General Lab Information

J. Anibal Boscoboinik

Materials Scientist, Interface Sciences/Catalysis, Center for Functional Nanomaterials

J. Anibal Boscoboinik

Brookhaven National Laboratory

Center for Functional Nanomaterials
Bldg. 735, Room 2046
P.O. Box 5000
Upton, NY 11973-5000

(631) 344-7272
jboscoboinik@bnl.gov

Expertise | Research | Education | Appointments | Publications | Highlights | Awards | Video


Expertise

Surface Science, Heterogeneous Catalysis, 2D-materials, Silicates, Zeolites, Aluminosilicates, Noble Gases, Photoelectron Spectroscopy, Infrared Spectroscopy

Research Activities

My research activities focus on the synthesis and study of thin or two-dimensional (2D) porous materials to use them as simplified systems (model systems) for bulk structures such as heterogeneous catalysts, membranes, adsorbents, etc. For these studies, we use conditions ranging from ultra-high vacuum to industrially relevant pressures, taking advantage of surface science techniques that can operate at this pressure range. Catalysts of particular interest are microporous materials such as zeolites. Although most heterogeneous catalysts used in the industry fall in this category, they are particularly challenging to study with surface science techniques. The problem resides in the fact that the catalytically active surface is enclosed within the pores, and thus out of the reach of surface science tools, which require an “exposed” surface. A useful approach to overcome this difficulty is to create 2D analog materials that have the same active sites as the three-dimensional porous ones. In this way, the active site can be probed with typical surface science tools. Resulting from initial studies on these 2D-silicates materials, it was evident that confinement effects play an essential role in chemical reactions and physical trapping of species. We are now exploring these materials for trapping and separating noble gases, in addition to studying catalytic reactions.

Education

(date format: mm.dd.yyyy)
09.01.2005 - 11.23.2010 PhD in Chemistry. University of Wisconsin Milwaukee. Milwaukee, United States.
03.01.2000 - 06.17.2005 Licenciado en Química. Universidad Nacional de San Luis. San Luis, Argentina.
03.01.2000 - 07.10.2003 Analista Químico. Universidad Nacional de San Luis. San Luis, Argentina.

Professional Appointments

10.01.2018 - ... Materials Scientist. Center for Functional Nanomaterials. Brookhaven National Laboratory. Upton, NY, United States.
10.01.2015 - 09.30.2018 Associate Materials Scientist. Center for Functional Nanomaterials. Brookhaven National Laboratory. Upton, NY, United States.
10.07.2013 - 09.30.2015 Assistant Materials Scientist. Center for Functional Nanomaterials. Brookhaven National Laboratory. Upton, NY, United States.
01.24.2011 - 09.30.2013 Post-Doc. at Fritz-Haber Institute of the Max-Planck Society. Berlin, Germany.
08.15.2005 - 01.15.2011 Graduate Assistant (Research and Teaching). University of Wisconsin Milwaukee. United States.
02.01.2005 - 07.31.2005 Quality and Development analyst. Kimberly Clark Corp. Buenos Aires, Argentina.

