe. The Deep Underground Neutrino Experiment (DUNE), which is currently in the planning stage, has the potential to answer these outstanding questions and make measurements of the other parameters with unprecedented precision. This talk gives an overview of the DUNE sensitivity to oscillation parameters, and describes a program of research aimed at reducing systematic uncertainties, and achieving DUNE's physics goals.

  84. RIKEN Lunch Seminar

    "Phase Transitions of Quantum Annealing and Quantum Chaos"

    Presented by Dr Kazuki Ikeda, Osaka University

    Thursday, February 20, 2020, 12 pm
    Building 510, Room 1-224

    Hosted by: Akio Tomiya

    It is known that quantum phase transitions occur in the process of quantum annealing. The order of phase transition and computational efficiency are closely related with each other. Quantum computation starts with a non-entangled state and evolves into some entangled states, due to many body interactions and the dynamical delocalization of quantum information over an entire system's degrees of freedom (information scrambling). It is common to diagnose scrambling by observing the time evolution of single qubit Pauli operators with an out-of-timeorder correlator (OTOC). We aim at establishing a method to clarify those relations between phase transitions and scrambling by OTOCs. Using the p-spin model, we diagnose quantum phase transitions associated with quantum annealing and reverse annealing. In addition we provide a novel Majorana fermion model in which non-stoquastic dynamics of annealing can turn a first-order phase transition into a second-order phase transition. We also show that these phase transitions can be diagnosed by the OTOCs.

  85. HET Seminar

    "Status of muon g-2 theory"

    Presented by Christoph Lehner, BNL

    Wednesday, February 19, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Peter Denton

  86. Special NT/RIKEN Seminar

    "Infrared gluon mass and the Gribov-Zwanziger model of nonperturbative Yang-Mills theories"

    Presented by Leticia Palhares

    Wednesday, February 19, 2020, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Nikhil Karthik

    In this talk we review indications of an infrared gluon mass in different nonperturbative approaches and discuss its dynamical generation in a Gribov-Zwanziger model. We compute in particular the one-loop effective potential of the model in the recently-established BRST-invariant setup which guarantees gauge-parameter independence of the generated mass scales.

  87. Special NT/RIKEN Seminar

    "Critical dynamics from small, noisy, fluctuating systems"

    Presented by Eduardo Fraga

    Tuesday, February 18, 2020, 1 pm
    Building 510, CFNS Room 2-38

    Hosted by: Nikhil Karthik

    Current heavy-ion collision experiments might lead to the discovery of a first-order chiral symmetry breaking phase-transition line, ending in a second-order critical point. Nevertheless, the extraction of information about the equilibrium thermodynamic properties of baryonic matter from the highly dynamic, small, noisy and fluctuating environment formed in such collisions is an extremely challenging task. We address some of the limitations present in the experimental search for the QCD critical point.

  88. NT/RIKEN Seminar

    "Solving the medium-induced gluon radiation spectrum for an arbitrary number of scatterings"

    Presented by Carlota Andres Casas

    Friday, February 14, 2020, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Nikhil Karthik

    New measurements of jet quenching observables at RHIC and at the LHC, such as jet substructure observables, demand an increased precision in the theory calculations describing medium-induced radiation of gluons. Closed expressions for the gluon spectrum including an arbitrary number of multiple scatterings have been known for the past 20 years, but analytical calculations have failed to evaluate this spectrum using realistic models for parton-medium interactions. We show a flexible method which allows us to write the analytical expressions for the full in-medium spectrum, including the resummation of all multiple scatterings, in a form where the numerical evaluation can be easily performed without the need of the usually employed harmonic or first opacity approximation. We present the transverse momentum and energy-dependent medium-induced gluon emission distributions for known realistic interaction models to illustrate how our framework can be applied beyond the limited kinematic regions of previous calculations.

  89. HET Lunch Discussion

    "Simulating Neutrino Physics for JUNO"

    Presented by Rebekah Pestes, Virginia Tech

    Friday, February 14, 2020, 12:15 pm
    Building 510, Room 2-160

  90. RIKEN Lunch Seminar

    "Shedding light on photon and dilepton spectral functions"

    Presented by Greg Jackson, University of Bern

    Thursday, February 13, 2020, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Photons and dileptons offer themselves as 'clean' probes of the quark-gluon plasma because they are unlikely to reinteract once produced. Their emission rates are given via the vector channel spectral function, an object that can ultimately be reconstructed by analytic continuation of lattice data. To confront perturbative results with that data, the NLO corrections are needed in all domains that affect the associated imaginary-time correlator, namely for energies above, below and in the vicinity of the light cone. We summarize recent progress here and, to control an unavoidable snag, we also determine these corrections for the transverse and longitudinal polarizations separately. Our results should help to scrutinize direct spectral reconstruction attempts from lattice QCD.

  91. HET Seminar

    "BBN and CMB bounds on hidden sector vectors"

    Presented by Graham White, TRIUMF

    Wednesday, February 12, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Rob Pisarski

    New dark vector bosons that couple very feebly to regular matter can be produced in the early universe and decay after the onset of Big Bang Nucleosynthesis (BBN) or the formation of the cosmic microwave background (CMB) at recombination. The energy injected by such decays can modify the light element abundances or modify the power and frequency spectra of the CMB. In this work we study the constraints implied by these considerations on a range of sub-GeV dark vectors including the kinetically mixed dark photon, as well as gauge B-L and lepton families. We focus on the effects of electromagnetic energy injection, and we update previous investigations of the dark photon by taking into account non-universality in the photon cascade spectrum relevant for BBN and the energy dependence of the ionization eciency after recombination in our treatment of modications to the CMB.

  92. Physics Colloquium

    "What ever happened to the WIMP of tomorrow?"

    Presented by Philip 'Flip' Tanedo, UC Riverside

    Tuesday, February 11, 2020, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Gopolang Mohlabeng

    The overwhelming observational evidence for the existence of dark matter is only matched by the awkward scarcity of information about what it might actually be. Laboratory searches for dark matter now appear to exclude many of the "weakly interacting massive particle" models that were favored by particle physicists for decades. Where does that leave the hunt for dark matter? If we've left the WIMP behind, what are we looking for? We give a brief, biased, and largely fictional history of the WIMP in order to establish what has and has not been excluded, and why it matters. This general-interest presentation grew out of discussions with astronomers who wanted to understand why some of their particle physics colleagues are "searching for WIMPs" while the others have decided to live in a "post-WIMP world".

  93. Nuclear Physics Seminar

    "Heavy flavor physics from ATLAS"

    Presented by Qipeng Hu, University of Colorado at Boulder

    Tuesday, February 11, 2020, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jiangyong Jia

    In A+A collisions, heavy-flavor (charm and bottom) quarks are created at the initial stage of the collision and experience the entire QGP evolution. Therefore, they serve as penetrating probes that traverse the hot and dense medium, interact with the partonic constituents of the plasma and lose energy. Studies of production rate and azimuthal anisotropy of heavy-flavor hadrons provide insight into the energy loss mechanism and transport properties of heavy quarks in the QGP. To better understand the baseline of heavy quark—QGP interaction and the origin of the azimuthal anisotropy, it's crucial to extend the heavy-flavor measurements to smaller systems like p+Pb and pp collisions. In this seminar, selected results on the production and azimuthal anisotropy of the muons from charm and bottom hadron decays in pp, p+Pb and Pb+Pb collisions with the ATLAS experiments at the LHC will be shown. The implications for our understanding of the QGP properties by comparing the results with model calculations will be discussed.

  94. HET Special Seminar

    "Direct Detection with Relativistic Electrons in Neutron Stars"

    Presented by Flip Tanedo, UC Riverside

    Monday, February 10, 2020, 3:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Gopolang Mohlabeng

  95. Special NT/RIKEN Seminar

    "Partonic structure of the proton from large momentum effective theory"

    Presented by Xiangdong Ji

    Monday, February 10, 2020, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Nikhil Karthik

  96. NT/RIKEN Seminar

    "New tools for the quantum many-body problem"

    Presented by Dean Lee

    Friday, February 7, 2020, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Nikhil Karthik

    I discuss three new methods for the quantum many-body problem. The first is the pinhole trace algorithm for first principles calculations of nuclear thermodynamics. I will present lattice Monte Carlo results for the liquid-vapor critical point. The second is the eigenvector continuation method for extrapolation and interpolation of quantum wave functions. I will show how it can be used as a fast emulator for quantum many-body calculations and as a resummation method for divergent perturbative expansions. The third is the projected cooling algorithm for quantum computers. This method is able to construct the localized ground state of any Hamiltonian with a translationally-invariant kinetic energy and interactions that vanish at infinity.

  97. HET Lunch Discussion

    "Hunting for Dark Matter from the Laboratory to the Cosmos"

    Presented by Gopolang Mohlabeng, BNL

    Friday, February 7, 2020, 12:15 pm
    Building 510, Room 2-160

  98. Condensed-Matter Physics & Materials Science Seminar

    "Emergent phenomena from disorder on a 3D Topological Insulator surface"

    Presented by Yishuai Xu, New York University

    Friday, February 7, 2020, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Mark Dean

    Three-dimensional topological insulators are bulk insulators with Z2 topological order that gives rise to Dirac surface states. These surface states are well protected against weak perturbations that do not break time-reversal symmetry, such as non-magnetic scalar potential disorder. However recent studies have shown that non-magnetic point defects can introduce new in-gap states. We developed a numerical model to simulate point defects on a TI surface, and performed linear-dichroic angle resolved photoemission (ARPES) to image these states in the surface electronic structure. We find that resonance states associated with the defects can hybridize with the Dirac cone surface state and create a kink-like feature in the band structure near the Dirac point. These resonance states are not Anderson localized even though they cluster around the defects sites, and at higher densities, the kink feature is predicted to evolve into a new distinct band that can support diffusive transport. We also present ARPES spectromicroscopy measurements that more clearly resolve the interplay of Dirac surface states with real-space structure.

  99. Condensed-Matter Physics & Materials Science Seminar

    "RIXS study of charge dynamics in cuprates"

    Presented by Jiaqi Lin, Chinese Academy of Sciences / BNL

    Thursday, February 6, 2020, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Mark Dean

    The charge dynamics in cuprates is not comprehensively studied due to the limitation of experimental methods. Resonant inelastic x-ray scattering (RIXS) is a technique that is capable of coupling to various types of excitations and recently has been established as a new way to probe charge density response. Here we use RIXS technique to study two types of charge excitations, the plasmon excitations in electron-doped cuprates and the charge density wave (CDW) excitations in hole-doped cuprates. 1) We track the doping dependence of charge excitations in electron-doped cuprates La2-xCexCuO4. From the resonant energy dependence and the out-of-plane momentum dependence, the charge excitations are identified as three-dimensional plasmons, which reflect the nature of the electronic structure and Coulomb repulsion on both short and long length scale. With increasing electron doping, the plasmon excitations increase monotonically in energy and life time, which reflects the reduction of short-range electronic correlation. 2) We report a comprehensive RIXS study of La2−xSrxCuO4 finding that CDW effects persist up to a remarkably high doping level of x = 0.21 before disappearing at x = 0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross-section for phonons and CDW-induced phonon-softening. We interpret our results in terms of a CDW that is generated by strong correlations and a phonon response that is driven by the CDW-induced modification of the lattice.

  100. HET Seminar

    "New Insights on the Short Baseline Neutrino Anomalies"

    Presented by Pedro Machado, FNAL

    Wednesday, February 5, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

  101. Physics Colloquium

    "New opportunities in neutrino physics"

    Presented by Pedro Machado, Fermilab

    Tuesday, February 4, 2020, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Peter Denton

    In this colloquium I will briefly review the current status of neutrino physics and I will present new opportunities that will be unfolded by the future neutrino program. Some of these opportunities are incremental over past ones, while others are genuinely new. I will also emphasize the interplay between neutrino and other sectors in probing physics beyond the standard model.

  102. Nuclear Physics Seminar

    "Global and local polarization of Lambda hyperons in Au+Au collisions"

    Presented by Takafumi Niida

    Tuesday, February 4, 2020, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    The matter created in non-central heavy-ion collisions is expected to have an initial angular momentum carried by two colliding nuclei. Such an initial angular momentum would be transferred to the global polarization due to the spin-orbit coupling. The STAR Collaboration observed \Lambda global polarization in Au+Au collisions at \sqrt{s_{NN}} = 7.7—200 GeV, indicating a thermal vorticity of the system. The detailed structure of the vorticity field may be complicated. Local vorticity and consequently the particle polarization may arise from jets and/or collective flow. In this talk, recent results on the polarization along the beam direction expected from the elliptic flow will be presented and the physics implications will be discussed with theoretical calculations.

  103. HET Seminar

    "Phase transitions in the early Universe"

    Presented by Djuna Croon, TRIUMF

    Thursday, January 30, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

    In anticipation of the next generation of gravitational wave experiments, I will discuss the opportunities for phenomenological studies of particle physics in the Early Universe. The focus of the talk will be on first order phase transitions in confining gauge theories. Such phase transitions may play an important role in explanations of the strong CP-problem, as well as in models of baryogenesis. I will discuss several such examples and their phenomenology.

  104. RIKEN Lunch Seminar - CANCELLED

    "TBA"

    Presented by Yong Zhao, Brookhaven National Laboratory

    Thursday, January 30, 2020, 12 pm
    Building 510, Room 3-191

  105. Condensed-Matter Physics & Materials Science Seminar

    "Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors"

    Presented by Pouyan Ghaemi, The City College of New York

    Tuesday, January 28, 2020, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Peter D. Johnson

    In the superconducting regime of FeTe(1−x)Sex, there exist two types of vortices which are distinct by the presence or absence of zero energy states in their core. To understand their origin,we examine the interplay of Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman fields are found to suppress the intra-orbital spin-singlet pairing, known to localize the states at the ends of the vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast, the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores of vortices upon increase of the applied magnetic field. The presence of magnetic impurities in FeTe(1−x)Sex, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results provide a possible explanation to the dichotomy between topological and non-topological vortices recently observed in FeTe(1−x)Sex.

  106. HET Seminar

    "New physics in rare decays"

    Presented by Julian Heeck, UC Irvine

    Monday, January 27, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

    Despite its many successes, the Standard Model of particle physics cannot be the final description of nature at the most fundamental level. Additional elementary particles and interactions are an absolute necessity but have so far evaded our experimental efforts. I will highlight the importance of searches for processes that are forbidden within the Standard Model, as these make for clean signatures of new physics. Important examples are searches for lepton flavor violation and baryon number violation, which will be tested to unprecedented levels in upcoming experiments.

  107. NT/RIKEN Seminar

    "Towards precision event simulation for collider experiments"

    Presented by Stefan Hoeche, Fermilab

    Friday, January 24, 2020, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    Experimental analyses during the high-luminosity era of the LHC will call for an unprecedented level of precision in event simulation. With the computation of hard cross sections at next-to-leading order accuracy a solved problem, the focus of development has now shifted towards automated precision resummation, i.e. the extension of parton-showers to next-to-leading order accuracy and beyond the leading-color approximation. At the same time, seemingly mundane problems like the consistent matching of four- and five-flavor calculations at next-to-leading order accuracy need to be tackled in order to make precision forecasts for the measurement of b-jet associated processes such as ttbb. I will discuss the theoretical foundations and practical implications of new algorithms that solve these problems and briefly touch on the readiness of event generators for the next generation high-performance computers.

  108. RIKEN Lunch Seminar

    "NLO impact factor for inclusive photon+dijet production in e+A DIS at small x"

    Presented by Kaushik Roy, Stony Brook

    Thursday, January 23, 2020, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    We present the first computation of the NLO photon+dijet impact factor in e+A DIS at small x. When combined with the extant results for the JIMWLK small x evolution to NLLx accuracy, this result provides us with a prediction of the photon+dijet cross-section in e+A DIS to O( (\alpha_S)^3 ln(1/x) ) accuracy. The comparison of this result with photon+dijet measurements at a future EIC therefore provides a precision test of the systematics of gluon saturation. In the soft photon limit, one obtains a compact representation of the state-of-the art results for fully inclusive DIS. The novel techniques developed in this computation can also be applied to promote existing LO computations of photon+dijet production in p+A collisions to NLO+NLLx accuracy.

