General Lab Information

Publications

2025

  1. Conrad, Jacy K.; Hlushko, Hanna; Cook, Andrew R. (2025). Kinetics for the reaction between the solvated electron and dissolved oxygen in n-dodecane from 2.5 to 40 °C. Radiation Physics and Chemistry, 230, 112587 https://dx.doi.org/10.1016/j.radphyschem.2025.112587
  2. Yuan, Yong; Mou, Tianyou; Hwang, Sooyeon; Porter, William N.; Liu, Ping; Chen, Jingguang G. (2025). Controlling Reaction Pathways of Ethylene Hydroformylation Using Isolated Bimetallic Rhodium-Cobalt Sites. Journal of the American Chemical Society, 147(14), 12185-12196 https://dx.doi.org/10.1021/jacs.5c01105
  3. Zhang, Xiyue; Pollard, Travis P.; Tan, Sha; Zhang, Nan; Xu, Jijian; Liu, Yijie; Phan, An L.; Zhang, Weiran; Chen, Fu; Yang, Chongyin; Hu, Enyuan; Yang, Xiao-Qing; Borodin, Oleg; Wang, Chunsheng (2025). Li+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte solutions for high-potential lithium-based batteries. Nature Nanotechnology https://dx.doi.org/10.1038/s41565-025-01898-0
  4. Liao, Wenjie; Nguyen, An; Liu, Ping (2025). Alkali-induced catalytic tuning at metal and metal oxide interfaces. Chemical Society Reviews https://dx.doi.org/10.1039/d4cs01094a
  5. Deokar, Rupali G, Cook, Andrew R. (2025). Ultrafast pre-solvated dodecane hole capture and subsequent damage of used nuclear fuel extraction ligands DEHBA, DEHiBA, HONTA, CMPO, HEH[EHP] and TBP. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/d5cp00914f
  6. Lin, Neo; Tsuji, Miu; Bruzzese, Isabella; Chen, Angela; Vrionides, Michael; Jian, Noen; Kittur, Farhan; Fay, Thomas P.; Mani, Tomoyasu (2025). Molecular Engineering of Emissive Molecular Qubits Based on Spin-Correlated Radical Pairs. Journal of the American Chemical Society, 147(13), 11062-11071 https://dx.doi.org/10.1021/jacs.4c16164
  7. Wu, Bingbin; Yi, Ran; Xu, Yaobin; Gao, Peiyuan; Bi, Yujing; Novak, Libor; Liu, Zhao; Hu, Enyuan; Wang, Nan; Rijssenbeek, Job; Venkatachalam, Subramanian; Wu, Jing; Liu, Dianying; Cao, Xia; Xiao, Jie (2025). Unusual Li2O sublimation promotes single-crystal growth and sintering. Nature Energy https://dx.doi.org/10.1038/s41560-025-01738-4
  8. Nichols, Nathaniel N.; Han, Xue; Kang, Sinwoo; Zhao, Hanjun; Kattel, Shyam; Chen, Jingguang G. (2025). Platinum and Gold Supported on Transition Metal Nitrides for Hydrogen Evolution in an Alkaline Electrolyte. Energy & Fuels, 39(11), 5587-5593 https://dx.doi.org/10.1021/acs.energyfuels.5c00198
  9. Ogbodo, R.; Acharya, G. R.; Yuen, H. M.; Zmich, N.; Wang, F.; Shirota, H.; Lall-Ramnarine, S. I.; Wishart, J. F.; Nieuwkoop, A. J.; Margulis, C. J. (2025). Structure of Novel Phosphonium-Based Ionic Liquids with S and O Substitutions from Experiments and a Mixed Quantum-Classical Approach. Journal of Physical Chemistry B https://dx.doi.org/10.1021/acs.jpcb.5c00129
  10. Lee, D. H.; Cheoun, M. K.; Choi, J. H.; Choi, J. Y.; Dodo, T.; Goh, J.; Haga, K.; Harada, M.; Hasegawa, S.; Hwang, W.; Iida, T.; Jang, H. I.; Jang, J. S.; Joo, K. K.; Jung, D. E.; Kang, S. K.; Kasugai, Y.; Kawasaki, T.; Kim, E. J.; Kim, J. Y.; Kim, S. B.; Kim, W.; Kinoshita, H.; Konno, T.; et. al (2025). Evaluation of the performance of event reconstruction algorithms in the JSNS2 experiment using a 252Cf calibration source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1072, 170216 https://dx.doi.org/10.1016/j.nima.2025.170216
  11. Iwamatsu, K.; Horne, G. P.; Ramos-Ballesteros, A.; Castro Baldivieso, S.; Conrad, J. K.; Woods, M. E.; Phillips, W. C.; LaVerne, J. A.; Pimblott, S. M.; Wishart, J. F. (2025). Kinetics of Radiation-induced Cr(II) and Cr(III) Redox Chemistry in Molten LiCl-KCl Eutectic. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/D4CP04190A
  12. Kynman, Amy E.; Dang, Anh N.; Grimes, Travis S.; Mezyk, Stephen P.; Wilbanks, Joseph R.; Zarzana, Christopher A.; Deokar, Rupali G.; Cook, Andrew R.; Boglaienko, Daria; Hall, Gabriel B.; Horne, Gregory P. (2025). Influence of Metal Ion Complexation on the Radiolytic Longevity of Butyramide Extractants under Direct Dissolution Process Conditions. ACS Omega, 10(8), 7822-7830 https://dx.doi.org/10.1021/acsomega.4c08506
  13. Lin, Neo; Mani, Tomoyasu (2025). Amplifying Magnetic Field Effects on Upconversion Emission via Molecular Qubit-Driven Triplet-Triplet Annihilation. Journal of the American Chemical Society, 147(9), 7187-7190 https://dx.doi.org/10.1021/jacs.4c16922
  14. Li, Gengnan; Priyadarsini, Adyasa; Xie, Zhenhua; Kang, Sinwoo; Liu, Yuzi; Chen, Xiaobo; Kattel, Shyam; Chen, Jingguang G. (2025). Achieving Higher Activity of Acidic Oxygen Evolution Reaction Using an Atomically Thin Layer of IrOx over Co3O4. Journal of the American Chemical Society, 147(8), 7008-7016 https://dx.doi.org/10.1021/jacs.4c17915
  15. Tschammer, Rudi; Buss, Lars; Pozarowska, Emilia; Morales, Carlos; Senanayake, Sanjaya D.; Prieto, Mauricio J.; Tanase, Liviu C.; Caldas, Lucas de Souza; Tiwari, Aarti; Schmidt, Thomas; Nino, Miguel A.; Foerster, Michael; Falta, Jens; Flege, Jan Ingo (2025). High-Temperature Growth of CeOx on Au(111) and Behavior under Reducing and Oxidizing Conditions. The Journal of Physical Chemistry C, 129(7), 3583-3594 https://dx.doi.org/10.1021/acs.jpcc.4c08072
  16. Cai X.;Shadike, Z.; Wang, N.; Li X.; Wang Y.; Zheng Q.; Zhang Y.; Lin W.; Li L.; Chen L.; Shen S.; Hu, E.; Zhou Y.; Zhang J. (2025). Constraining Interlayer Slipping in P2-Type Layered Oxides with Oxygen Redox by Constructing Strong Covalent Bonds. Journal of the American Chemical Society, 147(7), 5860-5870 https://dx.doi.org/10.1021/jacs.4c14587
  17. Polyansky, Dmitry E. (2025). Transient methods for understanding the properties of strongly oxidizing radicals. Chemical Communications, 61(17), 3461-3471 https://dx.doi.org/10.1039/d4cc06158f