Selected Publications

  • Zhou C, Ngan HT, Lim JS, et al (2022) Dynamical Study of Adsorbate-Induced Restructuring Kinetics in Bimetallic Catalysts Using the PdAu(111) Model System. Journal of the American Chemical Society 144:15132–15142. https://doi.org/10.1021/jacs.2c04871
  • Dorneles de Mello M, Ahmad M, Lee DT, Dimitrakellis P, Miao Y, Zheng W, Nykypanchuk D, Vlachos DG; Tsapatsis M, Boscoboinik JA (2022) In Situ Tracking of Nonthermal Plasma Etching of ZIF-8 Films. ACS Applied Materials & Interfaces 14:19023–19030. https://doi.org/10.1021/acsami.2c00259
  • Xu Y, Dorneles de Mello M, Zhou C, Sharma S, Karagoz B, Head AR, Darbari Z, Waluyo I, Hunt A, Stacchiola DJ, Manzi S, Boscoboinik AM, Pereyra VD, Boscoboinik JA (2021) Xenon Trapping in Metal-Supported Silica Nanocages. Small 2103661. doi: 10.1002/smll.202103661
  • Boscoboinik AM, Manzi SJ, Pereyra VD, Mas WL, Boscoboinik JA (2021) Structural evolution of two-dimensional silicates using a "bond-switching" algorithm. Nanoscale 13:2408–2419. doi: 10.1039/d0nr07623f
  • Wang M, Zhou C, Akter N, Tysoe WT, Boscoboinik JA, Lu D (2020) Mechanism of the Accelerated Water Formation Reaction under Interfacial Confinement. ACS Catalysis 10:6119–6128. doi: 10.1021/acscatal.9b05289
  • Zhong J-Q, Wang M, Akter N, Stacchiola DJ, Lu D, Boscoboinik JA (2019) Room-Temperature in Vacuo Chemisorption of Xenon Atoms on Ru(0001) under Interface Confinement. The Journal of Physical Chemistry C 123:13578–13585. doi: 10.1021/acs.jpcc.9b01110
  • Boscoboinik JA (2018) Chemistry in confined space through the eyes of surface science—2D porous materials. Journal of Physics: Condensed Matter 31:063001. doi: 10.1088/1361-648x/aaf2ce
  • Zhong J-Q, Wang M, Hoffmann WH, van Spronsen MA, Lu D, Boscoboinik JA (2018) Synchrotron-based ambient pressure X-ray photoelectron spectroscopy of hydrogen and helium. Applied Physics Letters 112:091602. doi: 10.1063/1.5022479
  • Zhong J, Wang M, Akter N, Kestell JD, Niu T, Boscoboinik AM, Kim T, Stacchiola DJ, Wu Q, Lu D, Boscoboinik JA (2019) Ionization-Facilitated Formation of 2D (Alumino)Silicate–Noble Gas Clathrate Compounds. Advanced Functional Materials 29:1806583. doi: 10.1002/adfm.201806583
  • Zhong J-Q, Wang M, Akter N, Kestell JD, Boscoboinik AM, Kim T, Stacchiola DJ, Lu D, Boscoboinik JA (2017) Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems. Nature Communications. doi: 10.1038/ncomms16118
  • Kestell JD, Mudiyanselage K, Ye X, Nam C-Y, Stacchiola D, Sadowski J, Boscoboinik JA (2017) Stand-alone polarization-modulation infrared reflection absorption spectroscopy instrument optimized for the study of catalytic processes at elevated pressures. Review of Scientific Instruments 88:105109. doi: 10.1063/1.5007024
  • Akter N, Sadowski JT, Zhou C, Zhong J-Q, van Spronsen M, Xu Y, Tong X, Kim T, Tenney S, Head AR, Stacchiola DJ, Boscoboinik JA (2019) Morphology of Palladium Thin Film Deposited on a Two-Dimensional Bilayer Aluminosilicate. Topics in Catalysis 62:1067–1075. doi: 10.1007/s11244-019-01193-y
  • Kestell JD, Zhong J-Q, Shete M, Waluyo I, Sadowski JT, Stacchiola DJ, Tsapatsis M, Boscoboinik JA (2017) Studying two-dimensional zeolites with the tools of surface science: MFI nanosheets on Au(111). Catalysis Today 280:283–288. doi: 10.1016/j.cattod.2016.07.015
  • Zhong J-Q, Kestell J, Waluyo I, Wilkins S, Mazzoli C, Barbour A, Kaznatcheev K, Shete M, Tsapatsis M, Boscoboinik JA (2016) Oxidation and Reduction under Cover: Chemistry at the Confined Space between Ultrathin Nanoporous Silicates and Ru(0001). The Journal of Physical Chemistry C 120:8240–8245. doi: 10.1021/acs.jpcc.6b02851
  • Boscoboinik AM, Manzi SJ, Tysoe WT, Pereyra VD, Boscoboinik JA (2015) Directed Nanoscale Self-Assembly of Molecular Wires Interconnecting Nodal Points Using Monte Carlo Simulations. Chemistry of Materials 27:6642–6649. doi: 10.1021/acs.chemmater.5b02413
  • Boscoboinik JA, Shaikhutdinov S (2014) Exploring Zeolite Chemistry with the Tools of Surface Science: Challenges, Opportunities, and Limitations. Catalysis Letters 144:1987–1995. doi: 10.1007/s10562-014-1369-3
  • Boscoboinik JA, Yu X, Shaikhutdinov S, Freund H-J (2014) Preparation of an ordered ultra-thin aluminosilicate framework composed of hexagonal prisms forming a percolated network. Microporous and Mesoporous Materials 189:91–96. doi: 10.1016/j.micromeso.2013.10.023
  • Boscoboinik JA, Yu X, Emmez E, Yang B, Shaikhutdinov S, Fischer FD, Sauer J, Freund H-J (2013) Interaction of Probe Molecules with Bridging Hydroxyls of Two-Dimensional Zeolites: A Surface Science Approach. The Journal of Physical Chemistry C 117:13547–13556. doi: 10.1021/jp405533s
  • Boscoboinik JA, Yu X, Yang B, Shaikhutdinov S, Freund H-J (2013) Building blocks of zeolites on an aluminosilicate ultra-thin film. Microporous and Mesoporous Materials 165:158–162. doi: 10.1016/j.micromeso.2012.08.014
  • Boscoboinik JA, Yu X, Yang B, Fischer FD, Wlodarczyk R, Sierka M, Shaikhutdinov S, Sauer J, Freund H-J (2012) Modeling Zeolites with Metal-Supported Two-Dimensional Aluminosilicate Films. Angewandte Chemie International Edition 51:6005–6008. doi: 10.1002/anie.201201319

Research Highlights

Toward Scaling Up Nanocages to Trap Noble Gases

Maturing Noble Gas-Trapping Technology

Trapping Noble Gases

Measuring the impossible

Single Atoms in Nanocages

Trapping Argon

Awards & Recognition

2022 - Brookhaven Science and Technology Award

2011 - Alexander von Humboldt Fellowship

Featured Video

  • TrapIN by Jorge Anibal Boscoboinik, Brookhaven National Laboratory

    December 4, 2020

    TrapIN: Platform Technology to Produce and Confine Hard-to-Trap Noble Gases Brian DiMarco, Jorge Anibal Boscoboinik and Matheus Dorneles de Mello, Brookhaven National Laboratory TrapIN is a platform technology developed at Brookhaven National Laboratory that allows capturing noble gases in silicate nanocages. TrapIN can be used in a wide variety of diverse applications, including removal and detection of carcinogenic Radon from buildings, energy-efficient operation of cryogenic distillation plants to produce Xenon and Krypton, and nuclear waste remediation, among many others.

Technology for Trapping Noble Gases

J. Anibal Boscoboinik

Brookhaven National Laboratory

Center for Functional Nanomaterials
Bldg. 735, Room 2046
P.O. Box 5000
Upton, NY 11973-5000

(631) 344-7272
jboscoboinik@bnl.gov

J. Anibal's Links