  109. HET Seminar

    "Precision tests of the Standard Model"

    Presented by Robert Szafron, CERN

    Wednesday, January 22, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

  110. Nuclear Physics Seminar

    "Charmonia in Small Systems"

    Presented by Krista Smith, Florida State University

    Tuesday, January 21, 2020, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jin Huang

    in heavy systems, but has also become an interesting probe in small sys- tems, having been studied by ALICE, ATLAS, CMS, LHCb, PHENIX and STAR. With the recent Nature paper PHENIX published regarding v2 and v3 coe_cients consistent with hydrodynamic ow and the possibil- ity of droplets of QGP present in small system collisions, measurements on the modi_cation of Charmonium in these same small systems have become increasingly relevant. We present the results of J/ measure- ments in the dimuon decay channel for a collection of di_erent systems at the same collision energy. These small systems include: p+p, p+Al, p+Au and 3He+Au at collision energy p SNN = 200 GeV. A comparison of Charmonium modi_cation in 3He+Au and p+Au data was made to look for e_ects of the increased energy present in the _nal state for the 3He+Au case. The results are presented in the form of the observable RAB, the nuclear modi_cation factor, as a function of rapidity, central- ity and transverse momentum, then compared with di_erent theoretical model predictions. Also included in this discussion are future plans to ex- tract the nuclear modi_cation factor for the (2s), the _rst excited state of the J/ meson.

  111. Condensed-Matter Physics & Materials Science Seminar

    "Interlayer charge dynamics in metallic transition metal dichalcogenides"

    Presented by Edoardo Martino, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

    Tuesday, January 21, 2020, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Christopher Homes

    Layered metallic transition metal dichalcogenides (TMDs) are conventionally seen as two-dimensional conductors, despite a scarcity of systematic studies of the interlayer charge transport. Motivated by the prevailing strategy of functionalizing 2D materials by creating van der Waals heterostructures, we initiated an in-depth study of out-of-plane charge dynamics and emergent properties arising from interlayer coupling. Unprecedented results have been obtained thanks to employing Focused-ion-beam-assisted 3D microfabrication of samples, which enables tailoring geometry and current paths with submicron precision [1]. In this talk, I will present the first transport data revealing c-axis-oriented quasi-one- dimensional electronic states in 1T-TaS2, —a compound with the richest charge density wave phase diagram among TMDs. Temperature dependence of resistivity shows a robust coherent out-of-plane transport, while in-plane conduction is hindered by the presence of a unique nanoarray of charge density wave domains. Consequently, we interpret the highly debated metal-insulator transition in 1T-TaS2 as a Peierls-like instability of the c-axis-oriented orbital chains, in opposition to the long-standing Mott localization picture [2]. Among other highlights of our current research are the anomalous transport properties observed in natural heterostructures or arising from stacking faults. [1] Moll, P. J. (2018). Focused ion beam microstructuring of quantum matter. Annual Review of Condensed Matter Physics, 9, 147-162. [2] Martino, E., Pisoni, A., Ciric, L., Arakcheeva, A., Berger, H., Akrap, A., ... & Forró, L. (2019). Preferential out-of-plane conduction and quasi-one-dimensional electronic states in layered van der Waals material 1T-TaS2. arXiv preprint arXiv:1910.03817.

  112. HET Seminar

    "A Model of neutrino masses and the LHC"

    Presented by Seyda Ipek, UC Irvine

    Thursday, January 16, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Peter Denton

    Neutrino masses cannot be explained within the Standard Model. Many new physics models address this question by adding right-handed neutrinos to the SM. These right-handed neutrinos are not expected to be observed at the LHC due either to their large masses or small couplings to the SM particles. I will give a different approach, in which we account for the SM neutrino masses via a pesudo-Dirac bino in an R-symmetric SUSY model. I will also give a recast of recent LHC analyses, mainly jets+MET and leptoquark searches, for this model.

  113. Condensed-Matter Physics & Materials Science Seminar

    "Symmetry Protected Topological Semimetals"

    Presented by Jennifer Cano, SUNY-Stony Brook

    Thursday, January 16, 2020, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Mark Dean

    Topological semimetals can exhibit gapless Fermi arc surface states and unusual transport properties. I will discuss new aspects of the bulk-edge correspondence that elucidate the topological nature of Dirac fermions. I will then present the classification of nodal fermions in both magnetic and non-magnetic space groups. Finally, I will present an outlook for finding material realizations.

  114. HET Seminar

    "Resolving CP Confusion from Non-Standard Neutrino Interactions"

    Presented by Jeff Hyde, Bowdoin

    Wednesday, January 15, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Peter Denton

    Non-standard neutrino interactions (NSI) can interfere with measurements of neutrino oscillation parameters at long-baseline experiments, in particular making determination of the CP-violating phase δ ambiguous. Measurements at different baselines or energies may be combined to improve this situation, but it can be difficult to see the influence of individual parameters and determine when degeneracies may exist or be broken. I will show how the relationship between underlying parameters, degeneracies and their breaking may be represented in a convenient way in biprobability space. An application of particular interest is the experimental hints suggesting δ∼−π/2 , which could be consistent with nonzero NSI but the absence of CP violation.

  115. CSI Q Seminar

    "Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices"

    Presented by Norman Tubman, NASA Quantum Artificial Intelligence Laboratory

    Wednesday, January 15, 2020, 1:30 pm
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    Despite significant work on resource estimation for quantum simulation of electronic systems, the challenge of preparing states with sufficient ground state support has so far been largely neglected. We investigate this issue in several systems of interest, including organic molecules, transition metal complexes, the uniform electron gas and Hubbard models. Our approach uses a state-of-the-art classical technique for high-fidelity ground state approximation. We find that easy-to-prepare single Slater determinants such as the Hartree-Fock state often have surprisingly robust support on the ground state for many applications of interest. For the most difficult systems, single-determinant reference states may be insufficient, but low-complexity reference states may suffice. For this we introduce a method for preparation of multi-determinant states on quantum computers.

  116. Physics Colloquium

    "The interface between Arts and Science, a multi-dimensional space"

    Presented by Helio Takai, Interim Dean, School of Liberal Arts and Sciences, The Pratt Institute

    Tuesday, January 14, 2020, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: George Redlinger

    The interface between Arts and Science is wide and diverse. Art and Design covers a wide range of activities from Fine Arts to Digital Arts, from Fashion to Industrial Design, and Architecture. In this context, the disciplines of mathematics and sciences have a broad overlap with these creative practices. The science, and technology, from the knowledge of materials to software for virtual and augmented reality, are all foundations to the development of Arts and Design. In all of these areas, one of the main concerns today is the evolution of these practices in a sustainable and ecological manner. Biomaterials, Material Degradation, Software Development, and Robotics, are a few of the subjects relevant to Arts and Design. On the counter flux, Arts can bring new ways to communicate science to a large segment of the population. Art communicates a message through experiences. In this presentation, I will discuss the various interfaces between arts and science, and in particular, those that are relevant to the Pratt Institute.

  117. Nuclear Physics Seminar

    "Study of nuclear effects in small collision systems connecting proton-proton and heavy-ion collisions"

    Presented by Sanghoon Lim, Pusan National University

    Tuesday, January 14, 2020, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jin Huang

    The main purpose of relativistic heavy-ion collision experiments is to understand Quark­Gluon Plasma (QGP) which is very hot and dense QCD matters produced in heavy-ion collisions. Early results from RHIC such as jet quenching and elliptic flow are supported for the formation of the QGP. In order to fully understand the properties of the QGP, it is very important to understand initial conditions before the QGP formation. Proton(deuteron)-ion collision is a control experiment to explore this kind of effects from intrinsic nucleus so called cold-nuclear-matter (CNM) effects such as modification of parton · distributions, energy loss, multiple scattering, and break-up of quarkonia states. Another striking results recently observed in small systems are long-range correlations which were believed as one of properties of the QGP. Now, the studies in small systems receives much more attention than that as a control experiment of heavy-ion collisions. I will introduce the interesting results in small collision systems as well as what we can learn from the expected measurements in the future.

  118. CSI Q Seminar

    "Quantum-Assisted Telescope Arrays"

    Presented by Emil Khabiboulline, Harvard University

    Monday, January 13, 2020, 3 pm
    Training Room, CSI Bldg 725

    Hosted by: Andrei Nomerotski

    Quantum networks provide a platform for astronomical interferometers capable of imaging faint stellar objects. We present a protocol with efficient use of quantum resources and modest quantum memories. In our approach, the quantum state of incoming photons along with an arrival time index is stored in a binary qubit code at each receiver. Nonlocal retrieval of the quantum state via entanglement-assisted parity checks at the expected photon arrival rate allows for direct extraction of phase difference, effectively circumventing transmission losses between nodes. Compared to prior proposals, our scheme (based on efficient quantum data compression) offers an exponential decrease in required entanglement bandwidth. We show that it can be operated as a broadband interferometer and generalized to multiple sites in the array. We also analyze how imaging based on the quantum Fourier transform provides improved signal-to-noise ratio compared to classical processing. Finally, we discuss physical realizations including photon detection-based quantum state transfer. Experimental implementation is then feasible with near-term technology, enabling optical imaging of astronomical objects akin to well-established radio interferometers and pushing resolution beyond what is practically achievable classically. References: Phys. Rev. Lett. 123, 070504, Phys. Rev. A 100, 022316

  119. HET Seminar

    "Experimental Probe of Higgs Parity"

    Presented by Keisuke Harigaya, IAS

    Monday, January 13, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Peter Denton

    Higgs Parity is a spontaneously broken Z2 symmetry exchanging the standard model Higgs with its parity partner. Higgs Parity predicts a dark matter candidate, can solve the strong CP problem, and can be a part of an SO(10) grand unified gauge symmetry. I will show that the Higgs Parity symmetry breaking scale is determined by standard model parameters and predicts experimental signals such as the dark matter detection rate and the proton decay rate. As a result, Higgs Parity provides a tight correlation between future precision measurements of standard model parameters and these experimental signals.

  120. HET Lunch Seminar

    "Is the muon just a heavy electron?"

    Presented by Amarjit Soni, BNL

    Friday, January 10, 2020, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  121. Condensed-Matter Physics & Materials Science Seminar

    "Entropic elasticity and negative thermal expansion in crystalline solids"

    Presented by Igor Zaliznyak, Brookhaven National Laboratory

    Thursday, January 9, 2020, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201

  122. HET Seminar

    "Precision Physics in the LHC Era"

    Presented by Pier Paolo Giardino, BNL

    Wednesday, January 8, 2020, 2:30 pm
    Small Seminar Room, Bldg. 510

  123. Physics Colloquium

    "The Proton Remains Puzzling"

    Presented by Haiyan Gao, Duke University

    Tuesday, January 7, 2020, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Xin Qian

    Nucleons (protons and neutrons) are the building blocks of atomic nuclei, and are responsible for more than 99% of the visible matter in the universe. Despite decades of efforts in studying its internal structure, there are still a number of puzzles surrounding the proton such as its spin, mass, and charge radius. The proton charge radius puzzle developed about ten years ago refers to a 5-7 sigma discrepancy between the ultrahigh precise values of the proton charge radius determined from muonic hydrogen Lamb shift measurements and the CODATA values compiled from electron-proton scattering experiments and hydrogen spectroscopy measurements. In this talk I will briefly introduce the proton spin and mass puzzles first. I will then focus on the proton charge radius puzzle, the latest experimental results, and especially the PRad experiment at Jefferson Lab and its result.

  124. Chemistry Department Colloquium

    "Design of high voltage all-solid-state batteries based on sulfide electrolytes"

    Presented by Xin Li, John A. Paulson School of Engineering and Applied Sciences, Harvard University

    Tuesday, January 7, 2020, 2 pm
    Hamilton Seminar Room, Bldg. 555

    Hosted by: Enyuan Hu

    Ceramic sulfide solid-electrolytes are amongst the most promising materials for enabling solid-state lithium ion batteries. The ionic conductivities can meet or exceed liquid-electrolytes for such ceramic sulfides, however, there is a theoretical concern about the narrow electrochemical stability window of approximately 1.7-2.1 V vs lithium metal. In addition, ceramic sulfides are frequently plagued by interfacial reactions when combined with common electrode active materials. In this talk, methods for the stabilization of both the bulk electrochemical decompositions and the interfacial reactions will be discussed. Ceramic sulfides are known to substantially swell during electrochemical decay. Such swelling has been shown to provide viable means by which to stabilize electrochemical decomposition in lithium ion batteries. Experimental evidence and theoretical understanding of stability window expansion as the result of mechanical constriction will be discussed. An advanced mechanical constriction technique is applied on all-solid-state batteries constructed with Li10GeP2S12 (LGPS) as the electrolyte and lithium metal as the anode. The decomposition pathway of LGPS at the anode interface is modified by this mechanical constriction and the growth of lithium dendrite is inhibited, leading to excellent rate and cycling performances. On the cathode side, 5V all-solid-state batteries using layered LiCoO2 and spinel as cathodes will be presented and the stabilization mechanisms will be discussed. A combination of electrochemical battery tests, SEM, XAS, XPS and XRD characterizations, and DFT simulations was used. Biosketch Xin Li is an associate professor of materials science at School of Engineering and Applied Sciences (SEAS) at Harvard University, who was an assistant professor at SEAS from 2015 to 2019. Xin Li's research group designs new energy storage materials through advanced characterizations and simulations, with the current focus on solid s

  125. Nuclear Physics Seminar

    "Physics with heavy ions and exotic hadrons at LHCb"

    Presented by Matt Durham, Los Alamos National Lab

    Tuesday, January 7, 2020, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jin Huang

    The LHCb Experiment has a growing program dedicated to heavy ion physics. With full tracking, particle ID, and calorimetry capabilities over the forward rapidity interval 2 < y < 5, LHCb covers a unique kinematic range at the LHC. This allows LHCb to fully reconstruct heavy quark states that are sensitive to the very low x structure of nucleons, as well as characterize exotic states that may be composed of more than three valence quarks. This talk will discuss recent results from the LHCb heavy ion program, with a focus on using heavy ion data and techniques to probe the structure of exotic hadrons.

  126. NT/RIKEN Seminar

    "From Qubits to Quarks: Parton Physics on a Quantum Computer"

    Presented by Scott Lawrence

    Friday, December 20, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Nikhil Karthik

    Quantum computers provide a unique way of computing real-time correlators from first principles, a task not yet achievable on classical computers due to the sign problem. The determination of the hadronic tensor on the Euclidean lattice is obstructed by the difficulty of converting Euclidean correlators to real-time correlators. This is a match made in heaven: a lattice field theory simulation on a quantum computer may provide access to PDFs. In this talk we discuss the way in which a quantum computer may naturally solve this problem, outline recent progress on simulating field theories on a quantum computer, and detail the resources needed to perform such a calculation.

  127. CSI Q Seminar

    "Probing quantum entanglement at the Electron Ion Collider"

    Presented by Dmitri Kharzeev, Stony Brook University and BNL

    Wednesday, December 18, 2019, 1:30 pm
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    The structure functions measured in deep-inelastic scattering are related to the entropy of entanglement between the region probed by the virtual photon and the rest of the hadron. This opens new possibilities for experimental and theoretical studies using the Electron Ion Collider. The real-time evolution of the final state in deep-inelastic scattering can be addressed with quantum simulations using the duality between high energy QCD and the Heisenberg spin chain.

  128. Physics Colloquium

    "3D imaging of nuclei: status towards an EIC"

    Presented by Kawtar Hafiti, ANL

    Tuesday, December 17, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Thomas Ullrich

  129. NT/RIKEN Seminar

    "Helicity-dependent generalization of the JIMWLK evolution and MV model"

    Presented by Florian Cougoulic

    Friday, December 13, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Nikhil Karthik

    The small-x evolution equations for the quark and gluon helicity distribution have recently been constructed by finding sub-eikonal corrections to the eikonal shock wave formalism. Those equations are written for correlators of infinite light-cone Wilson lines along with the so-called polarized Wilson lines. Those equations close in the large N_c-limit (N_c is the number of quark colors), but also in the large N_c & N_f-limit (N_f is the number of quark flavors). However, in the shock wave formalism, no closed form can be obtained for arbitrary value of N_c and N_f. For the unpolarized case, the generalization of the Balitsky-Kovchegov equation is done by the Jalilian-Marian—Iancu—McLerran—Weigert—Leonidov—Kovner (JIMWLK) functional evolution equation. Such an approach for the small-x evolution of the helicity is beneficial for numerical evaluation at finite N_c and N_f (beyond previously used limit), and for the evaluation of helicity-dependent operator with an arbitrary number of Wilson lines. We derive an analogue of the JIMWLK evolution equation for the small-x evolution of helicity distributions and obtain an evolution equation for the target weight functional.

  130. HET Lunch Discussion

    "What to do when there are observers in your theory"

    Presented by Robert Garisto, APS

    Friday, December 13, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  131. CSI Q Seminar

    "Integrating ballistic graphene with superconducting resonators - A new building block for detectors and quantum circuits"

    Presented by Olli Saira, BNL

    Wednesday, December 11, 2019, 1:30 pm
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    I present measurements of a bolometer device based on boron nitride-encapsulated graphene operating at temperatures of 300 mK and below. Our experiment probes the exquisite properties of graphene that make it an appealing material for detector applications. First, the specific heat of electronic excitations in graphene is low, promising excellent sensitivity as a thermal photodetector. Second, at low temperatures, superconductivity can be induced in a localized region within the flake. This enables the integration of graphene with superconducting microwave circuits routinely used in quantum processors and astronomical detector arrays. Our initial results demonstrate the operating principle of a graphene bolometer with resonator-coupled temperature readout. However, we also observed unexpected heat leakage out of the flake in our first-generation device, which prevented it from reaching its full theoretical performance.

  132. C-AD Accelerator Physics Seminar

    "High-Intensity Magnetron H- Ion Sources and Injector Development at BNL LINAC"

    Presented by Dr. Anatoli Zelenski, BNL

    Tuesday, December 10, 2019, 4 pm
    BLDG 911B, Large Conference Room

    Hosted by: Binping Xiao

  133. Condensed-Matter Physics & Materials Science Seminar

    "In-situ TEM sample-management solutions Wildfire and Lightning Heating and Biasing – capturing real dynamics in TEM"

    Presented by Yevheniy Pivak, DENSsolutions

    Monday, December 9, 2019, 11 am
    Bldg. 480, Conference Room

    Hosted by: Shaobo Cheng

    DENSsolutions offers a complete suite of in-situ sample management solutions for unrivalled high resolution imaging in Transmission Electron Microscopes (TEM) under varying environmental conditions including Heating, Biasing, Gases & Liquids. This presentation is aimed at researchers that want to observe their materials in varying real-time dynamic In-situ TEM environments at high resolution. The format of the presentation will include an explanation to the theory behind DENSsolutions' MEMS-based technology, along with brief products introduction. The main topic of the presentation is the Heating and/or Biasing system and its application in the fields of materials science, chemistry and microelectronics. Application examples such as solar cells, ceramics, ReRam, batteries, 2D materials and more will be covered.

  134. NT/RIKEN Seminar

    "Probing Quark-Gluon Plasma at high resolution"

    Presented by Amit Kumar

    Friday, December 6, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Nikhil Karthik

    In the study of the quark-gluon plasma (QGP) in high-energy heavy-ion collisions, jet quenching plays an essential role as hard probes of the properties of the dense strongly interacting matter. In this talk, we present an attempt to probe the underlying structure of the quark-gluon plasma (QGP) at high resolution, based on the extracted jet transport coefficient \hat{q}. We argue that the exchanged momentum k between the hard parton and the medium varies over a range of scales, and for k ≥ 1 GeV, \hat{q} can be expressed in terms of a parton distribution function (PDF). Calculations, based on this reconstructed \hat{q} are compared to data sensitive to the hardcore of jets i.e., the single hadron suppression in terms of the nuclear modification factor R_{AA} and the azimuthal anisotropy parameter v_{2}, as a function of transverse momentum p_{T}, centrality and energy of the collision. It is demonstrated that the scale evolution of the QGP-PDF is responsible for the reduction in the normalization of \hat{q} between fits to Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) data; a puzzle, first discovered by the JET collaboration.

  135. HET Lunch Discussion

    "$\pi\pi$ scattering with distillation in lattice QCD"

    Presented by Aaron Meyer, Brookhaven National Laboratory

    Friday, December 6, 2019, 12:15 pm
    Building 510, Room 2-160

  136. Particle Physics Seminar

    "A New Paradigm for Dark Matter Search at the LHC"

    Presented by Yangyang Cheng, Cornell University

    Thursday, December 5, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Ketevi Assamagan

    The existence of dark matter (DM), through astrophysical and cosmological observations, presents some of the most striking evidence of physics beyond the Standard Model. Stringent limits have been placed on DM as a Weakly Interacting Massive Particle (WIMP) from direct and indirection detection as well as collider experiments. If instead of one type of DM particle, nature contains a complex dark sector, the new hidden particles can evade existing DM limits and most direct detection experiments, but may be produced at high-energy colliders like the LHC. Many dark sector models predict long-lived particles with striking collider signature, opening an exciting new paradigm for dark matter search. This talk overviews the landscape for dark matter search, and introduces the physics motivation for a complex dark sector with long-lived particles. It then describes two types of signature-driven dark sector searches at the CMS experiment, for a dark shower and for displaced lepton jets. Finally, the talk discusses prospects for dark sector searches at the High-Luminosity LHC with detector and trigger upgrades, in particular how the new forward detectors and enhanced timing capabilities can reach new phase spaces and sensitivities.

  137. CSI Q Seminar

    "Quantum supremacy using a programmable superconducting processor"

    Presented by Pedram Roushan, Google

    Wednesday, December 4, 2019, 1:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Layla Hormozi

    The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2^53. Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy for this specific computational task, heralding a much-anticipated computing paradigm.

  138. Special HET Seminar (Joint BNL/YITP)

    "Composite Higgs Models at the LHC and beyond"

    Presented by Da Liu, UCDavis

    Wednesday, December 4, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Peter Denton

    Compositeness is an elegant way to address the hierarchy problem. In this talk, I will discuss about the phenomenology of the composite Higgs models at the LHC and beyond, in which Higgs arise as Nambu-Goldstone bosons. Under broad assumption of partial compositeness and symmetry breaking pattern, I will discuss about phenomenology of the spin-1 resonances and the top partners and the relevance of their strong interactions in the searches at the LHC. In addition to the direct searches, the LHC has become a precision machine with accumulating enormous data at the High-Luminosity (HL) stage. I will discuss about precision measurement in the di-boson processes and their relevance in the different new physics patterns. Meanwhile, I will talk about the strong multi-pole interaction scenario, in which the transverse SM gauge bosons are also belonging to the strong sector at the multi-TeV scale. This provided a strong motivation for the precision measurement at the LHC. Finally, I will briefly discuss about the universal relationship between the Higgs couplings predicted by the non-linearity and their phenomenological relevance.

  139. Special NT/RIKEN Seminar

    "Elementary correlation functions in QCD and their application"

    Presented by Nicolas Wink, Heidelberg

    Wednesday, December 4, 2019, 10 am
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Nikhil Karthik

    The knowledge of all elementary correlation functions in a theory is sufficient to access all possible observables. The computation of these correlation functions in QCD within the Functional Renormalization Group is outlined. For applications, the shear and bulk viscosity in Yang-Mills, as well as diffusive transport for the critical mode in a Low-Energy Effective Theory of QCD are discussed.

  140. Physics Colloquium

    "The First Stage of the International Linear Collider"

    Presented by James Brau, University of Oregon

    Tuesday, December 3, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: George Redlinger

    The International Linear Collider is now proposed to begin with a first stage at 250 GeV with an initial integrated luminosity goal of 2 ab−1. I will review the plan for the collider and detectors, the key physics expectations, and recent international discussions. The key physics goal of the ILC250 is precision measurements of the Higgs boson couplings. The exceptional precision of model-independent measurements of all major decay modes makes this program sensitive to possible anomalies due to new physics beyond the Standard Model. Other physics goals will be addressed briefly. The ILC250 infrastructure will support an upgrade future of experiments with e+e− collisions at higher energy up to 1 TeV, building on the success of the first 250 GeV stage.

  141. Nuclear Physics Seminar

    "Initial state fluctuations of QCD conserved charges in heavy-ion collisions"

    Presented by Matt Sievert

    Tuesday, December 3, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Alba Soto Ontoso

    We initialize the Quantum Chromodynamic conserved charges of baryon number, strangeness, and electric charge arising from gluon splitting into quark-antiquark pairs for the initial conditions of relativistic heavy-ion collisions. A new Monte Carlo procedure that can sample from a generic energy density profile is presented, called Initial Conserved Charges in Nuclear Geometry (ICCING), based on quark and gluon multiplicities derived within the color glass condensate (CGC) effective theory. We find that while baryon number and electric charge have nearly identical geometries to the energy density profile, the initial strangeness distribution is considerable more eccentric and is produced primarily at the hot spots corresponding to temperatures of T > 400 MeV for PbPb collisions at 5.02 TeV.

  142. Special Physics Colloquium

    "FCC-ee at CERN: High Precision and High Luminosity at the Electroweak Scale"

    Presented by Alain Blondel, Guest Professor at CERN

    Monday, December 2, 2019, 11 am
    Large Seminar Room, Bldg. 510

    Hosted by: Maria Chamizo-Llatas / George Redlinger

    Abstract: The discovery of the Higgs boson completed the Standard model and particle physics enters a new era, in which new phenomena are required, but at unknown energy scale and coupling strength. This requires a broad program of searches. The broadest program is offered by the Future Circular Collider (FCC) project at CERN, with a ultimate goal of reaching > 100 TeV in pp collisions. The first step of this program is a circular e+e- collider, offering unprecedented levels or precision and sensitivity to feebly coupled particles. Bio: Alain Blondel is Professor emeritus from University of Geneva and guest professor at CERN. He is leading the effort of physics and experiments for the Future Circular Collider FCC-ee at CERN, a high luminosity e+ e- machine able to produce 5x1012 Z, 108 WW events, 2x106 ZH events and more than 106 top quark pairs. The proposals for the FCC were just submitted to the CERN European Strategy for Particle Physics, which hopefully will endorse the FCC 100km facility around CERN providing powerful means to search for answers to the big questions. He previously worked in the T2K experiment, preparing HyperK, towards neutrino CP violation. He has a long career since 1974, with the Gargamelle experiment and LEP as highlights, and was awarded a number of prizes for his creative work, in particular on the determination of the number of neutrinos and the prediction of the top quark mass from radiative corrections.

  143. Physics Colloquium

    "A High Energy High-Luminosity Electron-Positron Collider using Energy Recovery Linacs"

    Presented by Thomas Roser, Brookhaven National Laboratory

    Tuesday, November 26, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Dmitri Denisov / George Redlinger

    I will present an alternative approach for a high-energy high-luminosity electron-positron collider. Present designs for high-energy electron-positron colliders are either based on two storage rings with 100 km circumference with a maximum CM energy of 365 GeV or two large linear accelerators with a high energy reach but lower luminosity, especially at the lower initial CM energies. A collider based on storage rings has a high electric power consumption required to compensate for the beam energy losses from the 100 MW of synchrotron radiation power. Using an Energy Recovery Linac (ERL) located in the same-size 100 km tunnel would greatly reduce the beam energy losses while providing higher luminosity in this high-energy collider. Furthermore, this approach could allow for colliding fully polarized electron and positron beams and for extending the CM energy to 600 GeV, which would enable double-Higgs production and the production and measurements of the top Yukawa coupling.

  144. NT/RIKEN Seminar

    "Critical gravitational collapse and thermalization in small systems"

    Presented by Paul Chesler, Harvard University

    Friday, November 22, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Karthik

  145. HET Lunch Discussion

    "Update on the study of critical slowing down in lattice QCD ensemble generation algorithms"

    Presented by Chulwoo Jung, Brookhaven National Laboratory

    Friday, November 22, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  146. Particle Physics Seminar

    Presented by Stefano Zambito, Harvard University

    Thursday, November 21, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Viviana Cavaliere

    "After the discovery of the Higgs Boson, the predictions of the Standard Model of particle physics can be extrapolated without inconsistencies all the way up to the Planck mass. Despite this tremendous success, we still remain in the dark about many open puzzles. Why is the weak interaction much stronger than gravity? What is the nature of Dark Matter? Are the strong, weak and electromagnetic forces a lower-energy manifestation of one single fundamental interaction? A possible solution to these questions is provided by Supersymmetry. The key assumption behind many natural supersymmetric models is that the masses of the gluinos, the top squarks and the higgsinos are near the TeV scale, thus within the LHC reach. In this presentation, I will introduce some of the theoretical and phenomenological arguments that motivate the quest for Supersymmetry. I will then outline how I searched for the above-mentioned particles using LHC Run-2 data collected by the ATLAS experiment. Finally, I will focus on my vision of the future and my research plans in high-energy experimental physics."

  147. CANCELLED - RIKEN Lunch Seminar

    "Shedding light on photon and dilepton spectral functions"

    Presented by Greg Jackson, University of Bern

    Thursday, November 21, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Photons and dileptons offer themselves as 'clean' probes of the quark-gluon plasma because they are unlikely to reinteract once produced. Their emission rates are given via the vector channel spectral function, an object that can ultimately be reconstructed by analytic continuation of lattice data. To confront perturbative results with that data, the NLO corrections are needed in all domains that affect the associated imaginary-time correlator, namely for energies above, below and in the vicinity of the light cone. We summarize recent progress here and, to control an unavoidable snag, we also determine these corrections for the transverse and longitudinal polarizations separately. Our results should help to scrutinize direct spectral reconstruction attempts from lattice QCD.

  148. HET Seminar

    "Precision Era of the SMEFT: the Higgs and Electroweak Sectors"

    Presented by Tyler Corbett, NBI

    Wednesday, November 20, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Peter Denton

    I will quickly review the basics of the Standard Model Effective Field Theory (SMEFT) and mention various efforts to build up the foundation of the SMEFT. Next I review the current status of global fits to the open parameters of the SMEFT and motivate the need for precision calculations for the future of the LHC. With this motivation I will elaborate on my recent work on calculations of the Higgs width and the Ward identities in the SMEFT.

  149. CSI Q Seminar

    "Designing Two-Qubit Gates for Exchange-Only Quantum Computation"

    Presented by Nick Bonesteel, Florida State University and NHMFL

    Wednesday, November 20, 2019, 1:30 pm
    Conference room 201, Bldg 734

    Hosted by: Layla Hormozi

    In exchange-only quantum computation, qubits are encoded using three or more spin-1/2 particles and quantum gates can be performed by switching on and off, or "pulsing", the isotropic exchange interaction between spins. Finding efficient pulse sequences for realizing two-qubit gates in this way is complicated by the large search space in which they live, and has typically involved numerical brute force search. Here I will give a simple analytic derivation of the most efficient known exchange-pulse sequence for carrying out a controlled-NOT gate, originally found numerically by Fong and Wandzura. I will then show how the ideas behind this derivation can be used to analytically find new pulse sequences for two-qubit gates beyond controlled-NOT.

  150. Physics Colloquium

    "Towards a quantum internet, and its applications"

    Presented by Thomas Jennewein, University of Waterloo

    Tuesday, November 19, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Andrei Nomerotski

    Quantum information processing and quantum communication are novel protocols that originate from the very fundamental and philosophical questions on superposition and entanglement raised since the early days of quantum mechanics. Strikingly, these new protocols offer capabilities beyond communication task possible with classical physics. One very important example is the secure key exchange based on the transmission of individual quantum signals between communication partners. The big vision and frontier in the field of quantum communication research is the development of a Quantum Internet, which establishes entanglement between many different users and devices. The basic idea is that similar to today's internet, the Quantum Internet will readily transfer quantum bits, rather than today's classical bits, between users near and far and over multiple different channels and could be used for secure communications, quantum computer networks and metrological applications. I will discuss recent advances on implementations and tools useful for generating and distributing photonic quantum entanglement over robust channels including time-bin encoding and reference-frame-free protocols. I will also present an overview of the upcoming Canadian quantum communication satellite QEYSSAT.

  151. Nuclear Physics Seminar

    "Polarized Positron Beams at the Electron-Ion Collider - What physics can be done"

    Presented by Dr. Eric Voutier, Institut de Physique Nucléaire, CNRS/IN2P3 Université Paris-Sud & Université Paris-Saclay

    Tuesday, November 19, 2019, 11 am
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Salvatore Fazio

  152. HET Lunch Discussion

    "Higgs and the Lattice"

    Presented by Sally Dawson, BNL

    Friday, November 15, 2019, 12:15 pm
    Building 510, Room 2-160

  153. Particle Physics Seminar

    "Cosmology: Halo splashback detection"

    Presented by Tae-Hyeon Shin, UPenn

    Thursday, November 14, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Thomas McClintock

  154. Particle Physics Seminar

    "The NA62 experiment at CERN: recent results and prospects"

    Presented by Dr Evgueni Goudzovski

    Thursday, November 14, 2019, 1:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Steve Kettell

    The NA62 experiment at CERN dedicated to measurements of ultra-rare decays of the charged kaon with the decay-in-flight technique collected a large data set corresponding to 6*10^{12} kaon decays in 2016-2018. The first NA62 results based on parts this data set are presented, including the search for the K+—>pi+nunu decay, as well as searches for lepton number violation and production of heavy neutral leptons in kaon decays. Prospects for these and other measurements are discussed in view of the second NA62 run foreseen in 2021-2024.

  155. RIKEN Lunch Seminar

    "Revisiting the discovery potential of the isobar run at RHIC"

    Presented by Alba Soto Ontoso, BNL

    Thursday, November 14, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    During the spring of 2018, the Relativistic Heavy-Ion Collider carried out an isobar run consisting of Ru+Ru and Zr+Zr collisions at 200 GeV. The main objective of such experimental program was the unambiguous observation of a Chiral Magnetic Effect-driven charge separation. In this talk, I will demonstrate how an experimentally confirmed property of the nuclear structure of Zr, i.e. its neutron skin, significantly reduces the feasibility of such a finding. This study provides a much needed theoretical baseline to meaningfully interpret the recorded experimental data by combining state-of-the art nuclear structure techniques with a dynamical description of heavy-ion collisions in terms of a novel transport model, SMASH.

  156. HET Seminar

    "Formulating Lattice Field Theory for a Quantum Computer"

    Presented by Richard Brower, Boston University

    Wednesday, November 13, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    The quantum link (or D-theory) formulation of lattice field theory, introduced 20 years ago by Brower-Chandrasekharan-Wiese, replaced all gauge and matter fields as single bit fermion operators for a Hamiltonian in an extra dimension. This can been recast as real time quantum evolution in Minkowski space ideally suited for Qubit quantum simulations. In addition a map from fermionic (anti-computing operators) to Pauli matrix Qubit has been found using pseudo-fermions and a local Jordan Wigner transformation in the group manifold, which is simpler than the Bravyi-Kitaev map due to local gauge invariance. With the trotter expansions the gauge invariant kernels for U(1) compact QED on triangular lattice are represented as Qubit circuit are ready to be tested on the IMB-Q.

  157. CSI Q Seminar

    "Quantum Information: History, Development and Applications"

    Presented by Vladimir Korepin, Stony Brook University

    Wednesday, November 13, 2019, 11 am
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    History of quantum information will be mentioned. Followed by comments on modern developments. Current projects of the speaker [spin chains and quantum search] will be briefly described.

  158. Condensed-Matter Physics & Materials Science Seminar

    "Topological transition on anisotropic hexagonal lattices and effective phonon model for the Quantum Hall transition"

    Presented by Andreas Sinner, University of Augsburg, Germany

    Tuesday, November 12, 2019, 1 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    The topology of the band structure, which is determined by the lattice symmetries, has a strong influence on the transport properties. We consider an anisotropic honeycomb lattice and study the effect of a continuously deformed band structure on the conductivity and optical properties. We find a strong suppression of the conductivity in one direction and increment by several orders in another which leand to a considerable change of optical properties. We further study a gap generation in a two-dimensional Dirac fermion system which are coupled to in-plane phonons. At sufficiently strong electron-phonon interaction a gap appears in the spectrum of fermions. The structure of elementary excitations above the gap in the corresponding phase reveals the presence of scale invariant parity breaking terms which resemble Chern-Simons excitations. The Kubo formula remyields quantized Hall plateaux. References: EPL 119, 27001 (2017); PRB 97, 235411 (2018); PRB 93, 125112 (2016); Ann. Phys. 400, 262 (2018); arxiv:1908.00442.

  159. HET Lunch Discussion

    "Improving Lattice Measurements for B Mesons"

    Presented by Peter Boyle (BNL), Brookhaven National Laboratory

    Friday, November 8, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  160. NSLS-II Friday Lunchtime Seminar

    "Underpinning the nuclear fuel cycle with synchrotron and laboratory based X-ray absorption spectroscopy"

    Presented by Neil Hyatt, University of Sheffield, United Kingdom

    Friday, November 8, 2019, 12 pm
    NSLS-II Bldg. 743 Room 156

    Hosted by: Ignace Jarrige

    Nuclear energy provides about 30% of the world's low carbon electricity supply, from more than 450 civil nuclear reactors. The supporting nuclear fuel cycle comprises a suite of industrial processes, which transform uranium ore into nuclear fuel, and support reactor operations, decommissioning, waste management, and geological disposal. This seminar will highlight three case studies in the application of X-ray absorption spectroscopy (XAS) in the nuclear fuel cycle, embracing environmental contamination, nuclear forensics, and radioactive waste management. In addition to exploitation of state of the art micro-focus multi-modal beamlines at synchrotron light sources, I will also show how we are using new developments in laboratory based XAS instrumentation, to probe element speciation in nuclear materials.

  161. CSI Q Seminar

    "Many-body physics with atoms and molecules under quantum control"

    Presented by Sebastain Will, Columbia University

    Thursday, November 7, 2019, 3 pm
    Conference room 201, Bldg 734

    Hosted by: Layla Hormozi

    Over the past decade, quantum simulators based on ultracold atoms have emerged as a powerful tool to address open questions in strongly interacting systems and nonequilibrium quantum dynamics that have relevance in all areas of physics, from strongly correlated materials to cosmology. Today, quantum simulators based on ultracold dipolar molecules are within experimental reach, which exploit long-range dipole-dipole interactions and will give access to new classes of strongly correlated many-body systems. In this talk, I will present our efforts towards quantum simulation with ultracold dipolar molecules. In trailblazing experiments we have demonstrated the creation of ultracold molecules via atom-by-atom assembly, which yields complete control over the molecular degrees of freedom, including electronic, vibrational, rotational, and nuclear spin states. Exploiting this control, we have observed long nuclear spin coherence times in molecular ensembles, which makes ultracold molecules an interesting candidate for the realization of a long-lived quantum memory. In addition, the dipole-dipole interactions between molecules can be flexibly tuned via external electrostatic and microwave fields. This motivates our current work towards two-dimensional systems of strongly interacting molecules, which promises access to novel quantum phases, will enable high-speed simulation of quantum magnetism, and points towards potential quantum computing schemes based on ultracold molecules. In the end, I will briefly present our new project on enhancing quantum coherence by dissipation in programmable atomic arrays. For this effort we will develop a novel nanophotonic platform that will enable trapping of individual atoms in optical tweezer arrays with unprecedented accuracy and high-speed tunability.

  162. Particle Physics Seminar

    "Latest neutrino cross-section results from MicroBooNE"

    Presented by Dr. Kirsty Duffy, FNAL

    Thursday, November 7, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Xin Qian

    MicroBooNE, the Micro Booster Neutrino Experiment at Fermilab, is an 85-ton active mass liquid argon time projection chamber (LArTPC) located in the Booster Neutrino Beam at Fermilab. The LArTPC technology with 3mm wire spacing enables high-precision imaging of neutrino interactions, which leads to high-efficiency, low-threshold measurements with full angular coverage. As the largest liquid argon detector worldwide taking neutrino beam data, MicroBooNE provides a unique opportunity to investigate neutrino interactions in neutrino-argon scattering at O(1 GeV) energies. These measurements are of broad interest to neutrino physicists because of their application to Fermilab Short Baseline Neutrino program and the Deep Underground Neutrino Experiment (which will both rely on LArTPC technology), as well as the possibility for new insights into A-dependent effects in neutrino scattering on heavier targets such as argon. In this seminar I will present the most recent cross-section results from MicroBooNE, including measurements of inclusive charged-current neutrino scattering, neutral pion production, and low-energy protons. Many of the results I will show represent the first measurements of these interactions on argon nuclei, as well as an exciting demonstration of the potential of LArTPC detector technology to improve our current understanding of neutrino scattering physics.

  163. Physics Colloquium

    "Changing Flavor: the Universe's Weirdest Particle"

    Presented by Kirsty Duffy - Leona Woods Award Winner, FNAL

    Tuesday, November 5, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Neutrinos are some of the most abundant–but elusive–constituents of matter in the universe. It has been firmly established that neutrinos can change flavor (or "oscillate"), as recognized by the 2015 Nobel Prize, and in recent years the field has moved beyond the "discovery" phase to focus on precise measurements of the parameters that determine neutrino oscillation. As our understanding improves, it opens doors to new discoveries about the nature of this little-understood particle. This is a very exciting time in neutrino physics there exists a wealth of fascinating questions to investigate, including recent tantalizing hints of large neutrino-sector CP violation, and we are rapidly developing the tools to answer them. As the United States HEP community leads the next generation of neutrino oscillation experiments, I will give an overview of the field: from the initial discovery of the neutrino, to the first evidence for oscillation, to the most recent results from current long-baseline oscillation experiments such as T2K and NOvA. I will finish by discussing the exciting future prospect of the Deep Underground Neutrino Experiment and the liquid argon time projection chamber technology that makes it possible, including recent results and examples from my own work on MicroBooNE, a liquid argon neutrino detector currently taking data at Fermilab

  164. HET Lunch Discussion

    "Neutrino Windows to New Physics"

    Presented by Julia Gehrlein

    Friday, November 1, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  165. Special NT/RIKEN Seminar

    "Relaxation Time for Strange Quark Spin in Rotating Quark-Gluon Plasma"

    Presented by Joseph Kapusta

    Thursday, October 31, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Nikhil Karthik

  166. CSI Q Seminar

    "Characterizing readout in quantum computers: does the reading '0' really mean 0 and '1' really 1?"

    Presented by Tzu-Chieh Wei, Stony Brook University

    Wednesday, October 30, 2019, 3 pm
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    Typical quantum computation includes three stages: state initialization, gate operations and readout. There are tomographic tools on quantum state and process tomography, as well as one that is often ignored, i.e. the detector tomography. It is important to characterize the readout in interpreting experiments on quantum computers. We use quantum detector tomography to characterize the qubit readout in terms of measurement POVMs on IBM Quantum Computers (e.g. IBM Q 5 Tenerife and IBM Q 5 Yorktown). Our results suggest that the characterized detector model deviates from the ideal projectors, ranging from 10 to 40 percent. This is mostly dominated by classical errors, evident from the shrinkage of arrows in the corresponding Bloch-vector representations. There are also small deviations that are not `classical', of order 3 percent or less, represented by the tilt of the arrows from the z axis. Further improvement on this characterization can be made by adopting two- or more-qubit detector models instead of independent single-qubit detectors for all the qubits in one device. We also find evidence indicating correlations in the detector behavior, i.e. the detector characterization is slightly altered (to a few percent) when other qubits and their detectors are in operation. Such peculiar behavior is consistent with characterization from the more sophisticated approach of the gate set tomography. Finally, we also discuss how the characterized detectors' POVM, despite deviation from the ideal projectors, can be used to estimate the ideal detection distribution.

  167. HET Seminar

    "Elastic neutrino-electron scattering in effective field theory"

    Presented by Oleksandr Tomalak, Kentucky University

    Wednesday, October 30, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Elastic neutrino-electron scattering provides an important tool for normalizing neutrino flux in modern experiments. This process is subject to large radiative corrections. We determine the Fermi effective theory performing the one-loop matching to the Standard model at the electroweak scale with subsequent running down to low energies. Based on this theory, we analytically evaluate virtual corrections and distributions with one radiated photon beyond the electron energy spectrum and provide the resulting scattering cross sections quantifying errors for the first time. We discuss the relevance of radiative corrections depending on conditions of modern accelerator-based neutrino experiments.

  168. Physics Colloquium

    "New Physics Probes in Future Neutrino Experiments"

    Presented by Peter Denton, BNL

    Tuesday, October 29, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    Neutrino physics is a broad and diverse field, both experimentally and theoretically. As the standard oscillation picture begins to settle we are moving into an era where precise tests of the neutrino picture can be made. In this talk I will discuss the present and future status of many theoretical probes and a broad range of experiments spanning twenty orders of magnitude in neutrino energy. In particular, I will highlight the strongly interconnected nature of new physics studies in the neutrino sector.

  169. Computational Science Initiative Event

    "Learning Parameters and Constitutive Relationships with Physics-Informed Machine Learning Methods"

    Presented by Alexandre Tartakovsky, Computational Mathematics in the Advanced Computing, Mathematics and Data Division Pacific Northwest National Laboratory

    Monday, October 28, 2019, 11 am
    Bldg. 725 training room

    Hosted by: Kerstin Kleese van Dam

  170. Chemistry Department Colloquium

    "Electronic Cooperativity in Supported Single and Multinuclear-Sites for Catalytic C-C and C-H Bond Functionalization"

    Presented by Dr. Massimiliano Delferro, Argonne National Laboratory

    Monday, October 28, 2019, 11 am
    Hamilton Seminar Room, Bldg. 555

    Hosted by: Sanjaya Senanayake

    Systematic study of the interactions between organometallic catalysts and metal oxide support materials is essential for the realization of rational design in heterogeneous catalysis. In this talk, I will describe the stoichiometric and catalytic chemistry of a series of organometallic complex chemisorbed on a variety of metal oxides as a multifaceted probe for stereoelectronic communication between the support and organometallic center. Electrophilic bond activation was explored in the context of stoichiometric hydrogenolysis as well as catalytic hydrogenation, dehydrogenation, and H/D exchange. Strongly acidic modified metal oxides such as sulfated zirconia engender high levels of activity toward electrophilic bond activation of both sp2 and sp3 C–H bonds, including the rapid activation of methane at room temperature; however, the global trend for the supports studied here does not suggest a direct correlation between activity and surface Brønsted acidity, and more complex metal surface interactions are at play.

  171. NT/RIKEN Seminar

    "Detectability of phase transitions from multi-messenger observations"

    Presented by Sophia Han, Ohio University

    Friday, October 25, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Nikhil Karthik

    There is as yet no firm evidence for quark matter in neutron stars. This is mainly because of the lack of direct probes of the opaque neutron star interior, and the lack of clear qualitative difference between hadronic and quark phases. The detection of GW170817 has offered a first example of how gravitational waves can be used to constrain the equation of state (EoS) of ultra-dense matter. We shall discuss taking into account currently available information how to reveal possible phase transitions in neutron stars: the steadily growing body of astrophysical data and supported laboratory experiments should eventually allow us to narrow down the options by combining these various observations. We survey the proposed signatures of exotic matter, and emphasize the importance of data from neutron star mergers.

  172. HET Lunch Discussion

    "LIGO/Virgo Black Holes from a First Order "QCD" Phase Transition"

    Presented by Hooman Davoudiasl, Brookhaven National Laboratory

    Friday, October 25, 2019, 12:15 pm
    Building 510, Room 2-160

  173. Condensed-Matter Physics & Materials Science Seminar

    "Engineering magnetism with light with the novel photovoltaic perovskite CH3NH3PbI3"

    Presented by László Forró, Ecole Polytechnique Fédérale de Lausanne, Switzerland

    Thursday, October 24, 2019, 2:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Cedomir Petrovic

    The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic CH3NH3(Mn:Pb)I3 material in which the photo-excited electrons rapidly melt the local magnetic order through the Ruderman–Kittel–Kasuya–Yosida interactions without heating up the spin system (1). Similar effect was observed in La1-xSrxMnO3/CH3NH3PbI3 heterostructure in which Tc can be tuned by x (2). The observed optical melting of magnetism could be of practical importance, for example, in a magnetic thin film of a hard drive, where a small magnetic writing field could change the magnetic bit. Our method needs only a low-power visible light source, providing isothermal switching, and a small magnetic guide-field to overcompensate the stray field of neighboring bits. Acknowledgment: The work has been performed in collaboration with B. Náfrádi, E. Horváth, A, Arakcheeva, P. Szirmai, M. Spina, H. Lee, O.V. Yazyev, D. Chernyshov, and many others. The research was partially supported by the ERC Advanced Grant (PICOPROP#670918). Reference : 1. Nafradi et al, Nature Communications, 7, 13406, (2016) 2. Nafradi et al, submitted to PNAS

  174. CSI Q Seminar

    "Universal logical gate sets with constant-depth circuits for topological and hyperbolic quantum codes"

    Presented by Guanyu Zhu, IBM T.J. Watson Research Center

    Wednesday, October 23, 2019, 3 pm
    Conference Room 201, Bldg 734

    Hosted by: Layla Hormozi

    A fundamental question in the theory of quantum computation is to understand the ultimate space-time resource costs for performing a universal set of logical quantum gates to arbitrary precision. To date, common approaches for implementing a universal logical gate set, such as schemes utilizing magic state distillation, require a substantial space-time overhead. In this work, we show that braids and Dehn twists, which generate the mapping class group of a generic high genus surface and correspond to logical gates on encoded qubits in arbitrary topological codes, can be performed through a constant depth circuit acting on the physical qubits. In particular, the circuit depth is independent of code distance d and system size. The constant depth circuit is composed of a local quantum circuit, which implements a local geometry deformation, and a permutation of qubits. When applied to anyon braiding or Dehn twists in the Fibonacci Turaev-Viro code based on the Levin-Wen model, our results demonstrate that a universal logical gate set can be implemented on encoded qubits in O(1) time through a constant depth unitary quantum circuit, and without increasing the asymptotic scaling of the space overhead. Our results for Dehn twists can be extended to the context of hyperbolic Turaev-Viro codes as well, which have constant space overhead (constant rate encoding). This implies the possibility of achieving a space-time overhead of O(d/log d), which is optimal to date. From a conceptual perspective, our results reveal a deep connection between the geometry of quantum many-body states and the complexity of quantum circuits. References: arXiv:1806.06078,arXiv:1806.02358, Quantum 3, 180 (2019) (arXiv:1901.11029).

  175. HET Seminar

    "Neutrino Propagation in Matter: 3 flavors & beyond (joint BNL/YITP seminar (at BNL))"

    Presented by Stephen Parke, FNAL

    Wednesday, October 23, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    The Wolfenstein matter effect significantly alters neutrino flavor transformations in matter. This effect is responsible for the 1/3 reduction in the solar electron neutrino flux observed by Davis and also has significant effects in terrestrial oscillation experiments such as T2K, NOvA, DUNE and T2HK/K. In this seminar I will present some recent results on 3 (& beyond) flavor matter effects for long baseline experiments.

  176. Physics Colloquium

    "KATRIN and the Neutrino Mass Scale"

    Presented by Diana Parno, Carnegie Mellon University

    Tuesday, October 22, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Xin Qian

    Ever since it was first hypothesized 89 years ago, the strange and ghostly particle called the neutrino has mystified and inspired particle and nuclear physicists. After decades of experimental and theoretical work, we have now firmly established that neutrinos have mass, and yet their absolute mass scale remains unknown. Now, after many years of painstaking design, construction, and commissioning work, the Karlsruhe Tritium Neutrino experiment (KATRIN) has recently improved the world's best direct neutrino-mass sensitivity by a factor of 2, with more improvements to come. I will give a tour of KATRIN's 70-m beamline, share some of our adventures with engineering challenges and novel backgrounds, describe our spectral fits and systematic uncertainties, and show a glimpse of KATRIN's future.

  177. Center for Functional Nanomaterials Seminar

    "Heterogeneous Chemistry at Liquid/Vapor Interfaces Investigated with Photoelectron Spectroscopy"

    Presented by Hendrik Bluhm, Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry, Faradayweg, Berlin, Germany

    Monday, October 21, 2019, 11 am
    Bldg.735 (CFN) 1st floor conference room

    Hosted by: Ashley Head

    Aqueous solution/vapor interfaces govern important phenomena in the environment and atmosphere, including the uptake and release of trace gases by aerosols and CO2 sequestration by the oceans.[1] A detailed understanding of these processes requires the investigation of liquid/vapor interfaces with chemical sensitivity and interface specificity under ambient conditions, i.e., temperatures above 200 K and water vapour pressures in the millibar to tens of millibar pressure range. This talk will discuss opportunities and challenges for investigations of liquid/vapor interfaces using X-ray photoelectron spectroscopy and describe some recent experiments that have focused on the propensity of certain ions and the role of surfactants at the liquid/vapor interface. [1] O. Björneholm et al., Chem. Rev. 116, 7698 (2016).

  178. NT/RIKEN Seminar

    "The bulk viscosity of QCD in the chiral limit"

    Presented by Derek Teaney, Stony Brook

    Friday, October 18, 2019, 2 pm
    Building 510, CFNS Room 2-38

    In the chiral limit, the long distance effective theory of QCD at finite temperature is not hydrodynamics but a kind of non-abelian superfluid hydrodynamics. We describe this theory and its viscous corrections, including also a correction due to the finite quark mass. At finite quark mass, the long distance theory is ordinary hydrodynamics, and the superfluid theory then just determines non-analytic in the quark mass corrections to the transport coefficients of QCD, akin to the "long time tails" of hydro. We show how this works out for the bulk viscosity. In chiral perturbation theory the dissipative parameters of the superfluid theory can be computed diagrammatically, and we do this. These results then determine the leading order the bulk viscosity of the pion gas close to the chiral limit.

  179. HET Lunch Discussion

    "Quantum Computing Schwinger Model"

    Presented by Taku Izubuchi, BNL HET & RIKEN BNL

    Friday, October 18, 2019, 12:15 pm
    Building 510, Room 2-160

  180. RIKEN Lunch Seminar

    "Bottomonia in QGP from lattice QCD: Beyond the ground states"

    Presented by Rasmus Larsen, BNL

    Thursday, October 17, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Using novel lattice (non-relativistic) QCD techniques, for the first time, we will present results pertaining to the fate of Υ(1S), Υ(2S) and Υ(3S) in QGP. We will present results on how the masses of these states change with temperature, as well as how their spatial sizes change. Finally, we will also show new lattice QCD results on excited P-wave bottomonia in QGP.

  181. HET Seminar

    "Next generation kinematic variables for signal discovery and measurement in colliders"

    Presented by Prasanth Shyamsundar, Florida

    Wednesday, October 16, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    High energy physics data, even at the parton level, is high dimensional. Analyzing the distribution of collider events in the full phase-space comes with several challenges—insufficient computational resources to scan the full phase-space, insufficient data to populate it, difficulty in validating monte carlo in the full phase-space, etc. One way to address the curse of dimensionality is to reduce it. At the parton level, this is typically done by constructing kinematic event variables. But this dimensionality reduction is accompanied by information loss, so it becomes important to construct "good" event variables that capture the main features of the phase-space distribution and minimize information loss. Construction of good event variables is a challenging task for event topologies with missing particles in the final state. In this talk we'll look at a new class of kinematic event "variables" that can produce mass bumps even for event topologies with missing particles. And in the process, we'll introduce a brand new way of visualizing and representing high dimensional data, which can open up a world of possibilities for new data analysis techniques.

  182. Physics Colloquium

    "Trapped Ion Quantum Computers"

    Presented by Boris Blinov, University of Washington

    Tuesday, October 15, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Andrei Nomerotski

    System of cold trapped atomic ions has all key features necessary for implementing quantum computation, and many demonstrations of high fidelity quantum logic gates, high fidelity information storage and readout have been made in recent years. However, scalability remains an elusive goal. I will describe one possible avenue to a scalable ion trap quantum computing architecture known as the MUSIQC architecture, in which an expandable number of Elementary Logic Units (ELUs), microfabricated traps holding linear chains of 10 to 100 ions, are linked together using photonic interface to form a modular large-scale system. Local quantum gates are performed using motional coupling between ions in the same trap. One or two ions in each chain are reserved for performing a slower entanglement operation between ions in different ion traps coupled by optical fibers. This long distance entanglement will be accomplished using photon-mediated ion-ion entanglement, in which pairs of ions are projected into an entangled Bell state by a combined measurement of their emitted single photons. It is beneficial to separate the fast motional coupling and the slower remote ion entanglement to different ion species, ytterbium and barium respectively, whose atomic transitions are widely separated in frequency, yet atomic masses are relatively similar. I will comment on the current state of the art of this architecture, and briefly mention our work on two-dimensional trapped ion crystals, and an effort towards linking trapped ion qubits and solid state spins.

  183. CSI Q Seminar

    "Quantum simulation of quantum field theory on the light front"

    Presented by Peter Love, Tufts University and BNL

    Tuesday, October 15, 2019, 12 pm
    Training Room, Bldg 725

    Hosted by: Layla Hormozi

    Quantum simulation proposes to use future quantum computers to calculate properties of quantum systems. The simulation of quantum field theories by any means is a challenge, and quantum algorithms for problems in fundamental physics are a natural target for quantum computation. We will show that the light front formulation of quantum field theory is particularly useful in this regard. We analyze a simple theory in 1 + 1D and show how computation of quantities of interest in this theory is analogous to quantum algorithms for chemistry that we understand in detail.

  184. Condensed-Matter Physics & Materials Science Seminar

    "Heavy-fermion quantum criticality and unconventional superconductivity"

    Presented by Frank Stegllich, Max-Planck-Institute for Chemical Physics & Solids, Germany

    Tuesday, October 15, 2019, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Cedomir Petrovic

    Heavy-fermion (HF) metals, i.e., intermetallic compounds of certain lanthanides and actinides, have been subject of intensive investigations over the last few decades. These research activities have furnished important discoveries, such as of unconventional superconductivity (SC) ("beyond BCS") and unconventional quantum criticality ("beyond Landau"). About fifty HF superconductors are currently known, more than half of which exhibiting a quantum critical point (QCP) where antiferromagnetic (AF) order is smoothly suppressed by tuning a non-thermal control parameter like pressure or magnetic field. Two variants of HF AF-QCPs have yet been established, i.e., a conventional ("3D SDW") and an unconventional, partial Mott ("Kondo destroying") QCP [1, 2]. In clean, stoichiometric HF metals, the huge entropy accumulated at such an AF QCP is commonly removed by forming an unconventional superconducting phase. The apparent validity of this 'quantum critical paradigm' will be illustrated in the first part of the talk by addressing exemplary quantum critical materials, i.e., the isostructural compounds YbRh2Si2 and CeCu2Si2. The former system exhibits a partial-Mott QCP as reflected by, e.g., an abrupt jump of the Fermi-surface volume [3- 5] and a violation of the Wiedemann-Franz law [6, 7]. For this compound, no SC had been detected down to 10 mK, the lowest temperature accessible in a commercial 3He-4He dilution refrigerator [8]. However, recent magnetic and specific-heat measurements performed in a nuclear demagnetization cryostat down to about 1 mK revealed HF, i.e., unconventional, SC below Tc = 2 mK [9]. CeCu2Si2, the first HF superconductor [10], exhibits SC at a 3D SDW-QCP and was considered a (one-band) d-wave superconductor until a few years ago, when its specific heat was found to exhibit two-gap behavior and exponential temperature dependence at very low temperatures [11]. Based on atomic substitution [12],

  185. NT/RIKEN Seminar

    "JIMWLK equation from quantum-classical correspondence"

    Presented by Ming Li, University of Connecticut

    Friday, October 11, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    In this talk, I will examine the status of the JIMWLK evolution equation in relation to the effective density matrix of a high energy hadronic system. The high energy evolution of this density matrix which is associated with the Hilbert space completely spanned by color charge density operators has the form of Lindblad equation. The JIMWLK equation is reproduced by mapping this Lindblad type quantum mechanical equation onto the classical phase space of the system using Weyl's correspondence rules.

  186. Physics Colloquium

    "Toward scalable quantum computing in the quantum optical frequency comb""

    Presented by Oliver Pfister

    Tuesday, October 8, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Andrei Nomerotski

    The resonant (qu)modes of a single optical cavity form a quite large number of well-defined quantum optical fields. When that cavity contains a nonlinear material, i.e., a multiphoton emitter, it becomes an exotic light source, e.g. an optical parametric oscillator (OPO), which, as we have shown, can be made to emit large numbers of qumodes in multimode-squeezed, multipartite- entangled quantum states. We have also shown that said multipartite entanglement can (easily) be made to be of the cluster-state type, which is a major component of a quantum computer. The other major component of a quantum computer would be quantum fault tolerance which, in a nutshell, requires that either some states or gates include some nonpositivity in their Wigner functions. I will present my group's progress on the parallel fronts of massively scalable Gaussian entanglement and non-Gaussian quantum state tomography and engineering toward quantum error correction.

  187. NT/RIKEN Seminar

    "Resurgence and Non-Perturbative Physics"

    Presented by Gerald Dunne, University of Connecticut

    Friday, October 4, 2019, 1 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    I will review the basic ideas behind the connections between resurgent asymptotics and physics, and report on current applications to quantum field theory and phase transitions.

  188. HET Lunch Discussion

    "Unifying background with perturbations in Chaplygin gas cosmology"

    Presented by Heba Sami, North-West University

    Friday, October 4, 2019, 12:15 pm
    Building 510, Room 2-160

  189. RIKEN Lunch Seminar

    "Chiral charge dynamics in Abelian gauge theories at finite temperature"

    Presented by Adrien Florio, École polytechnique fédérale de Lausanne

    Thursday, October 3, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    The chiral anomaly present in the standard model can have important phenomenological consequences, especially in cosmology and heavy-ions physics. In this talk, I will focus on the contribution from the Abelian gauge fields. Despite an absence of topologically distinct sectors, they have a surprisingly rich vacuum dynamics, partly because of the chiral anomaly. I will present results obtained from real-time classical lattice simulations of a U(1) gauge field in the presence of a chiral chemical potential. They account for short distance fluctuations, contrary to effective descriptions such as Magneto-Hydrodynamics (MHD). I will discuss various phenomena, like inverse magnetic cascade, which occur in this system. In particular, in presence of a background magnetic field, the chemical potential exponentially decays. The associated chiral decay rate is related to the diffusion of the Abelian Chern-Simons number in a magnetic background, in the absence of chemical potential. The rate obtained from the simulations is an order of magnitude larger than the one predicted by MHD. If this result is shown to be robust under corrections such as Hard Thermal Loops, it will call for a revision of the implications of fermion number and chiral number non-conservation in Abelian theory at finite temperature.

  190. HET Seminar

    "Reevaluating Reactor Antineutrino Anomalies with Updated Flux Predictions"

    Presented by Jeffrey Berryman, University of Kentucky

    Wednesday, October 2, 2019, 1:30 pm
    Small Seminar Room, Bldg. 510

    As the number of experimental searches for oscillations involving additional, sterile neutrinos has grown, the evidence for (or against) the latter's existence has become more ambiguous. Part of this ambiguity is attributable to the predicted flux of antineutrinos from nuclear reactors: the systematic uncertainties that enter into any such evaluation can muddy the water substantially. In this talk, I discuss how the sterile neutrino hypothesis fares when the global reactor antineutrino dataset is analyzed with respect to three particular flux predictions – the traditional Huber-Mueller fluxes and two new calculations – and consider how current and future electron-neutrino disappearance experiments may affect the situation over the coming decade.

  191. NT/RIKEN Seminar

    "Observing the deformation of nuclei with relativistic nuclear collisions"

    Presented by Giuliano Giacalone, IPhT - Saclay

    Friday, September 27, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    The geometry of overlap between two nuclei interacting at high energy determines many of the observables typically investigated in heavy-ion-collision analyses, such as average transverse momenta () and azimuthal anisotropies of the emitted particle distributions. If the colliding nuclei are non-spherical, e.g., if they present a quadrupole deformation and look like ellipsoids, the geometry of interaction experiences nontrivial fluctuations due to the random orientation of the colliding bodies. I introduce an 'event-shape engineering' procedure that allows one to probe the quadrupole deformation of the colliding ions. The method is straightforward. One selects a batch of high-multiplicity (ultracentral) collisions, and within this batch looks at events that present an abnormally large or small of the produced hadrons. I show that these events correspond to configurations in which the colliding nuclei are overlapping along the longer (shorter) side of the prolate (oblate) ellipsoids. In these events, the interaction region has an elliptical shape, whose eccentricity is closely related to the quadrupole deformation of the considered nuclei. Therefore, for collisions of nuclei that are significantly deformed (e.g. 238U and 129Xe nuclei collided at RHIC and LHC) I predict a strong enhancement of elliptic flow in the tails of the distributions of ultracentral events. If validated by experimental data, this method would provide a robust tool to observe the deformations of nuclear ground states at particle colliders (in particular at RHIC).

  192. BROOKHAVEN FORUM 2019

    "Particle Physics and Cosmology in the 2020's"

    Friday, September 27, 2019, 8 am
    Berkner Hall (Bldg. 488) Main Lecture Hall

  193. RIKEN Lunch Seminar

    "Rapidity correlators at unequal rapidity"

    Presented by Andrecia Ramnath, University of Jyvaskyla

    Thursday, September 26, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Unequal rapidity correlations can be studied within the stochastic Langevin picture of JIMWLK evolution in the Colour Glass Condensate effective field theory. By evolving the classical field in the direct and complex conjugate amplitudes, the Langevin formalism can be used to study two-particle production at large rapidity separations. We show how the evolution between the rapidities of the two produced particles can be expressed as a linear equation, even in the full nonlinear limit. In addition, we show how the Langevin formalism for two-particle correlations reduces to a BFKL picture in the dilute limit and in momentum space, providing an interpretation of BFKL evolution as a stochastic process for colour charges.

  194. BROOKHAVEN FORUM 2019

    "Particle Physics and Cosmology in the 2020's"

    Thursday, September 26, 2019, 8 am
    Berkner Hall (Bldg. 488) Main Lecture Hall

  195. Brookhaven Forum 2019

    "Particle Physics and Cosmology in the 2020's"

    Wednesday, September 25, 2019, 8 am
    Berkner Hall (Bldg. 488) Main Lecture Hall

  196. Chemistry Department Seminar

    ""Probing the Excited-State Reactivity of Transition-Metal Compounds Using Photophysics""

    Presented by Dr. Daniela M. Arias-Rotondo, Department of Chemistry

    Monday, September 23, 2019, 10 am
    Hamilton Seminar Room, Bldg. 555

    Hosted by: Matt Bird

    Transition metal compounds are ubiquitous throughout the chemical sciences, their presence broadly impacting fields such as organic synthesis and solar energy conversion. This talk illustrates how spectroscopic techniques can be used to understand the intricacies of reactions involving transition metal compounds towards two different applications. The first part of this presentation will focus on the conservation of spin in chemical reactions. Our group has previously shown that spin must be conserved for energy transfer to occur.1 To further our understanding of the effect of spin on other types of reactions, we have combined Ru(II) polypyridyls and Fe(III) oxo/hydroxo-bridged dimers to study how the spin state of the acceptor affects the rate of electron transfer. Through a combination of time-resolved spectroscopy and electrochemical techniques we have shown that excited spin states may be involved in electron transfer, as was predicted by Bominaar and coworkers in their studies involving metalloproteins.2 The second half of this seminar describes the use of energy transfer to activate traditional organometallic catalysts to unlock novel reactivity patterns. In particular, we studied the use of an Ir(III) photosensitizer in combination with a Ni(II) catalyst in the coupling of aryl halides and carboxylic acids.3 Mechanistic studies showed that energy transfer from the photocatalyst to the nickel species promotes the latter to an excited state that can promote a novel C-O bond formation.

  197. NT/RIKEN Seminar - CANCELLED

    "The bulk viscosity of QCD in the chiral limit"

    Presented by Derek Teaney, Stony Brook

    Friday, September 20, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    In the chiral limit, the long distance effective theory of QCD at finite temperature is not hydrodynamics but a kind of non-abelian superfluid hydrodynamics. We describe this theory and its viscous corrections, including also a correction due to the finite quark mass. At finite quark mass, the long distance theory is ordinary hydrodynamics, and the superfluid theory then just determines non-analytic in the quark mass corrections to the transport coefficients of QCD, akin to the "long time tails" of hydro. We show how this works out for the bulk viscosity. In chiral perturbation theory the dissipative parameters of the superfluid theory can be computed diagrammatically, and we do this. These results then determine the leading order the bulk viscosity of the pion gas close to the chiral limit.

  198. NSLS-II Friday Lunchtime Seminar

    "Non-trivial Spin Textures in Ferromagnetic Hetero-Interfaces"

    Presented by Ramesh C Budhani, Department of Physics, Morgan State University, Baltimore, MD

    Friday, September 20, 2019, 12:30 pm
    NSLS-II Bldg. 743 Room 156

  199. HET Lunch Discussion

    "Snowmass Discussion"

    Presented by Viviana Cavaliere, Brookhaven National Lab

    Friday, September 20, 2019, 12:15 pm
    Building 510, Room 2-160

  200. Special Physics Colloquium

    "Mega-linear versus Giant-circular. The next big machine for HEP"

    Presented by Franco Bedeschi, INFN

    Thursday, September 19, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: Dmitri Denisov

    Time is coming for a decision on the next particle accelerator at the energy frontier. As Europe is updating its strategy for particle physics, e+e- colliders are standing out as the preferred choice. The physics case for these future colliders and the comparison between the linear and circular option will be reviewed. The status of these projects and the R&D on the detectors required for these machines will also be discussed.

  201. NT/RIKEN Seminar

    "The bulk viscosity of QCD in the chiral limit"

    Presented by Derek Teaney, Stony Brook

    Thursday, September 19, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    In the chiral limit, the long distance effective theory of QCD at finite temperature is not hydrodynamics but a kind of non-abelian superfluid hydrodynamics. We describe this theory and its viscous corrections, including also a correction due to the finite quark mass. At finite quark mass, the long distance theory is ordinary hydrodynamics, and the superfluid theory then just determines non-analytic in the quark mass corrections to the transport coefficients of QCD, akin to the "long time tails" of hydro. We show how this works out for the bulk viscosity. In chiral perturbation theory the dissipative parameters of the superfluid theory can be computed diagrammatically, and we do this. These results then determine the leading order the bulk viscosity of the pion gas close to the chiral limit.

  202. Particle Physics Seminar

    "Radar detection of neutrino-induced cascades in ice: experimental evidence and future prospects"

    Presented by Steven Prohira, The Ohio State University

    Thursday, September 12, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

    In order to detect ultra-high energy (UHE) neutrinos (? few PeV), tens to hundreds of cubic kilometers of material must be instrumented, owing to the exceedingly low flux. Radio methods have been suggested as the clear way forward in the UHE regime, owing to very long path lengths for radio waves in ice, meaning that a massive volume can be sparsely instrumented. Among radio techniques, the most recent—and most promising—is the radar detection method. Here, radio waves illuminate a volume, and if an UHE neutrino-induced cascade occurs within the volume, these waves are reflected to a distant receiver. In this seminar, we present the first evidence of detection of such a radar reflection, captured at SLAC in experiment T-576. We then present the science case for radar, and show that it has the best discovery potential for a detector technology in the UHE range.

  203. RIKEN Lunch Seminar

    "Deeply inelastic scattering structure functions on a hybrid quantum computer"

    Presented by Andrey Tarasov, BNL

    Thursday, September 12, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    Computation of DIS structure functions from first principles is an outstanding problem in Quantum Chromodynamics (QCD) as it involves matrix elements of products of electromagnetic currents that are light-like separated in Minkowski spacetime. Since Monte Carlo computations in lattice QCD are only robust in Euclidean spacetime, it is worthwhile to ask whether simulations on a quantum computer can be beneficial. In my talk I will outline a strategy to compute deeply inelastic scattering structure functions on a hybrid quantum computer which is based on representation of the fermion determinant in the QCD effective action as a quantum mechanical "worldline" path integral over fermionic and bosonic degrees of freedom. The proper time evolution of these worldlines can be determined on a quantum computer. While extremely challenging in general, the problem simplifies in the Regge limit of QCD, where the interaction of the worldlines with gauge fields is strongly localized in proper time and the corresponding quantum circuits can be written down. As a first application, we employ the Color Glass Condensate effective theory to construct the quantum algorithm for a simple dipole model of the F2 structure function. We outline further how this computation scales up in complexity and extends in scope to other real-time correlation functions.

  204. HET Seminar

    "Neutrinos at Dark Matter Experiments, and Vice Versa"

    Presented by Nirmal Raj, Triumf Lab

    Wednesday, September 11, 2019, 2:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Gopolang Mohlabeng

  205. Condensed-Matter Physics & Materials Science Seminar

    "Nematic superconductivity in twisted bilayer graphene"

    Presented by Laura Classen, University of Minnesota

    Tuesday, September 10, 2019, 1 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    Tunable insulating and superconducting phases have recently been induced in several twisted graphene-based heterostructures. These correlated phases are ascribed to an exceptional band flattening, which comes along with a very large hexagonal moiré pattern in real space. We study this interplay of orders in a phenomenological model for the moiré superlattice with a focus on superconductivity. Motivated by the presence of van-Hove instabilities, we approach the pairing problem as an interaction-induced instability of the Fermi surface in terms of the unbiased functional renormalization group. We find two pairing instabilities with different symmetries being close in energy and show that a similar situation arises in a model specific for twisted bilayer graphene. In view of recent experimental observations that the threefold lattice rotational symmetry is broken in the superconducting state of hole-doped twisted bilayer graphene, we analyze the corresponding Landau-Ginzburg free energy with two superconducting order parameters. The result is, indeed, a mixed ground state that breaks rotation symmetry and leads to nematic superconductivity. Time-reversal symmetry can simultaneously be broken.

  206. Nuclear Physics Seminar

    "Longitudinal double spin asymmetry for incluisve jet and dijet production in proton-proton collisions at $\sqrt{s} = $ 510 GeV"

    Presented by Zilong Chang, BNL

    Tuesday, September 10, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    Jets productions from $pp$ collisions at RHIC kinematics are dominated by quark-gluon and gluon-gluon scattering processes. Both of these longitudinal double spin dependent processes have sizable asymmetries in the pseudorapidity range, $-1 < \eta < 1$. Therefore the longitudinal double-spin asymmetry $A_{LL}$ for jets is an effective channel to explore the gluon polarization in the proton. Early STAR inclusive jet $A_{LL}$ results at $\sqrt{s} = $ 200 GeV provided the first evidence of the non-zero gluon polarization at $x > $ 0.05. In this talk, we will report the first measurement of the midrapidity inclusive jet and dijet $A_{LL}$ at $\sqrt{s} =$ 510 GeV. The inclusive jet $A_{LL}$ measurement provides sensitivity to the gluon helicity distribution down to a Bjorken-$x$ of 0.015, while the dijet measurements, binned in four jet-pair topologies, will allow for tighter constraints on the $x$ dependence. Both results are consistent with previous measurements made at $\sqrt{s} =$ 200 GeV and show excellent agreement with predictions from recent next-to-leading order global analyses. In addition the new techniques designed for this analysis, for example, the underlying event correction to the jet transverse energy and its effect on the jet $A_{LL}$ will be discussed.

  207. NT/RIKEN Seminar

    "Qubit Regularization of Quantum Field Theories"

    Presented by Shailesh Chandrasekharan, Duke University

    Friday, September 6, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    Motivated by the desire to study quantum field theories on a quantum computer, we propose a new type of regularization of quantum field theories where in addition to the usual lattice regularization, quantum field theories are constructed with a finite dimensional Hilbert space per lattice site. This is particularly relevant for studying bosonic field theories using a quantum computer since traditional lattice regularization assumes an infinite dimensional Hilbert space per lattice site and hence difficult to formulate on a quantum computer. Here we show that a two qubit model is sufficient to recover the 3d Wilson-Fisher fixed point and the 4d Gaussian fixed point of the O(3) sigma model. On the other hand in 2d, our qubit model does not seem to have a continuum limit although we have to study large lattices to establish this fact. We discuss modifications of our model that could perhaps yield a continuum limit.

  208. HET Lunch Discussion - CANCELLED

    "Is the muon just a heavy electron"

    Presented by Amarjit Soni, BNL

    Friday, September 6, 2019, 12:15 pm
    Building 510, Room 2-160

  209. CFNS Seminar

    "Nuclear femtography as a bridge from protons and neutrons to the core of neutron stars"

    Presented by Simonetta Liuti, University of Virginia

    Thursday, September 5, 2019, 4 pm
    Building 510, CFNS Room 2-38

    Hosted by: Abha Rajan

    In this talk I will address how the science of Nuclear Femtography, probed by deeply virtual exclusive electron nucleon scattering, has revolutionized our approach to exploring the internal structure of the nucleon. Current and planned experiments at the future EIC could in principle allow us to use all the information from data and phenomenology, on one side, to form tomographic images of the nucleon's quark and gluon distributions and, on the other, to reveal the nucleon's internal structure by measuring mechanical properties such as the quark angular momentum, energy density and pressure distributions. While this information is critical for ultimately understanding the working of the color forces, it also defines a new area of research where the fundamental gravitational properties of protons, neutrons and nuclei can be tested through recent astronomical observations constraining the equation of state of neutron stars.

  210. Special Nuclear Theory Seminar

    "Confinement and Entanglement in Coupled Quantum Systems"

    Presented by Masanori Hanada, Stanford/Kyoto

    Thursday, September 5, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Rob Pisarski

  211. HET Lunch Discussion

    "NSI at DUNE"

    Presented by Poonam Mehta

    Friday, August 30, 2019, 12:15 pm
    Building 510, Room 2-160

  212. RIKEN Lunch Seminar

    "Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula"

    Presented by Masazumi Honda, Cambridge

    Thursday, August 29, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    I will talk about supersymmetric index of 4d N=1 supersymmetric theories on S^1xM_3 which counts supersymmetric states. In the first part, I will discuss a general formula to describe an asymptotic behaviour of the index in the limit of shrinking S^1 which we refer to as 4d (refined) supersymmetric Cardy formula. This part is based on arXiv:1611.00380 with Lorenzo Di Pietro. In the second part, I will apply this formula to black hole physics. I will mainly focus on superconformal index of SU(N) N=4 super Yang-Mills theory which is expected to be dual to type IIB superstring theory on AdS_5 x S^5. We will see that the index in the large-N limit reproduces the Bekenstein-Hawking entropy of rotating charged BPS black hole on the gravity side. Our result for finite N makes a prediction to the black hole entropy with full quantum corrections. The second part is based on arXiv:1901.08091.

  213. Condensed-Matter Physics & Materials Science Seminar

    "Tailoring the twinning of DyBa2Cu3O7-x thin films with atomic-layer-by-layer molecular beam epitaxy"

    Presented by Daniel Putzky, Max Planck Institute for Solid State Research, Germany

    Monday, August 26, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Tony Valla/Ilya Drozdov

    In this talk I will present the work on high-quality, epitaxial DyBa2Cu3O7-x (DBCO) thin films grown by molecular beam epitaxy (MBE). In contrast to the previous DBCO growth by MBE using co-deposition technique, we have employed an atomic-layer-by-layer shuttering sequence with in-situ RHEED feedback. Films grown on LSAT (100), NGO (110) and STO (100) have a sharp superconducting transition above 80 K. Scanning-transition electron microscopy (STEM) shows atomically sharp substrate-film interface and the absence of stacking faults, unlike films previously grown by PLD. In the second part of the talk I will focus on the structural investigation using x-ray diffraction (XRD). In-plane scans at the KARA synchrotron confirm the epitaxial relationship to the substrate. In addition the formation of twin domains with the bulk-like orthorhombic crystal structure were observed. By reducing the film thickness the tetragonal to orthorhombic phase transition can be suppressed while the films still remain superconducting.

  214. NT/RIKEN Seminar

    "Symmetries in quantum field theory and quantum gravity"

    Presented by Daniel Harlow, MIT

    Friday, August 23, 2019, 1:15 pm
    Building 510, CFNS Seminar room 2-38

    Hosted by: Niklas Mueller

    It has long been suspected that symmetries in quantum gravity are highly constrained. In this talk I will describe joint work with Hirosi Ooguri, where we use the power of the AdS/CFT correspondence to prove three conjectures of this type: that there are no global symmetries, that there must be objects transforming in all representations of any gauge symmetry, and that any gauge group must be compact. Real world implications include the existence of magnetic monopoles and neutrinoless double beta decay, although we so far are unable to give estimates for when these should be seen. An important point, which we dwell on at length, is the proper definition of gauge and global symmetries in quantum field theory.

  215. HET Discussion - CANCELLED

    "TBD"

    Presented by Aaron Meyer, BNL

    Friday, August 23, 2019, 12:15 pm
    Building 510, Room 2-160

  216. Condensed-Matter Physics & Materials Science Seminar

    "The 2-spinon contribution to the longitudinal structure factor in the XXZ model"

    Presented by Isaac Perez Castillo, Institute of Physics, UNAM and London Mathematical Laboratory

    Thursday, August 22, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    In this work we derive exactly the two-spinon contribution to the longitudinal dynamical structure factor of the anisotropic Heisenberg spin-1/2 chain in the gapped regime by using quantum group approach. We will briefly discuss some of the mathematical difficulties when confronting form factor formulas given by quantum group approach and how to overcome these obstacles. We end up by contrasting our results with those coming from perturbation theory, while comparison to DMRG and experiments are currently underway.

  217. NT/RIKEN

    "Effective and temperature-dependent viscosities in a hydrodynamically-expanding QCD plasma"

    Presented by Jean-Francois Paquet, Duke University

    Friday, August 16, 2019, 2 pm
    Building 510, CFNS room 2-38

    Hosted by: Niklas Mueller

    The shear and bulk viscosities of QCD are understood to have non-trivial temperature dependence. The quark-gluon plasma created at RHIC and the LHC provides a unique probe of this temperature dependence for temperatures ranging from ∼150 ~MeV to ∼400−600 MeV. Values of viscosities commonly quoted for the quark-gluon plasma, e.g. η/s∼0.1−0.2 for the shear viscosity to entropy density ratio, are understood to represent ``effective viscosities'', which combine the actual temperature-dependence of the transport coefficient with the complex temperature profile of the quark-gluon plasma. Using 0+1D Bjorken hydrodynamics as starting point, we provide a precise definition of effective viscosity for first-order (Navier-Stokes) hydrodynamics. We examine the role of the equation of state by comparing a QCD fluid with a conformal one. We use this definition of effective viscosity to obtain families of bulk viscosities ζ/s(T) that have different temperature dependence but nevertheless produce matching temperature evolutions in 0+1D hydrodynamics. We further extend the definition of effective viscosity to second-order (Israel-Stewart) Bjorken hydrodynamics. We express the second-order effective viscosity in terms of the initial bulk pressure of the system and its first-order effective viscosity, and quantify the approximate degeneracy of these latter two quantities in Bjorken hydrodynamics. We discuss extensions of this work beyond 0+1D, and review implications for phenomenological studies of heavy ion collisions.

  218. HET Lunch Discussion

    "The Fermi Constant Revisited"

    Presented by William Marciano, BNL

    Friday, August 16, 2019, 12:15 pm
    Building 510, Room 2-95

  219. RIKEN Lunch Seminar

    "Mean field approach to the Fisher information matrix in deep neural networks"

    Presented by Ryo Karakida, AIST, National Institute of Advanced Industrial Science and Technology

    Thursday, August 15, 2019, 12 pm
    Building 510, Room 1-224

    Hosted by: Akio Tomiya

  220. Environmental & Climate Sciences Department Seminar

    "Experimental and modeling investigation of the OH-initiated heterogeneous oxidation of semi-solid and aqueous saccharide aerosols"

    Presented by Hanyu Fan, Department of Chemistry, West Virginia University

    Monday, August 12, 2019, 11 am
    Conference Room Bldg 815E

    Hosted by: Art Sedlacek and Ernie Lewis

    Sugars (primary saccharides, saccharide polyols and anhydro-saccharides) are a major class of water-soluble organic carbon (WSOC) that significantly contribute to atmospheric organic aerosol particular matter (PM). [1] The heterogeneous oxidation of organic materials plays a significant role during the chemical aging of organic aerosols in the atmosphere. The kinetic of such heterogeneous reactions has been shown to be very dependent on the chemical component of the particle phase. [2] The experiments were performed using an atmospheric pressure aerosol flow tube coupled with Scanning Mobility Particle Sizer (SMPS), Gas Chromatography – Flame Ionization Detector (GC-FID) and Aerosol Mass Spectrometer or Teflon filter collection. The kinetics are determined from the loss of particle species as a function of OH exposure. We reported results on the OH-initiated heterogeneous oxidation of pure monosaccharide semi solid nanoparticles over a wide range of relative humidity (RH) conditions. The decay rate of the monosaccharide is found to strongly depend on the gas phase water concentration. [3] We recently report results on heterogeneous oxidation of OH radicals with ternary component of monosaccharide-disaccharide-water semi solid nanoparticles over a range of mole ratio of mixtures of monosaccharide and disaccharide. The presence of disaccharide slows down the decay rate of monosaccharide in semi solid phase. [4] Then we moved on to aqueous phase oxidation of saccharides by OH radicals study. Contrast to what we observed in semi solid phase study, the presence of monosaccharide slows down the kinetic of disaccharide in aqueous phase. [5] A reaction-diffusion kinetic model solved in Matlab software is developed in order to investigate the effect composition-dependent diffusion on heterogeneous reaction behaviors in solid phase study. [3,4] Molecular dynamics simulations and kinetic mechanism of the heterogeneous oxidation of aqueous droplets based

  221. C-AD Accelerator Physics Seminar

    "Storage Rings as Quantum Computers"

    Presented by Kevin Brown, BNL

    Friday, August 9, 2019, 4 pm
    Bldg. 911B, Second Floor, Large Conf. Rm., Rm. A2

    There are multiple ways that quantum computer elements have been realized and have been proposed to be realized. These include ion traps, Josephson junctions, Nuclear Magnetic Resonance spin states and optical systems. In this presentation, I will present a new idea; using a storage ring as a quantum computer. The key to building a storage ring quantum computer is to create an ultracold beam in the form of an "ion Coulomb crystal". In a classical Coulomb crystal, a chain of ions is bound into a lattice structure in which the ions remain locked in sequence despite the mutual Coulomb repulsion force between the positively charged ions. In an ion Coulomb crystal, the thermal vibrations of the ions are cooled to extremely low temperature, so that the quantum states in the motion of the ions are observable. There are a number of challenges in realizing such a system, although much can be learned from ion trap systems, since the storage ring is essentially an unbounded ion trap where the ion chains have a finite velocity.

  222. Nuclear Theory / RIKEN Seminar

    "DIS on a Quantum Extremal RN-AdS Black Hole: with Application to DIS on a Nucleus"

    Presented by Kiminad Mamo, Stony Brook University

    Thursday, August 8, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

    We consider deep inelastic scattering (DIS) on a dense nucleus described as an extremal RN-AdS black hole with holographic quantum fermions in the bulk. We find that the R-ratio (the ratio of the structure function of the black hole to proton) exhibit shadowing for x < 0.1, anti-shadowing for 0.1 < x < 0.3, EMC-like effect for 0.3 < x < 0.8 and Fermi motion for x > 0.8 in a qualitative agreement with the experimental observation of the ratio for DIS on nucleus for all range of x. We also take the dilute limit of the black hole and show that its R-ratio exhibits EMC-like effect for 0.2 < x < 0.8 and the Fermi motion for x > 0.8, and no shadowing is observed in the dilute limit.

  223. Center for Functional Nanomaterials Seminar

    "Precursors that live surprisingly long and prosper even at "real catalytic" high temperatures"

    Presented by Heriberto Fabio Busnengo

    Tuesday, August 6, 2019, 11 am
    CFN, Building 735 - first floor conf. rm.

    Hosted by: Dario Stacchiola

    The dynamics of intrinsic precursors and their role on surface chemistry are presented using quasi-classical trajectory calculations based on force fields parametrized from Density Functional Theory results. Carbon monoxide and methane are used as benchmark molecules, exemplifying non-reactive and reactive sticking processes on Cu(110) and Ir(111) respectively. The role of entropic effects in the stabilization of the precursor state for CO/Cu(110) is presented, as well as an analysis of the extent low energy CH4 molecules thermalize on a hot surface. The theoretical studies are motivated by recent molecular beam experimental findings for both molecules, where the long lifetime of vibrationally excited states on shallow potential wells enable these precursors to "prosper" even at high "real catalytic" temperatures.

  224. NT/RIKEN Seminar

    "Perturbation Theory of Non-Perturbative QCD"

    Presented by Fabio Siringo, University of Catania

    Friday, August 2, 2019, 2 pm
    Building 510, CFNS Seminar Room 2-38

    Hosted by: Niklas Mueller

    A purely analytical approach to non-perturbative QCD is discussed. The exact, gauge-fixed, Faddeev-Popov Lagrangian of Yang-Mills theory is studied by the screened massive expansion which emerges from a mere change of the expansion point of ordinary perturbation theory. The gluon propagator has gauge-invariant complex conjugated poles which might give a direct dynamical proof of gluon confinement. Their genuine nature is discussed. Because of BRST symmetry, the analytic properties and the poles are shown to play a central role in the optimization of the expansion, which becomes a very predictive and ab initio tool. While in excellent agreement with the lattice data in the Euclidean space, the expansion provides valuable information in sectors which are not easily explored on the lattice, like Minkowski space and a generic covariant gauge. Moreover, even in the Euclidean space, the method gives a lattice-independent estimate of the running coupling in the continuum limit.

  225. HET Lunch Seminar

    "Nucleon-Pion States for the Nucleon Form Factors from the Lattice QCD"

    Presented by Yong-Chull Jang

    Friday, August 2, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Peter Denton

  226. Physics Colloquium

    "Belle II and SuperKEKB: New Physics and the Next Generation"

    Presented by Tom Browder, University of Hawai'i at Manoa

    Tuesday, July 30, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: David Jaffe

    Recent results now suggest that flavor physics could be an alternative path to breaking the Standard Model of particle physics. I will review the startup of Belle II and SuperKEKB, including news from the first physics run that took place April-June 2019 as well as the the long term physics program of Belle II and the innovative technologies that have made it possible. Belle II will soon become the leading experiment for exploration of the physics of B mesons, D mesons and tau leptons. I will also discuss the special role of BNL in Belle II.

  227. Nuclear Physics Seminar

    "Understanding the nature of heavy-ion collisions in small systems"

    Presented by Jacquelyn Noronha-Hostler, Rutgers University

    Tuesday, July 30, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jiangyong Jia

    In recent years our understanding on the limits of the smallest possible droplet of the Quark-Gluon Plasma has been called into question. Experimental results from both the Large Hadron Collider and the Relativistic Heavy Ion Collider have provided hints that the Quark-Gluon Plasma may be produced in systems as small as those formed in pPb or dAu collisions. Yet, alternative explanations still exist from correlations arising from quarks and gluons in a color glass condensate picture. In order to better resolve the distinctions between these two scenarios, I will discuss the possibility of a future system size scan involving ArAr and OO collisions at the Large Hadron collider and make predictions for flow harmonics in both the light and heavy flavor sectors. Additionally, I will discuss the potential of using small deformed ions to help disentangle the color glass condensate scenario versus hydrodynamics where most of these results can be confirmed or denied using experimental data that is already on tape.

  228. Condensed-Matter Physics & Materials Science Seminar

    "Fermi arcs, nodal and antinodal gaps in cuprates : the 'pairon' model to the rescue"

    Presented by William Sacks, Sorbonne University, France

    Friday, July 26, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Ivan Bozovic

    Angle-resolved photoemission, in addition to tunneling, has provided key information on the cuprate pairing on the microscopic scale. In particular, in the underdoped regime, the angular dependence of the gap function Δ(θ) deviates from a pure d-wave form such that the antinodal gap value ΔAN and the nodal gap value ΔN completely diverge. On another front, ARPES has firmly established that the enigmatic Fermi arcs, i.e. normal electron excitations around the nodes, exist even below Tc. In this work, we will interpret these experiments based on the 'pairon' model [1] in which the fundamental object is a hole pair bound by its local antiferromagnetic environment on the scale of the coherence length ξAF. The pairon model agrees quantitatively with both the gap function Δ(θ) and the Fermi arcs seen at finite temperature.

  229. Physics Department Summer Lectures

    "From Raw Data to Physics Results"

    Presented by Paul Laycock

    Friday, July 26, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    Modern nuclear and particle physics experiments generate huge amounts of data that need to be calibrated, processed and analysed so that we can extract and publish physics results. In this talk I will describe the journey of data, from the bits that leave the detectors through its transformation into well-understood physics objects that are analysed by physicists all over the world. We will look in particular at how this exabyte scale problem requires computing and software solutions that operate on a global scale, and take a look at the challenges that still lie ahead of us.

  230. HET Lunch Discussion

    "Revisiting the Dark Photon Interpretation of the Muon Anomalous Magnetic Moment"

    Presented by Gopi Mohlabeng, BNL

    Friday, July 26, 2019, 12:15 pm
    Building 510, Room 2-160

    A massive U(1)′ gauge boson known as a "dark photon" or A′, has long been proposed as a potential explanation for the discrepancy observed between the experimental measurement and theoretical determination of the anomalous magnetic moment of the muon (gμ − 2) anomaly. Recently, experimental results have excluded this possibility for a dark photon exhibiting exclusively visible or invisible decays. In this work, we revisit this idea and consider a model where A′ couples inelastically to dark matter and an excited dark sector state, leading to a more exotic decay topology we refer to as a semi-visible decay. We show that for large mass splittings between the dark sector states this decay mode is enhanced, weakening the previous invisibly decaying dark photon bounds. As a consequence, A′ resolves the gμ− 2 anomaly in a region of parameter space the thermal dark matter component of the Universe is readily explained. Interestingly, it is possible that the semi-visible events we discuss may have been vetoed by experiments searching for invisible dark photon decays. A re-analysis of the data and future searches may be crucial in uncovering this exotic decay mode or closing the window on the dark photon explanation of the gμ− 2 anomaly.

  231. HET Lunch Discussions

    "Unearthing Kinematic Information in WH Production"

    Presented by Sam Homiller, SBU

    Friday, July 26, 2019, 12:15 pm
    Building 510, Room 2-160

    The associated production of a Higgs and a W boson is an important channel not only for observing the Higgs decay to b quark pairs, but also for examining the interactions of the Higgs and gauge fields. Using the inference toolkit MadMiner, which combines matrix element information and machine learning techniques, we examine the sensitivity of this production mode to non-Standard Model (SM) interactions arising in the context of the SM Effective Field Theory. These modern inference techniques maximize the sensitivity to new physics effects by exploiting all the kinematic information in the process and also help us understand how this information is distributed in phase space. In particular, this lets us rigorously evaluate the sensitivity of traditional approaches using histograms of a small number of observables. Based on our study we propose improvements to the recently implemented "Simplified Template Cross Section" templates for the Higgstrahlung process in order to increase the experimental sensitivity of beyond the SM physics at the LHC.

  232. Sambamurti Lecture

    "Finger-printing a nuclear reactor with neutrinos"

    Presented by Thomas Langford, Yale University

    Thursday, July 25, 2019, 3:30 pm
    Large Seminar Room, Bldg. 510

    Hosted by: John Haggerty

    Neutrinos have been the most consistently surprising particle of the last few decades. The onset of high-precision experiments has lead to the discovery of neutrino oscillations, possible evidence for beyond the Standard Model sterile neutrinos, and the beginnings of neutrino-based geophysics. Recent measurements of antineutrinos from nuclear reactors have observed flux and spectral discrepancies compared to leading theoretical models. Experiments like Daya Bay and PROSPECT are able to observe the small differences of neutrino emission from different mixtures of nuclear fuel, which may illuminate the origin of this disagreement. These neutrino finger-prints can also be used to investigate the mixture of fuel inside an operating reactor, rekindling interest in neutrino-based reactor monitoring. I will present recent advances which have demonstrated how small-scale experiments utilizing new technologies can advance both fundamental and applied science.

  233. RIKEN Lunch Seminar

    "Deciphering the z_g distribution in ultrarelativistic heavy ion collisions"

    Presented by Paul Caucal, Saclay

    Thursday, July 25, 2019, 12 pm
    Building 510, Room 2-160

    Hosted by: Yuta Kikuchi

  234. Nuclear Physics Seminar

    "Understanding the nature of heavy-ion collisions in small systems"

    Presented by Jacquelyn Noronha-Hostler, Rutgers University

    Thursday, July 25, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Jia Jiangyong

    In recent years our understanding on the limits of the smallest possible droplet of the Quark-Gluon Plasma has been called into question. Experimental results from both the Large Hadron Collider and the Relativistic Heavy Ion Collider have provided hints that the Quark-Gluon Plasma may be produced in systems as small as those formed in pPb or dAu collisions. Yet, alternative explanations still exist from correlations arising from quarks and gluons in a color glass condensate picture. In order to better resolve the distinctions between these two scenarios, I will discuss the possibility of a future system size scan involving ArAr and OO collisions at the Large Hadron collider and make predictions for flow harmonics in both the light and heavy flavor sectors. Additionally, I will discuss the potential of using small deformed ions to help disentangle the color glass condensate scenario versus hydrodynamics where most of these results can be confirmed or denied using experimental data that is already on tape.

  235. Condensed-Matter Physics & Materials Science Seminar

    "Strange superconductivity near an antiferromagnetic heavy-fermion quantum critical point"

    Presented by Chung-Hou Chung, Department of Electrophysics, National Chiao-Tung University, Taiwan

    Wednesday, July 24, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201

    Hosted by: Alexei Tsvelik

    The heavy fermion systems CeMIn5 with M = Co, Rh, Ir, the "115" family, provide a prototypical example of an exotic "strange superconductivity" where unconventional d-wave Cooper pairs get condensed out of an incoherent strange metal normal state, displaying non-Fermi liquid behavior such as: T-linear-resistivity, T-logarithmic specific heat coefficient and a T-power-law singularity in magnetic susceptibility, near an antiferromagnetic quantum critical point [1]. The microscopic origin of strange superconductivity and its link to antiferromagnetic quantum criticality of the strange metal state are still long-standing open issues. We propose a microscopic mechanism for strange superconductors, based on the coexistence and competition between the Kondo correlation and the quasi-2d short-ranged antiferromagnetic resonating-valence-bond (RVB)spin-liquid near the antiferromagnetic quantum critical point via a large-N (Sp(N)) Kondo-Heisenberg model and renormalization group analysis beyond the mean-field level [2]. In the absence of superconductivity, this effective field theory [3] can describe various aspects of strange metal state observed in Ge-substituted YbRh2Si2 [4] close to the field-tuned Kondo breakdown quantum critical point. The interplay of these two effects between the Kondo and RVB physics provides a qualitative understanding on how superconductivity emerges from the strange metal state and the observed superconducting phase diagrams for CeMIn5 [1,2]. References: [1] C. Petrovic et al. J. Phys. Condens. Matt. 13, L337 (2001); S. Zaum et al. Phys. Rev. Lett. 106, 087003 (2011). [2] Y. Y. Chang, F. Hsu, S. Kirchner, C. Y. Mou, T. K. Lee, and C. H. Chung, Phys. Rev. B 99, 094513 (2019). [3] Y. Y. Chang, S. Paschen, and C. H. Chung, Phys. Rev. B 97, 035156 (2018). [4] J. Custers et al, Nature (London) 424, 524 (2003); J. Custers et al. Phys. Rev. Lett. 104, 186402 (2010).

  236. Physics Department Summer Lectures

    "Searching for and understanding the quark-gluon plasma in heavy-ion"

    Presented by Rongrong Ma, BNL

    Tuesday, July 23, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    Lattice-QCD predicts the occurrence of a phase transition above a critical temperature from ordinary nuclear matter to a new state of matter, usually referred to as the quark-gluon plasma (QGP), in which partons are relevant degrees of freedom. One primary goal of the heavy-ion physics is to create and study the properties of the QGP created in these collisions. The last couple of decades have seen tremendous progresses in understanding the QGP, thanks to the successful operation of dedicated experiments at the RHIC and the LHC. In this lecture, I will discuss the detectors designed for heavy-ion physics, and how an experimentalist turns electronic signal into physics results. Future direction of heavy-ion experiments will also be discussed.

  237. Condensed-Matter Physics & Materials Science Seminar

    "Electron beam effects on organic ices"

    Presented by Marco Beleggia, Technical University of Denmark, Denmark

    Monday, July 22, 2019, 11 am
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Yimei Zhu

    While beam damage is often considered detrimental to our quantitative imaging capabilities, the energy and charge injected into the sample as a result of inelastic scattering can be exploited beneficially. This is especially true in radiation-chemistry-type experimental setups in the electron microscope where the beam promotes local wanted chemical reactions. We have observed that by exposing to the electron beam a layer of small volatile organic molecules condensed over a cold substrate results in the formation of a solid product. Evidence suggests that the exposure mechanism driving the formation of a solid product is partial dehydrogenation of the molecules, removal of H2, and progressive increase of the average molecular weight. Contrary to focused electron beam induced deposition, that relies on surface absorption followed by aggregation of mobile species, at cryogenic temperature organic ice molecules are largely immobilized, and act as targets for the incoming electrons throughout the entire thickness of the layer. Therefore, the exposure occurs throughout the volume of the frozen precursor, and the features are essentially determined by the electron distribution, with diffusion/transport parameters bearing little or no relevance. Since larger molecules are less volatile, if the molecular weight increases sufficiently, upon raising the temperature the unexposed areas leave the sample, while the exposed molecules assemble into a solid product in the form of hydrogenated amorphous carbon.

  238. Physics Department Summer Lectures

    "Introduction to Statistics in High-Energy Physics"

    Presented by Xin Qian

    Friday, July 19, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    In this lecture, I will introduce some basic statistical concepts commonly used in the data analysis of high-energy physics experiments. I will review the basic procedure in setting confidence intervals. Some advanced topics in data unfolding, selection of test statistics, and usage of linear algebra in reducing computation will be touched upon.

  239. HET Lunch Seminar

    "Probing Dark Matter Particle Properties with Ultra-High-Resolution CMB Lensing"

    Presented by Neelima Sehgal, SBU

    Friday, July 19, 2019, 12:15 pm
    Building 510, Room 2-160

    Hosted by: Hooman Davoudiasl

  240. Particle Physics Seminar

    "Precision Jet Substructure with the ATLAS Detector"

    Presented by Jennifer Roloff, BNL

    Thursday, July 18, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Alessandro Tricoli

  241. Physics Department Summer Lecture Series

    "Quantum Chromodynamics (QCD) as a many-body theory: An existential tale in four acts"

    Presented by Raju Venugopalan, BNL

    Tuesday, July 16, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    QCD, our nearly perfect theory of the strong interaction, is also deeply profound because all phenomena are emergent features of the many-body dynamics of the quark and gluon fields and the vacuum of the theory. This talk on many-body QCD is organized as a play in four acts: i) Origins, mysteries, symmetries ii) The power and the glory of QCD iii) Surprises from boiling the QCD vacuum in heavy-ion collisions: a) why the world's hottest fluid, albeit also being its most viscous, flows with almost no resistance b) a possible unexpected universality between the hottest and coldest fluids on earth c) What magnetar strength magnetic fields created in heavy-ion collisions may reveal about the topology of the QCD vacuum iv) Looking ahead to the Electron-Ion Collider: what the ultimate IMAX experience may reveal of QCD's mysteries

  242. Chemistry Department Seminar

    "Nanoparticle Beam Deposition: A Novel Route to the Solvent-Free"

    Presented by Richard E. Palmer, Nanomaterials Lab, Swansea University, UK, United Kingdom

    Tuesday, July 16, 2019, 11 am
    Room 300, 3rd Floor, Chemistry Building 555

    Hosted by: Michael White

    Size-selected nanoparticles (atomic clusters), deposited onto supports from the beam in the absence of solvents, represent a new class of model systems for catalysis research and possibly small-scale manufacturing of selective catalysts. To translate these novel and well-controlled systems into practical use, two major challenges have to be addressed. (1) Very rarely have the actual structures of clusters been obtained from direct experimental measurements, so the metrology of these new material systems have to improve. The availability of aberration-corrected HAADF STEM is transforming our approach to this structure challenge [1,2]. I will address the atomic structures of size-selected Au clusters, deposited onto standard carbon TEM supports from a mass-selected cluster beam source. Specific examples considered are the "magic number clusters" Au20, Au55, Au309, Au561, and Au923. The results expose, for example, the metastability of frequently observed structures, the nature of equilibrium amongst competing isomers, and the cluster surface and core melting points as a function of size. The cluster beam approach is applicable to more complex nanoparticles too, such as oxides and sulphides [3]. (2) A second major challenge is scale-up, needed to enable the beautiful physics and chemistry of clusters to be exploited in applications, notably catalysis [4]. Compared with the (powerful) colloidal route, the nanocluster beam approach [5] involves no solvents and no ligands, while particles can be size selected by a mass filter, and alloys with challenging combinations of metals can readily be produced. However, the cluster approach has been held back by extremely low rates of particle production, only 1 microgram per hour, sufficient for surface science studies but well below what is desirable even for research-level realistic reaction studies. In an effort to address this scale-up challenge, I will discuss the development of a new kind of nanop

  243. NT/RIKEN Seminar

    "Topological Superconducting Qubits"

    Presented by Javad Shabani, Center for Quantum Phenomena NYU

    Friday, July 12, 2019, 2 pm
    Building 510, CFNS Room 2-38

    Hosted by: Niklas Mueller

    Topological superconductivity hosts exotic quasi-particle excitations including Majorana bound states which hold promise for fault-tolerant quantum computing. The theory predicts emergence of Majorana bound states is accompanied by a topological phase transition. We show experimentally in epitaxial Al/InAs Josephson junctions a transition between trivial and topological superconductivity. We observe a minimum of the critical current at the topological transition, indicating a closing and reopening of the superconducting gap induced in InAs, with increasing magnetic field. By embedding the Josephson junction in a phase-sensitive loop geometry, we measure a π-jump in the superconducting phase across the junction when the system is driven through the topological transition. We present a scalable topological qubit architecture to study coherence for computing applications. Funded by DARPA TEE program.

  244. Physics Department Summer Lecture Series

    "A golden age in physics, an overview of what the...is going on in the RHIC tunnel"

    Presented by Rob Pisarski, BNL

    Friday, July 12, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    I will give a general introduction to the modern theory of "strong" interactions, which involve quarks and gluons. At about a trillion degrees, these form a Quark-Gluon Plasma, which we believe is created in the collisions of heavy ions at very high energies, such as at the Relativistic Heavy Ion Collider here at Brookhaven. I also make extensive comments about the sociology of the field, especially the phenomenon of "As everyone who is anyone knows..."

  245. Particle Physics Seminar

    "Low-nu Flux Measurement Using Neutrino/Antineutrino-Hydrogen Interactions for Long-baseline Neutrino Oscillation Experiments"

    Presented by Hongyue Duyang, University of South Carolina

    Thursday, July 11, 2019, 3 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Chao Zhang

    The next generation long-baseline neutrino oscillation experiments such as DUNE (Deep Underground Neutrino Experiment) aim to solve the remaining questions in neutrino oscillation physics, including neutrinos' mass ordering and CP violation. The near detector(s) will provide crucial constraints on the systematic uncertainties to the oscillation measurements. Flux uncertainty is one of the dominant contributions to the systematic uncertainties. In this talk I present a novel approach of precisely determining the neutrino flux in the near detector(s) of a long-baseline neutrino experiment such as DUNE, by using neutrino/antineutrino-hydrogen interactions with low visible hadronic energy (Low-nu). The application of this method in the proposed KLOE-STT detector is discussed, which could serve as part of the near detector complex of DUNE.

  246. Physics Department Summer Lecture Series

    "Silicon Detectors for Particle and Nuclear Physics"

    Presented by Gabriele Giacomini, BNL

    Tuesday, July 9, 2019, 12:30 pm
    Small Seminar Room, Bldg. 510

    Hosted by: Mary Bishai

    Silicon technology is approximately 70 years old but thousands of years by a multitude of researchers has been dedicated to R&D; the well-established microelectronic industry is based on it. Being that the silicon is sensitive to photons (from infrared to X-rays, passing through visible light and ultraviolet) and to charged particles, we can leverage the microelectronic technology to make sensors out of silicon. Silicon sensors are used in a variety of applications including scientific experiments (High Energy Physics, Astrophysics, Photon Science, etc) as well as industrial and commercial use (cameras, etc). The basic structure is the p-n junction across which a voltage is applied. When an ionizing event occurs (a photon or a charged-particle interacting with silicon), a short current pulse (~ few ns) is generated and detected by the read-out electronics. There are many kinds of silicon sensors and each one must be tailored according to the specific application. We'll give an overview of the state of the silicon technology and its different applications.

  247. Nuclear Physics Seminar

    ": Extracting the Heavy-Quark Potential from Bottomonium Observables in Heavy-Ion Collisions"

    Presented by Xiaojian Du, Texas A&M University

    Tuesday, July 9, 2019, 11 am
    Small Seminar Room, Bldg. 510

    Hosted by: Rongrong Ma

    The in-medium color potential is a fundamental quantity for understanding the properties of the strongly coupled quark-gluon plasma (sQGP). Open and hidden heavy-flavor (HF) production in ultrarelativistic heavy-ion collisions (URHICs) has been found to be a sensitive probe of this potential. Here we utilize a previously developed quarkonium transport approach in combination with insights from open HF diffusion to extract the color-singlet potential from experimental results on Υ production in URHICs. Starting from a parameterized trial potential, we evaluate the Υ transport parameters and conduct systematic fits to available data for the centrality dependence of ground and excited states at RHIC and the LHC. The best fits and their statistical significance are converted into a temperature dependent potential. Including nonperturbative effects in the dissociation rate guided from open HF phenomenology, we extract a rather strongly coupled potential with substantial remnants of the long-range confining force in the QGP.

  248. EBNN Directorate Visitor Seminar

    "Defense Nuclear Nonproliferation's Mission"

    Presented by Dr. Brent K. Park, NNSA - Deputy Administrator for Defense Nuclear Nonproliferation

    Monday, July 8, 2019, 3 pm
    Large Conference Room, Bldg. 535

    Hosted by: Martin Schoonen

Currently showing events from the past year. See all past events »