  18. Dodo, T.; Cheoun, M. K.; Choi, J. H.; Choi, J. Y.; Goh, J.; Haga, K.; Harada, M.; Hasegawa, S.; Hwang, W.; Iida, T.; Jang, H., I; Jang, J. S.; Joo, K. K.; Jung, D. E.; Kang, S. K.; Kasugai, Y.; Kawasaki, T.; Kim, E. J.; Kim, J. Y.; Kim, S. B.; Kim, W.; Kinoshita, H.; Konno, T.; Lee, D. H.; et. al. (2025). Pulse Shape Discrimination in JSNS2. Progress of Theoretical and Experimental Physics, 2025(2) https://dx.doi.org/10.1093/ptep/ptaf016
  19. Reddy, K; Kim, J; Lim, H; Islam, A; Barba-Nieto, I; Tong, X; Hunt, A; Waluyo, I; Rodriguez, J (2025). The Surface Chemistry of Methanol on Cu3Pd(111): Effects of Metal Alloying and Reaction with Hydrogen. The Journal of Physical Chemistry C, 129(5), 2467-2476 https://dx.doi.org/10.1021/acs.jpcc.4c07648
  20. Zheng, Dong; Qiu, Dantong; Qin, Yang; Shajid, Soad; Liu, Miao; Zhang, Xiaoxiao; Yang, Xiao-Qing; Qu, Deyang (2025). Exploring Fluoropyridine Electrolytes in Li-S Batteries: Balancing Performance and Stability across Temperatures. ACS Applied Energy Materials, 8(3), 1796-1802 https://dx.doi.org/10.1021/acsaem.4c03018
  21. Zhang, Hong; Liu, Ping (2025). Fine-tuning catalytic selectivity by modulating catalyst-environment interactions: CO2 hydrogenation over Pd-based catalysts. Chem Catalysis, 5(1), 101156 https://dx.doi.org/10.1016/j.checat.2024.101156

2024

  1. Sharma, Mitu; Sasaki, Kotaro; Halada, Gary; Pamula, Krishnakumari; Kim, Taejin; Wong, Stanislaus S. (2024). Ketjenblack-Supported and Unsupported ZrO2-ZrN Nanoparticle Systems for Enabling Efficient Electrochemical Nitrogen Reduction to Ammonia. ACS Applied Materials & Interfaces https://dx.doi.org/10.1021/acsami.4c17137
  2. Fernandez, Sergio; Assaf, Eric A.; Ahmad, Shahbaz; Travis, Benjamin D.; Curley, Julia B.; Hazari, Nilay; Ertem, Mehmed Z.; Miller, Alexander J. M. (2024). Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angewandte Chemie International Edition https://dx.doi.org/10.1002/anie.202416061
  3. Porter, William N.; Liao, Wenjie; Yu, Marcus; Yuan, Yong; Lin, Zhexi; Liu, Ping; Chen, Jingguang G. (2024). Using ethanol and isopropanol as biomass model compounds for understanding bond scission mechanisms over Cu/Mo2N catalysts. Applied Catalysis B: Environment and Energy, 358, 124362 https://dx.doi.org/10.1016/j.apcatb.2024.124362
  4. Zhang, Lei; Muller, Andressa V.; Desai, Sai Puneet; Grills, David C.; Polyansky, Dmitry E.; Sampaio, Renato N.; Concepcion, Javier J. (2024). Controlling Product Selectivity in Photochemical CO2 Reduction with the Redox Potential of the Photosensitizer. ACS Catalysis, 14(24), 18477-18487 https://dx.doi.org/10.1021/acscatal.4c03845
  5. Xie, Zhenhua; Chen, Jingguang G. (2024). Comparison of Approaches for CO2 Sequestration as Solid Carbon Products. CCS Chemistry, 6(12), 2855-2865 https://dx.doi.org/10.31635/ccschem.024.202404900
  6. Liu, Lin; Shadike, Zulipiya; Wang, Nan; Chen, Yiming; Cai, Xinyin; Hu, Enyuan; Zhang, Junliang (2024). Low concentration electrolyte: A new approach for achieving high performance lithium batteries. eScience, 4(6), 100268 https://dx.doi.org/10.1016/j.esci.2024.100268
  7. Tian, Yi; Lim, Hojoon; Kim, Jeongjin; Hunt, Adrian; Waluyo, Iradwikanari; Senanayake, Sanjaya D.; Rodriguez, Jose A. (2024). Understanding the morphology and chemical activity of model ZrOx/Au (111) catalysts for CO2 hydrogenation. Surface Science, 750, 122590 https://dx.doi.org/10.1016/j.susc.2024.122590
  8. Mou, Tianyou; Bushiri, Daniela A.; Esposito, Daniel V.; Chen, Jingguang G.; Liu, Ping (2024). Rationalizing Acidic Oxygen Evolution Reaction over IrO2: Essential Role of Hydronium Cation. Angewandte Chemie International Edition, 63(48) https://dx.doi.org/10.1002/anie.202409526
  9. Apilluelo, J.; Asquith, L.; Bannister, E. F.; Beney, J. L.; de la Bernardie, X.; Bezerra, T. J. C.; Bongrand, M.; Bourgeois, C.; Boutalha, H.; Breton, D.; Briere, M.; Cabrera, A.; Cadiou, A.; Calvo, E.; Chaumat, V.; Chauveau, E.; Cattermole, B. J.; Chen, M.; Chimenti, P.; Cornet, T.; et. al. (2024). Characterization of a radiation detector based on opaque water-based liquid scintillator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1071, 170075 https://dx.doi.org/10.1016/j.nima.2024.170075
  10. He, Y. & Du, Y. (2024). A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries. Nature Communications, 15(1), Article 10015 https://dx.doi.org/10.1038/s41467-024-53869-z
  11. Concepcion, Javier J.; Sampaio, Renato N.; Meyer, Gerald J. (2024). Catalytic Reduction of Carbon Monoxide to Liquid Fuels with Recyclable Hydride Donors. ACS Catalysis, 14(22), 16562-16569 https://dx.doi.org/10.1021/acscatal.4c05083
  12. Cook, Andrew R.; Deokar, Rupali G (2024). Early‐stage oxidation and subsequent damage of the used nuclear fuel extractant TODGA; electron pulse radiolysis and theoretical insights. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/d4cp03678f
  13. Wang, Jia-Wei; Zhao, Fengyi; Velasco, Lucia; Sauvan, Maxime; Moonshiram, Dooshaye; Salati, Martina; Luo, Zhi-Mei; He, Sheng; Jin, Tao; Mu, Yan-Fei; Ertem, Mehmed Z.; Lian, Tianquan; Llobet, Antoni (2024). Molecular catalyst coordinatively bonded to organic semiconductors for selective light-driven CO2 reduction in water. Nature Communications, 15(1), Article 9779 https://dx.doi.org/10.1038/s41467-024-54026-2
  14. Shao, Weipeng; Zhang, Yi; Zhou, Zhiwen; Li, Na; Jiao, Feng; Ling, Yunjian; Li, Yangsheng; Zhou, Zeyu; Cao, Yunjun; Liu, Zhi; Pan, Xiulian; Fu, Qiang; Woell, Christof; Liu, Ping; Bao, Xinhe; Yang, Fan (2024). Dynamic control and quantification of active sites on ceria for CO activation and hydrogenation. Nature Communications, 15(1), Article 9620 https://dx.doi.org/10.1038/s41467-024-53948-1
  15. Horne, G. & Cook, A. (2024). Correction: Impact of lanthanide ion complexation and temperature on the chemical reactivity of N,N,N′,N′-tetraoctyl diglycolamide (TODGA) with the dodecane radical cation. Physical Chemistry Chemical Physics, 26(45), 28758-28759 https://dx.doi.org/10.1039/d4cp90191f
  16. Reddy, K; Tian, Y; Ramirez, P; Islam, A; Lim, H; Rui, N; Xie, Y; Hunt, A; Waluyo, I; Rodriguez, J. (2024). Insights into the Surface Electronic Structure and Catalytic Activity of InOx/Au(111) Inverse Catalysts for CO2 Hydrogenation to Methanol. ACS Catalysis, 14, 17148-17158 https://dx.doi.org/10.1021/acscatal.4c05837
  17. Sayago-Carro, Rocio; Barba-Nieto, Irene; Gomez-Cerezo, Natividad; Rodriguez, Jose A.; Fernandez-Garcia, Marcos; Kubacka, Anna (2024). Optimizing Materials to Boost the Valorization of CO2: Tuning Cobalt-Cobalt Interactions on In2O3-Based Photothermal Catalysts. ACS Applied Materials & Interfaces, 16(45), 62131-62141 https://dx.doi.org/10.1021/acsami.4c14280
  18. Tan, Sha; Borodin, Oleg; Wang, Nan; Yen, Dean; Weiland, Conan; Hu, Enyuan (2024). Synergistic Anion and Solvent-Derived Interphases Enable Lithium-Ion Batteries under Extreme Conditions. Journal of the American Chemical Society, 146(44), 30104-30116 https://dx.doi.org/10.1021/jacs.4c07806
  19. Montgomery, Charlotte L.; Ertem, Mehmed Z.; Chevalier, Leo; Dempsey, Jillian L. (2024). Circumventing Kinetic Barriers to Metal Hydride Formation with Metal-Ligand Cooperativity. Journal of the American Chemical Society, 146(44), 30020-30032 https://dx.doi.org/10.1021/jacs.4c01716
  20. Liao, Meng; Xu, Yaobin; Rahman, Muhammad Mominur; Tan, Sha; Wang, Daiwei; Wang, Ke; Dandu, Naveen K.; Lu, Qian; Li, Guoxing; Le, Linh; Kou, Rong; Jiang, Heng; Nguyen, Au; Shi, Pei; Ye, Lei; Ngo, Anh T.; Hu, Enyuan; Wang, Chongmin; Wang, Donghai (2024). Hybrid polymer network cathode-enabled soluble-polysulfide-free lithium-sulfur batteries. Nature Sustainability https://dx.doi.org/10.1038/s41893-024-01453-0
  21. He, Fan; Zhu, Feng; Xu, Kang; Xu, Yangsen; Liu, Dongliang; Yang, Guangming; Sasaki, Kotaro; Choi, YongMan; Chen, Yu (2024). A highly oxygen reduction reaction active and CO2 durable high-entropy cathode for solid oxide fuel cells. Applied Catalysis B: Environment and Energy, 355, 124175 https://dx.doi.org/10.1016/j.apcatb.2024.124175
  22. Xu, Kang; Zhang, Hua; Xu, Yangsen; Zhu, Feng; He, Fan; Sasaki, Kotaro; Choi, YongMan; Chen, Yu (2024). Realizing efficient operations of Ni-cermet-based fuel cells on hydrocarbons via an in situ self-assembled metal/oxide nano-heterostructured catalyst. Applied Catalysis B: Environment and Energy, 355, 124208 https://dx.doi.org/10.1016/j.apcatb.2024.124208
  23. He, Yubin; Wang, Chunyang; Lin, Ruoqian; Hu, Enyuan; Trask, Stephen E.; Li, Ju; Xin, Huolin L. (2024). A Self-Healing, Flowable, Yet Solid Electrolyte Suppresses Li-Metal Morphological Instabilities. Advanced Materials https://dx.doi.org/10.1002/adma.202406315
  24. Lee, Kevin Y. C.; Polyansky, Dmitry E.; Grills, David C.; Fettinger, James C.; Aceves, Marcos; Berben, Louise A. (2024). Catalyst Protonation Changes the Mechanism of Electrochemical Hydride Transfer to CO2. Acs Organic & Inorganic Au https://dx.doi.org/10.1021/acsorginorgau.4c00041
  25. Islam, Arephin; Huang, Erwei; Tian, Yi; Ramirez, Pedro J.; Reddy, Kasala Prabhakar; Lim, Hojoon; White, Nathaniel; Hunt, Adrian; Waluyo, Iradwikanari; Liu, Ping; Rodriguez, Jose A. (2024). Low-Temperature Activation and Coupling of Methane on MgO Nanostructures Embedded in Cu2O/Cu(111). ACS Nano, 18(41), 28371-28381 https://dx.doi.org/10.1021/acsnano.4c10811
  26. Xu, Kang; Zhang, Hua; Xu, Yangsen; Zhu, Feng; He, Fan; Liu, Ying; Sasaki, Kotaro; Choi, YongMan; Chen, Yu (2024). An efficient construction of nano-interfaces for excellent coking tolerance of cermet anodes. Materials Today, 79, 28-35 https://dx.doi.org/10.1016/j.mattod.2024.07.007
  27. Porter W. N.; Kisslinger, K.,; Yuan, Y.; Chen, J. G. (2024). Influence of support on Rh-Co bimetallic catalysts for ethylene hydroformylation. Journal of Catalysis, 438, 115733 https://dx.doi.org/10.1016/j.jcat.2024.115733
  28. Peng, Y., Bawane, K. K., Kim, E., Halstenberg, P., Layne, B., Dai, S., & Sasaki, K. (2024). Effect of CrCl2 or VCl2 addition on corrosion of Cr metal in molten MgCl2-KCl. Corrosion Science, 239, 112423 https://dx.doi.org/10.1016/j.corsci.2024.112423
  29. Elsby, Matthew R.; Kumar, Abhishek; Daniels, Lee M.; Ertem, Mehmed Z.; Hazari, Nilay; Mercado, Brandon Q.; Paulus, Alexandra H. (2024). Linear Free Energy Relationships Associated with Hydride Transfer From [(6,6′-R2-bpy)Re(CO)3H]: A Cautionary Tale in Identifying Hydrogen Bonding Effects in the Secondary Coordination Sphere. Inorganic Chemistry, 63(41), 19396-19407 https://dx.doi.org/10.1021/acs.inorgchem.4c03365
  30. Panetti, Grace B.; Kim, Junho; Myong, Michele S.; Bird, Matthew J.; Scholes, Gregory D.; Chirik, Paul J. (2024). Photodriven Ammonia Synthesis from Manganese Nitrides: Photophysics and Mechanistic Investigations. Journal of the American Chemical Society, 146(40), 27610-27621 https://dx.doi.org/10.1021/jacs.4c08795
  31. Wang, Jason; Shi, Luolin; Tong, Xiao; White, Michael G. (2024). Composition-Dependent Reconstructions of Titanium Oxide Clusters and Cu(111) Support via Cluster-Adatom Interactions. The Journal of Physical Chemistry C, 128(40), 17153-17164 https://dx.doi.org/10.1021/acs.jpcc.4c04803
  32. Paudyal, Nishan; Ara, Tasnim; Du Hill, Linze; Senanayake, Sanjaya D.; Zhou, Jing (2024). The Triple Component Interface of Ni-Co-Ce: Growth, Chemical State, and Stability of NiCo Bimetallic Particles on Reducible CeO2(111) Thin Films. The Journal of Physical Chemistry C, 128(39), 16754-16765 https://dx.doi.org/10.1021/acs.jpcc.4c04802
  33. Mulfort, Karen L.; Concepcion, Javier J.; Dietzek-Ivansic, Benjamin; Ishitani, Osamu; Yano, Junko (2024). The physical chemistry of solar fuels catalysis. The Journal of Chemical Physics, 161(110401) https://dx.doi.org/10.1063/5.0234241
  34. Salati, Martina; Dorchies, Florian; Wang, Jia-Wei; Ventosa, Marta; Gonzalez-Carrero, Soranyel; Bozal-Ginesta, Carlota; Holub, Jan; Ruediger, Olaf; DeBeer, Serena; Gimbert-Surinach, Carolina; Durrant, James R.; Ertem, Mehmed Z.; Gil-Sepulcre, Marcos; Llobet, Antoni (2024). Covalent Triazine-Based Frameworks with Ru-tda Based Catalyst Anchored via Coordination Bond for Photoinduced Water Oxidation. Small https://dx.doi.org/10.1002/smll.202406375
  35. Coker, Jack F.; Moro, Stefania; Gertsen, Anders S.; Shi, Xingyuan; Pearce, Drew; van der Schelling, Martin P.; Xu, Yucheng; Zhang, Weimin; Andreasen, Jens W.; Snyder, Chad R.; Richter, Lee J.; Bird, Matthew J.; McCulloch, Iain; Costantini, Giovanni; Frost, Jarvist M.; Nelson, Jenny (2024). Perpendicular crossing chains enable high mobility in a noncrystalline conjugated polymer. Proceedings of the National Academy of Sciences, 121(37), Article e2403879121 https://dx.doi.org/10.1073/pnas.2403879121
  36. Rotundo, Laura; Ahmad, Shahbaz; Cappuccino, Chiara; Pearce, Adam J.; Nedzbala, Hannah; Bottum, Samuel R.; Mayer, James M.; Cahoon, James F.; Grills, David C.; Ertem, Mehmed Z.; Manbeck, Gerald F. (2024). Fast Catalysis at Low Overpotential: Designing Efficient Dicationic Re(bpy2+)(CO)3I Electrocatalysts for CO2 Reduction. Journal of the American Chemical Society, 146(36), 24742-24747 https://dx.doi.org/10.1021/jacs.4c08084
  37. Cao, Longsheng; Soto, Fernando A.; Li, Dan; Deng, Tao; Hu, Enyuan; Lu, Xiner; Cullen, David A.; Eidson, Nico; Yang, Xiao-Qing; He, Kai; Balbuena, Perla B.; Wang, Chunsheng (2024). Pd-Ru pair on Pt surface for promoting hydrogen oxidation and evolution in alkaline media. Nature Communications, 15(1), Article 7245 https://dx.doi.org/10.1038/s41467-024-51480-w
  38. Cai X.;, Wang, N.; Liang, L; Li, X.; Zhang, R.; Ma, L.; Hu, E.; Shen, S.; Shadike, Z.; Zhang, Z. (2024). Fast Oxygen Redox Kinetics Induced by CoO6 Octahedron With π‐Interaction in P2‐Type Sodium Oxides. Advanced Functional Materials https://dx.doi.org/10.1002/adfm.202409732
  39. Jimenez, Juan D.; Lustemberg, Pablo G.; Danielis, Maila; Fernandez-Villanueva, Estefania; Hwang, Sooyeon; Waluyo, Iradwikanari; Hunt, Adrian; Wierzbicki, Dominik; Zhang, Jie; Qi, Long; Trovarelli, Alessandro; Rodriguez, Jose A.; Colussi, Sara, et. al (2024). From Methane to Methanol: Pd-iC-CeO2 Catalysts Engineered for High Selectivity via Mechanochemical Synthesis. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.4c04815
  40. Mehar, V; Kim, J; Hunt, A; Waluyo, I; Rodriguez J. (2024). AP-XPS Study of the Reaction of O2 and CO2 with Zn-Au(111) Surface Alloys: Activation of O-O/C-O Bonds and the Formation of ZnO. The Journal of Physical Chemistry C, 128(33), 13852-13863 https://dx.doi.org/10.1021/acs.jpcc.4c03321
  41. Pechersky-Savich, Tali; Xu, Boyuan; Varenik, Maxim; Li, Junying; Wachtel, Ellen; Ehre, David; Routh, Prahlad K.; Marcella, Nicholas; Frenkel, Anatoly I.; Qi, Yue; Lubomirsky, Igor (2024). Correlated Displacement of Dynamic Elastic Dipoles Produces Nonclassical Electrostriction in Zr-Doped Ceria. Chemistry of Materials https://dx.doi.org/10.1021/acs.chemmater.4c00688
  42. Xiang, S.; Jimenez, J.D.; Posada, L.F.; Rubio, S.J.B.; Khanna, H.S.; Hwang, S.; Leshchev, D.; Suib, S.L.; Frenkel, A.I.; Senanayake, S.D. . (2024). CO2 hydrogenation over rhodium cluster catalyst nucleated within a manganese oxide framework. Applied Catalysis A: General, 683, 119845 https://dx.doi.org/10.1016/j.apcata.2024.119845
  43. Deng, K; Chen, X; Moncada, J; Salvatore, K; Rui, N; Xu, W; Xiang, S; Marinkovic, N; Frenkel, A; Zhou, G; Wong, S; Rodriguez, J (2024). Observing Chemical and Morphological Changes in a Cu@TiOx Core@Shell Catalyst: Impact of Reversible Metal-Oxide Interactions on CO2 Activation and Hydrogenation. ACS Catalysis, 14(15), 11832-11844 https://dx.doi.org/10.1021/acscatal.4c02694
  44. Yuan, Y.; Huang, E.; Hwang, S.; Liu, P.; Chen, J. G. (2024). Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation. Nature Communications, 15(1), Article 6529 https://dx.doi.org/10.1038/s41467-024-50709-y
  45. Han, Xue; Wu, Binhong; Wang, Yan; Nichols, Nathaniel N.; Kwon, Yongjun; Yuan, Yong; Xie, Zhenhua; Kang, Sinwoo; Gil, Byeongjun; Wang, Caiqi; Mou, Tianyou; Lin, Hongfei; Nian, Yao; Chang, Qiaowan (2024). Experimental trends and theoretical descriptors for electrochemical reduction of carbon dioxide to formate over Sn-based bimetallic catalysts. Journal of Materials Chemistry A https://dx.doi.org/10.1039/d4ta02315c
  46. Kim, D. & Tong, X. (2024). Study of CO2 Adsorption Properties on the SrTiO3(001) Surface with Ambient Pressure XPS. ACS Applied Materials & Interfaces, 16(29), 38679-38689 https://dx.doi.org/10.1021/acsami.4c04729
  47. Bakalis, Jin; Chernov, Sergii; Li, Ziling; Kunin, Alice; Withers, Zachary H.; Cheng, Shuyu; Adler, Alexander; Zhao, Peng; Corder, Christopher; White, Michael G.; Schoenhense, Gerd; Du, Xu; Kawakami, Roland K.; Allison, Thomas K. (2024). Momentum-Space Observation of Optically Excited Nonthermal Electrons in Graphene with Persistent Pseudospin Polarization. Nano Letters, 24(30), 9353-9359 https://dx.doi.org/10.1021/acs.nanolett.4c02378
  48. Qin, Kaiqiang; Li, Shi; Yen, Dean; Zhang, Weiran; Yang, Zhenzhen; Kamphaus, Ethan Phillip; Kim, Eric Youngsam; Huang, Jinghao; Shea, John J.; Hu, Enyuan; Cheng, Lei; Wang, Chunsheng; Luo, Chao (2024). A Coordinated-Anion-Enriched Electrolyte for Lean-Electrolyte Li-S Batteries. ACS Energy Letters, 9(8), 3869-3876 https://dx.doi.org/10.1021/acsenergylett.4c00859
  49. Sayago-Carro, Rocio; Barba-Nieto, Irene; Uriel, Caudillo-Flores; Tolosana-Moranchel, Alvaro; Rodriguez, Jose A.; Fernandez-Garcia, Marcos; Kubacka, Anna (2024). Role of Atomicity and Interface on InOx-TiO2 Composites: Thermo-Photo Valorization of CO2. ACS Applied Materials & Interfaces, 16(26), 33461-33474 https://dx.doi.org/10.1021/acsami.4c04803
  50. Yuan, Yong; Huang, Erwei; Hwang, Sooyeon; Liu, Ping; Chen, Jingguang G. (2024). Converting Carbon Dioxide into Carbon Nanotubes by Reacting with Ethane. Angewandte Chemie International Edition https://dx.doi.org/10.1002/anie.202404047
  51. Bushiri, Daniela A.; Baxter, Amanda F.; Odunjo, Onaolapo; Alvarez, Daniela V. Fraga; Yuan, Yong; Chen, Jingguang G.; Esposito, Daniel V. (2024). Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater. ACS Applied Energy Materials https://dx.doi.org/10.1021/acsaem.4c00839
  52. Han, Xue; Mou, Tianyou; Islam, Arephin; Kang, Sinwoo; Chang, Qiaowan; Xie, Zhenhua; Zhao, Xueru; Sasaki, Kotaro; Rodriguez, José A.; Liu, Ping; Chen, Jingguang G. (2024). Theoretical Prediction and Experimental Verification of IrOx Supported on Titanium Nitride for Acidic Oxygen Evolution Reaction. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.4c02936
  53. Kim, J; Lim, H; Tian, Y; Piliai, L; Hunt, A; Waluyo, I; Senanayake, S; Rodriguez, J (2024). The Surface Chemistry of Methanol on Pd(111) and H-Pd(111) Surfaces: C-O Bond Cleavage and the Effects of Metal Hydride Formation. The Journal of Physical Chemistry Letters, 15, 6209-6215 https://dx.doi.org/10.1021/acs.jpclett.4c01134
  54. Le, Thanh; Takeuchi, Esther S.; Takeuchi, Kenneth J.; Marschilok, Amy C.; Liu, Ping (2024). Rational optimization of substituted α-MnO2 cathode for aqueous zinc-ion battery. Energy Storage, 6(4) https://dx.doi.org/10.1002/est2.633
  55. Garg, Samay; Xie, Zhenhua; Lam, Alexandria X.; Chen, Jingguang G. (2024). Tandem Electrocatalytic-Thermocatalytic Conversion of CO2 to Aromatic Hydrocarbons. ACS Energy Letters, 9(6), 2990-2996 https://dx.doi.org/10.1021/acsenergylett.4c00945
  56. Kynman, Amy E.; Grimes, Travis S.; Mezyk, Stephen P.; Layne, Bobby; Cook, Andrew R.; Rotermund, Brian M.; Horne, Gregory P. (2024). Generation and study of Am(iv) by temperature-controlled electron pulse radiolysis. Dalton Transactions, 53(22), 9262-9266 https://dx.doi.org/10.1039/d4dt00991f
  57. Yoko, Akira; Wang, Haodong; Furuya, Ko; Takahashi, Daiki; Seong, Gimyeong; Tomai, Takaaki; Frenkel, Anatoly I.; Saito, Mitsuhiro; Inoue, Kazutoshi; Ikuhara, Yuichi; Adschiri, Tadafumi (2024). Reduction of (100)-Faceted CeO2 for Effective Pt Loading. Chemistry of Materials, 36(11), 5611-5620 https://dx.doi.org/10.1021/acs.chemmater.4c00627
  58. Wang, H. & Frenkel, A. (2024). Unravelling the origin of reaction-driven aggregation and fragmentation of atomically dispersed Pt catalyst on ceria support. Nanoscale https://dx.doi.org/10.1039/d4nr01396d
  59. He, Fan; Hou, Mingyang; Liu, Dongliang; Ding, Yong; Sasaki, Kotaro; Choi, Yongman; Guo, Shihang; Han, Donglin; Liu, Ying; Liu, Meilin; Chen, Yu (2024). Phase segregation of a composite air electrode unlocks the high performance of reversible protonic ceramic electrochemical cells. Energy & Environmental Science, 17(11), 3898-3907 https://dx.doi.org/10.1039/d4ee01608d
  60. Reddy, K; Islam, A; Tian, Y; Lim, H; Kim, J; Kim, D; Hunt, A; Waluyo, I; Rodriguez, J (2024). MgO Nanostructures on Cu(111): Understanding Size- and Morphology-Dependent CO2 Binding and Hydrogenation. The Journal of Physical Chemistry C, 128(17), 7149-7158 https://dx.doi.org/10.1021/acs.jpcc.4c02049
  61. Huang, Erwei; Liu, Ping (2024). Screening of Cu-Based Catalysts for Selective Methane to Methanol Conversion. The Journal of Physical Chemistry C, 128(19), 7876-7883 https://dx.doi.org/10.1021/acs.jpcc.4c01179
  62. Zhou, Miao; Zhao, Yang; Zhao, Xueru; Yin, Peng-Fei; Dong, Cun-Ku; Liu, Hui; Du, Xi-Wen; Yang, Jing (2024). Dislocation-Activated Low Platinum-Loaded PtCu Nanoparticles Welded onto the Substrate for Practical Acidic Hydrogen Generation. ACS Applied Energy Materials, 7(9), 3848-3857 https://dx.doi.org/10.1021/acsaem.4c00229
  63. Zheng, Kaifeng; Marcella, Nicholas; Smith, Anna L.; Frenkel, Anatoly I. (2024). Decoding the Pair Distribution Function of Uranium in Molten Fluoride Salts from X-Ray Absorption Spectroscopy Data by Machine Learning. The Journal of Physical Chemistry C, 128(18), 7635-7642 https://dx.doi.org/10.1021/acs.jpcc.4c01898
  64. Bak, S. & Sadowski, J. (2024). Understanding improved cycling and thermal stability of compositionally graded Ni-rich layered LiNi0.6Mn0.2Co0.2O2 cathode materials. Nano Energy, 109644 https://dx.doi.org/10.1016/j.nanoen.2024.109644
  65. Lee, D. H.; Ajimura, S.; Cheoun, M. K.; Choi, J. H.; Choi, J. Y.; Dodo, T.; Goh, J.; Haga, K.; Harada, M.; Hasegawa, S.; Hiraiwa, T.; Hwang, W.; Jang, H. I.; Jang, J. S.; Jeon, H.; Jeon, S.; Joo, K. K.; Jung, D. E.; Kang, S. K.; Kasugai, Y.; Kawasaki, T.; Kim, E. J.; Kim, J. Y.; Kim, S. B.; et al. (2024). Study on the accidental background of the JSNS2 experiment. The European Physical Journal C, 84(4), Article 409 https://dx.doi.org/10.1140/epjc/s10052-024-12778-7
  66. Carnahan, Scott; Riemersma, Kipper; Hlova, Ihor Z.; Dolotko, Oleksandr; Kmiec, Steven J.; Lamahewage, Sujeewa N. S.; Martin, Steve W.; Wishart, James F.; Dubroca, Thierry; Balema, Viktor P.; Rossini, Aaron J. (2024). Formation of Stable Radicals by Mechanochemistry and Their Application for Magic Angle Spinning Dynamic Nuclear Polarization Solid-State NMR Spectroscopy. The Journal of Physical Chemistry A https://www.osti.gov/biblio/2340731
  67. Tan, S.; Kuai, D.; Yu, Z.; Perez-Beltran, S.; Rahman, M. M.; Xia, K.; Wang, N.; Chen, Y.; Yang, X.-Q.; Xiao, J.; Liu, J.; Cui, Y.; Bao, Z.; Balbuena, P. B.; Hu, E. (2024). Evolution and Interplay of Lithium Metal Interphase Components Revealed by Experimental and Theoretical Studies. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.3c14232
  68. Kellogg M; Mencke A; Muniz C; Nattikallungal T; Cardoso-Delgado F; Baluyot-Reyes N; Sewell M; Bird M; S Saund; Neale N; Bradforth S; Thompson M (2024). Intra- and Intermolecular Charge-Transfer Dynamics of Carbene-Metal-Amide Photosensitizers. The Journal of Physical Chemistry C, 128(16), 6621-6635 https://dx.doi.org/10.1021/acs.jpcc.4c01994
  69. Zhang, Hua; Xu, Kang; Xu, Yangsen; He, Fan; Zhu, Feng; Sasaki, Kotaro; Choi, YongMan; Chen, Yu (2024). In situ formed catalysts for active, durable, and thermally stable ammonia protonic ceramic fuel cells at 550 °C. Energy & Environmental Science, 17(10), 3433-3442 https://dx.doi.org/10.1039/d4ee00219a
  70. Rahman, M.M.; Ronne, A.; Wang, N.; Du, Y.; Hu, E. (2024). Spatial Progression of Polysulfide Reactivity with Lithium Nitrate in Li-Sulfur Batteries. ACS Energy Letters, 2024-2030 https://dx.doi.org/10.1021/acsenergylett.4c00453
  71. Li. Ai-Min; Borodin, Oleg; Pollard, Travis P.; Zhang, Weiran; Zhang, Nan; Tan, Sha; Chen, Fu; Jayawardana, Chamithri; Lucht, Brett L.; Hu, Enyuan; Yang, Xiao-Qing; Wang, Chunsheng (2024). Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries. Nature Chemistry https://dx.doi.org/10.1038/s41557-024-01497-x
  72. Allega, A.; Anderson, M. R.; Andringa, S.; Antunes, J.; Askins, M.; Auty, D. J.; Bacon, A.; Baker, J.; Barros, N.; Barao, F.; Bayes, R.; Beier, E. W.; Bezerra, T. S.; Bialek, A.; Biller, S. D.; Blucher, E.; Caden, E.; Callaghan, E. J.; Chen, M.; Cheng, S.; Cleveland, B.; Cookman, D.; et al. (2024). Event-by-event direction reconstruction of solar neutrinos in a high light-yield liquid scintillator. Physical Review D, 109(7), Article 072002 https://dx.doi.org/10.1103/physrevd.109.072002
  73. Dao, Vandung; Choi, Hyuk; Yadav, Sunny; Jimenez, Juan D.; Kim, Chiyeop; Van Nguyen, Tuan; Chen, Kai; Uthirakumar, Periyayya; Van Le, Quyet; Senanayake, Sanjaya D.; Kim, Hyun You; Lee, In-Hwan (2024). LaCeOx coupled N-doped graphene/Ru single-atoms as a binary-site catalyst for efficient hydrogen evolution based on hydrogen spillover. Applied Catalysis B: Environmental, 343, 123452 https://dx.doi.org/10.1016/j.apcatb.2023.123452
  74. Muller, Andressa V.; Ahmad, Shahbaz; Sirlin, Jake T.; Ertem, Mehmed Z.; Polyansky, Dmitry E.; Grills, David C.; Meyer, Gerald J.; Sampaio, Renato N.; Concepcion, Javier J. (2024). Reduction of CO to Methanol with Recyclable Organic Hydrides. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.3c14605
  75. Blasczak, Vanna; Murphy, Alana; Suntrup, Lisa; Ngo, Ken T.; Reed, Blake; Groysman, Stanislav; Grills, David C.; Rochford, Jonathan (2024). Structure Activity Relationships for Second-Coordination Sphere Functional Group Dependent CO2 Reduction by Manganese Bipyridyl Electrocatalysts. ChemCatChem https://dx.doi.org/10.1002/cctc.202301388
  76. Zhou, J.; Holekevi Chandrappa, M.L.;Tan, S.; Wang, S.; Wu, C.; Nguyen, H.; Wang, C.; Liu, H.; Yu, S.; Miller, Q.R.; Hyun, G.; Holoubek, J.; Hong, J.; Xiao, Y.; Soulen, C.; Fan, Z.; Fullerton, E.E.; Brooks, C.J.; Wang, C.; Clément, R.J.; Yao, Y.; Hu, E.; Ong, S.P.; Liu, P. (2024). Healable and conductive sulfur iodide for solid-state Li-S batteries. Nature, 627(8003), 301-305 https://dx.doi.org/10.1038/s41586-024-07101-z
  77. Marcella, Nicholas; Lam, Stephen; Bryantsev, Vyacheslav S.; Roy, Santanu; Frenkel, Anatoly I. (2024). Neural network based analysis of multimodal bond distributions using extended x-ray absorption fine structure spectra. Physical Review B, 109(10), Article 104201 https://dx.doi.org/10.1103/physrevb.109.104201
  78. Lu, D.; Li, R.; Rahman, M.M.; Yu, P.; Lv, L.; Yang, S.; Huang, Y.; Sun, C.; Zhang, S.; Zhang, H.; Zhang, J.; Xiao, X.; Deng, T.; Fan, L.; Chen, L.; Wang, J.; Hu, E.; Wang, C.; Fan, X. (2024). Ligand-channel-enabled ultrafast Li-ion conduction. Nature, 627(8002), 101-107 https://dx.doi.org/10.1038/s41586-024-07045-4
  79. Mezyk, Stephen P.; Baxter, Makayla; Celis-Barros, Cristian; Grimes, Travis S.; Zalupski, Peter R.; Rae, Cathy; Zarzana, Christopher A.; Cook, Andrew R.; Horne, Gregory P. (2024). Effect of f-element complexation on the radiolysis of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). Dalton Transactions https://dx.doi.org/10.1039/d4dt00424h
  80. Shi, R; Ramirez, P; Rosales, R; Mahapatra, M; Rui, N; Rodriguez, J (2024). CsOx Nanostructures on Au(111): Morphology- and Size-dependent Activity for the Water-Gas Shift Reaction. The Journal of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.3c08190
  81. Mou, H., Jeong, J. J., Lamichhane, B., Kattel, S., Zhuang, Z., Lee, J. H., Chang, Q., Chen, J. G. (2024). Trends in electrocatalytic activity and stability of transition-metal nitrides. Chem Catalysis, 4(2), 100867 https://dx.doi.org/10.1016/j.checat.2023.100867
  82. Zhang, W.; Koverga, V.; Liu, S.; Zhou, J.; Wang, J.; Bai, P.; Tan, S.; Dandu, N.K.; Wang, Z.; Chen, F.; Xia, J.; Wan, H.; Zhang, X.; Yang, H.; Lucht, B.L.; Li, A.-M.;Yang, X.-Q.; Hu, E.; Raghavan, S.R.; Ngo, A.T.; Wang, C. (2024). Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries. Nature Energy https://dx.doi.org/10.1038/s41560-023-01443-0
  83. Wang, Zongheng; DiMarco, Brian N.; Ertem, Mehmed Z.; Sampaio, Renato N.; Manbeck, Gerald F. (2024). Electronic and Electrochemical Control of Isostructural Ruthenium Hydricities and the Implications for Catalytic Overpotentials. ACS Catalysis, 14, 1419-1431 https://dx.doi.org/10.1021/acscatal.3c04589
  84. Li, Ai-Min; Wang, Zeyi;Pollard, Travis P.;Zhang, Weiran;Tan, Sha;Li, Tianyu;Jayawardana, Chamithri;Liou, Sz-Chian;Rao, Jiancun;Lucht, Brett L.;Hu, Enyuan;Yang, Xiao-Qing;Borodin, Oleg;Wang, Chunsheng (2024). High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes. Nature Communications, 15(1), Article 1206 https://dx.doi.org/10.1038/s41467-024-45374-0
  85. Zhao, X. & Ma, L. (2024). Multiple Metal-Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts. Journal of the American Chemical Society, 146(5), 3010-3022 https://dx.doi.org/10.1021/jacs.3c08177
  86. Kim, Sangwook; Barnes, Pete; Zhang, Hongxing; Efaw, Corey; Wang, Yulong; Park, Bumjun; Li, Bin; Chen, Bor-Rong; Evans, Michael C.; Liaw, Boryann; Olds, Daniel; Khalifah, Peter G.; Dufek, Eric J. (2024). Calendar life of lithium metal batteries: Accelerated aging and failure analysis. Energy Storage Materials, 65, 103147 https://dx.doi.org/10.1016/j.ensm.2023.103147
  87. Mou, H. & Lu, F. (2024). Glycerol Electrooxidation over Precision-Synthesized Gold Nanocrystals with Different Surface Facets. Precision Chemistry, 2(3), 103-111 https://dx.doi.org/10.1021/prechem.3c00105
  88. Ren, L.; Hu, Z.; Peng, C.; Zhang, L.; Wang, N.; Wang, F.; Xia, Y.; Zhang, S.; Hue, E.; Luo, J. (2024). Suppressing metal corrosion through identification of optimal crystallographic plane for Zn batteries. Proceedings of the National Academy of Sciences, 121(5) https://dx.doi.org/10.1073/pnas.2309981121
  89. Porter, William N.; Mera, Hilda A.; Liao, Wenjie; Lin, Zhexi; Liu, Ping; Kitchin, John R.; Chen, Jingguang G. (2024). Controlling Bond Scission Pathways of Isopropanol on Fe- and Pt-Modified Mo2N Model Surfaces and Powder Catalysts. ACS Catalysis, 14(3), 1653-1662 https://dx.doi.org/10.1021/acscatal.3c04700
  90. Rotermund, Brian M.; Mezyk, Stephen P.; Sperling, Joseph M.; Beck, Nicholas B.; Wineinger, Hannah; Cook, Andrew R.; Albrecht-Schonzart, Thomas E.; Horne, Gregory P. (2024). Chemical Kinetics for the Oxidation of Californium(III) Ions with Select Radiation-Induced Inorganic Radicals (Cl2•- and SO4•-). The Journal of Physical Chemistry A, 128(3), 590-598 https://dx.doi.org/10.1021/acs.jpca.3c07404
  91. Xie, Zhenhua; Huang, Erwei; Garg, Samay; Hwang, Sooyeon; Liu, Ping; Chen, Jingguang G. (2024). CO2 fixation into carbon nanofibres using electrochemical-thermochemical tandem catalysis. Nature Catalysis, 7(1), 98-109 https://dx.doi.org/10.1038/s41929-023-01085-1

2023

  1. Cai, Xinyin; Shadike, Zulipiya; Wang, Nan ;Liu, Lin; Hu, Enyuan; Zhang, Junliang (2023). Oxygen redox chemistry: A new approach to high energy density world. Next Materials, 2, 100086 https://dx.doi.org/10.1016/j.nxmate.2023.100086
  2. Rahman, M. & Ghose, S. (2023). An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries. Nature Communications, 14(1), Article 8414 https://dx.doi.org/10.1038/s41467-023-44282-z
  3. Wang, H. & Ehrlich, S. (2023). Migration and aggregation of Pt atoms on metal oxide-supported ceria nanodomes control reverse water gas shift reaction activity. Communications Chemistry, 6(1), Article 264 https://dx.doi.org/10.1038/s42004-023-01064-4
  4. Ajimura, S.;Cheoun, M.K.;Choi, J.H.;Choi, J.Y.;Dodo, T.;Goh, J.;Haga, K.;Harada, M.;Hasegawa, S.;Hiraiwa, T.;Hwang, W.;Iida, T.;Jang, H.I.;Jang, J.S.;Jeon, H.;Jeon, S.;Joo, K.K.;Jung, D.E.;Kang, S.K.;Kasugai, Y.;Kawasaki, T.;Kim, E.J.;Kim, J.Y.;Kim, S.B.;Kim, W.;Kinoshita, H.;Konno, T.;Lee, et al. (2023). The acrylic vessel for JSNS2-II neutrino target. Journal of Instrumentation, 18(12), T12001 https://dx.doi.org/10.1088/1748-0221/18/12/t12001
  5. Callaghan, E. J.; Kaptanoglu, T.; Smiley, M.; Yeh, M.; Gann, G. D. Orebi (2023). Characterization of the scintillation response of water-based liquid scintillator to alpha particles, and implications for particle identification. The European Physical Journal C, 83(11), Article 1094 https://dx.doi.org/10.1140/epjc/s10052-023-12278-0
  6. McGuire, S. & Zhang, L. (2023). Assessing the roles of synthesis method and chemical composition in determining structure-property correlations in alloyed, ultrathin nanowire motifs for the methanol oxidation reaction. Energy Advances https://dx.doi.org/10.1039/d3ya00278k
  7. Tan, Sha; Shadike, Zulipiya; Cai, Xinyin; Lin, Ruoqian; Kludze, Atsu; Borodin, Oleg; Lucht, Brett L.; Wang, Chunsheng; Hu, Enyuan; Xu, Kang; Yang, Xiao-Qing (2023). Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries. Electrochemical Energy Reviews, 6(1), Article 35 https://dx.doi.org/10.1007/s41918-023-00199-1
  8. Wang, X.; Yin, L.; Ronne, A.; Zhang, Y.; Hu, Z.; Tan, S.; Wang, Q.; Song, B.; Li, M.; Rong, X.; Lapidus, S.; Yang, S; Hu, E.; Liu, J. (2023). Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state. Nature Communications, 14(1), Article 7665 https://dx.doi.org/10.1038/s41467-023-43031-6
  9. Carr, C.R.; Vrionides, M. A.; Grills, D.C. (2023). Reactivity of radiolytically- and photochemically-generated tertiary amine radicals towards a CO2 reduction catalyst. The Journal of Chemical Physics https://www.osti.gov/biblio/2222380
  10. Mehar, V; Liao, W; Mahapatra, M; Shi, R; Lim, H; Barba-Nieto, I; Hunt, A; Waluyo, I; Liu, P; Rodriguez, J (2023). Morphology Dependent Reactivity of CsOx Nanostructures on Au(111): Binding and Hydrogenation of CO2 to HCOOH. ACS Nano https://dx.doi.org/10.1021/acsnano.3c08324
  11. Moncada, J; Chen, X; Deng, K; Wang, Y; Xu, W; Marinkovic, N; Zhou, G; Martinez-Arias, A; Rodriguez, J (2023). Structural and Chemical Evolution of an Inverse CeOx/Cu Catalyst under CO2 Hydrogenation: Tunning Oxide Morphology to Improve Activity and Selectivity. ACS Catalysis, 13, 15248-15258 https://dx.doi.org/10.1021/acscatal.3c04222
  12. Zhai, Peng; Xie, Zhenhua; Huang, Erwei; Aireddy, Divakar R.; Yu, Haoran; Cullen, David A.; Liu, Ping; Chen, Jingguang G.; Ding, Kunlun (2023). CO2-mediated oxidative dehydrogenation of propane enabled by Pt-based bimetallic catalysts. Chem, 9(11), 3268-3285 https://dx.doi.org/10.1016/j.chempr.2023.07.002
  13. Efaw, Corey M; Wu, Qisheng; Gao, Ningshengjie ;Zhang, Yugang; Zhu, Haoyu; Gering, Kevin; Hurley, Michael F.; Xiong, Hui; Hu, Enyuan; Cao, Xia; Xu, Wu; Zhang, Ji-Guang; Dufek, Eric J.; Xiao, Jie; Yang, Xiao-Qing; Liu, Jun; Qi, Yue ;Li, Bin (2023). Localized high-concentration electrolytes get more localized through micelle-like structures. Nature Materials https://dx.doi.org/10.1038/s41563-023-01700-3
  14. Turaczy, Kevin K.; Liao, Wenjie; Mou, Hansen; Nichols, Nathaniel N.; Liu, Ping; Chen, Jingguang G. (2023). Correlating Experimentally Determined Hydrogen Binding Energy with Hydrogen Evolution Activity over Metal Monolayers on Molybdenum Nitride. ACS Catalysis, 13(21), 14268-14276 https://dx.doi.org/10.1021/acscatal.3c04063
  15. Li, Hongyu; Zhang, Hong; Wang, Xuelong; Nuzzo, Ralph G.; Frenkel, Anatoly I.; Liu, Ping; Gersappe, Dilip (2023). Revealing Intermetallic Active Sites of PtNi Nanocatalysts for Reverse Water Gas Shift Reaction. The Journal of Physical Chemistry C, 127(45), 22067-22075 https://dx.doi.org/10.1021/acs.jpcc.3c05655
  16. Tsuji, Miu; Abuhadba, Sara; Chen, Angela; Ito, Mio; Makhijani, Amrita; Kuwahara, Yutaka; Esipova, Tatiana; Mani, Tomoyasu (2023). Red-Colored Circularly Polarized Luminescence from a Benzo-Fused BODIPY-BINOL Complex. The Journal of Physical Chemistry B, 127(45), 9781-9787 https://dx.doi.org/10.1021/acs.jpcb.3c05496
  17. Yuan, Y.; Porter, W. N.; Chen, J. G. (2023). Comparison of direct and CO2-oxidative dehydrogenation of propane. Trends in Chemistry, 5(11), 840-852 https://dx.doi.org/10.1016/j.trechm.2023.09.001
  18. Dai, Junyi; Tan, Sha; Wang, Lifeng; Ling, Fangxin; Duan, Fuqiang; Ma, Mingze; Shao, Yu; Rui, Xianhong; Yao, Yu; Hu, Enyuan; Wu, Xiaojun; Li, Chunyang; Yu, Yan (2023). High-Voltage Potassium Hexacyanoferrate Cathode via High-Entropy and Potassium Incorporation for Stable Sodium-Ion Batteries. ACS Nano https://dx.doi.org/10.1021/acsnano.3c02323
  19. Xu, Xuan; Li, Xun-Lu; Rahman, Muhammad Mominur; Bao, Jian; Luo, Rui-Jie; Ma, Cui; Du, Chong-Yu; Zeng, Jie; Mei, Zhe; Qian, Zhe; Hu, Enyuan; Zhou, Yong-Ning (2023). Promoting reversibility of layered potassium cathode through interstitial doping. Chemical Engineering Journal, 147021 https://dx.doi.org/10.1016/j.cej.2023.147021
  20. Lin, Neo; Mani, Tomoyasu (2023). Anti-Arrhenius behavior of electron transfer reactions in molecular dimers. Chemical Science, 14(45), 13095-13107 https://dx.doi.org/10.1039/d3sc03609j
  21. Mcdermott, Matthew J.; Mcbride, Brennan C.; Regier, Corlyn E.; Tran, Gia Thinh; Chen, Yu; Corrao, Adam A.; Gallant, Max C.; Kamm, Gabrielle E.; Bartel, Christopher J.; Chapman, Karena W.; Khalifah, Peter G.; Ceder, Gerbrand; Neilson, James R.; Persson, Kristin A. (2023). Assessing Thermodynamic Selectivity of Solid-State Reactions for the Predictive Synthesis of Inorganic Materials. ACS Central Science, 9(10), 1957-1975 https://dx.doi.org/10.1021/acscentsci.3c01051
  22. Wang, Qin-Chao; Xu, Zhixin; Li, Xun-Lu; Bai, Jiaming; Hu, Enyuan; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning; Han, Jie (2023). Fast Charge Induced Phase Evolution and Element Contribution of Nickel-Rich Layered Cathode for Lithium-Ion Batteries. Nano Energy, 109019 https://dx.doi.org/10.1016/j.nanoen.2023.109019
  23. Li, Yuanyuan; Wang, Haodong; Song, Haohong; Rui, Ning; Kottwitz, Matthew; Senanayake, Sanjaya D.; Nuzzo, Ralph G.; Wu, Zili; Jiang, De-en; Frenkel, Anatoly I. (2023). Active sites of atomically dispersed Pt supported on Gd-doped ceria with improved low temperature performance for CO oxidation. Chemical Science, 14(44), 12582-12588 https://dx.doi.org/10.1039/d3sc03988a
  24. Lin, Yu-Chung; Liu, Xiaoyang; Onghai, Gavin; Raut, Aniket; Fang, Yiwei; Yin, Yifan; Fu, Shi; Fang, Haoyan; Feng, Kuan-Che; Wang, Xuelong; Liu, Ping; Li, Tai-De; Sokolov, Jonathan; Rafailovich, Miriam (2023). Determination of the Interfacial Energy between Graphene Nanoplatelets and Deuterated or Hydrogenated Polystyrene. Macromolecules, 56(19), 8039-8046 https://dx.doi.org/10.1021/acs.macromol.3c00982
  25. Elsby, Matthew R.; Espinosa, Matthew R.; Ertem, Mehmed Z.; Deziel, Anthony P.; Hazari, Nilay; Miller, Alexander J. M.; Paulus, Alexandra H.; Pecoraro, Matthew V. (2023). Carbon Dioxide Insertion into Rhenium Hydrides as a Probe for the Impact of Solvent on Linear Free Energy Relationships between Thermodynamic and Kinetic Hydricity. Organometallics, 42(20), 3005-3012 https://dx.doi.org/10.1021/acs.organomet.3c00333
  26. Kwon, G. & Nam , C. (2023). Multielectrode electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering. Journal of Applied Crystallography, 56(5), 1392-1402 https://dx.doi.org/10.1107/s1600576723006933
  27. Rahman, Muhammad Mominur; Hu, Enyuan (2023). Electron Delocalization Enables Sulfone-based Single-solvent Electrolyte for Lithium Metal Batteries. Angewandte Chemie https://dx.doi.org/10.1002/ange.202311051
  28. He, Yubin, Wang, Chunyang; Zou, Peichao; Lin, