BNL Home

Listening to You

The Community Advisory Council advises the Laboratory Director on issues that are important to the community. All meetings are open to the public. Learn more about the Council. Do you have an issue you'd like to raise, a question that you'd like to ask? Let us know!

About Us

Brookhaven scientists conduct research in the physical, biomedical, and environmental sciences, and in energy technology and national security. The Laboratory is among the five largest high-technology employers on Long Island. More...

Economic Impact

At a time when New York's state economy depends on its capacity for innovation, Brookhaven Lab represents a uniquely valuable resource — both as a major science-based enterprise in its own right, and as a source of the scientific discovery and technological innovation on which growth depends.
More...

photo of David Manning

David Manning
Director, Stakeholder and Community Relations
Building 400C
Upton, NY 11973-5000
(631) 344-4747


Neighbors Helping Neighbors

Brookhaven Science Associates (BSA), the company which manages Brookhaven Lab, is committed to providing funding for outreach initiatives in the local community and Long Island region. BSA allocates funds in support science and math education, for fundraising events for recognized organizations, and supports community, civic, cultural and public awareness activities. More...

  • Habitat for Humanity

  • Habitat for Humanity

  • Superstorm Sandy Relief

  • BNLers with Island Harvest for Superstorm Sandy Relief

  • United Way Road Bike Ride Event

PubSci logo

PubSci: a science café where you can meet scientists, ask questions and talk it over in plain language

  1. This is Brookhaven Lab

    Tuesday, June 4, 2019

    Brookhaven National Laboratory delivers discovery science and transformative technology to power and secure America's future. Operated by Brookhaven Science Associates for the U.S. Department of Energy's Office of Science, Brookhaven Lab is a multidisciplinary laboratory with seven Nobel Prize-winning discoveries, 36 R&D 100 Awards, and more than 70 years of pioneering research.

  1. APR

    21

    Today

    Center for Biomolecular Structure Lecture Series

    "Lanthanide-Binding Tags for 3D X-Ray Imaging of Proteins in Cells at Nanoscale Resolution"

    Presented by Lisa Miller, Brookhaven National Laboratory - NSLS II

    1:30 pm, Videoconference / Virtual Event

    Wednesday, April 21, 2021, 1:30 pm

    Hosted by: Vivian Stojanoff

    In order to get the link to join the event you will need to register. X-ray Fluorescence Microscopy (XFM) is a powerful method for imaging the trace-element concentration, distribution, and speciation in cells and tissues. Even though the technique has been around for more than 30 years, only recently have advances in X-ray sources, optics, and detectors enabled two- and three-dimensional X-ray imaging at the nanoscale with attogram detection sensitivity. However, one limitation of XFM for imaging biological systems is detecting the trace-element distribution in the context of subcellular organelles and individual proteins. For visible light microscopy, the most ubiquitous method for imaging individual proteins within the context of a living cell is the use of intrinsically fluorescent proteins, such as the green fluorescent protein (GFP) that is co-expressed as a fusion tag along with the protein of interest. However, visualization of these tags is limited by the wavelengths of visible light except by applying specialized super resolution approaches. Here, we are developing applications enabled by encoded lanthanide-binding tags (LBTs), which are GFP-like analogs of minimal size (ca. 15-20 amino acids) for XFM. In this talk, applications of LBTs to both membrane-bound and cytosolic proteins will be demonstrated in 2D and 3D using a 15 nm X-ray beam. This approach enables visualization of LBT-tagged proteins while simultaneously measuring the elemental distribution in cells at a spatial resolution necessary for visualizing cell membranes and eukaryotic subcellular organelles.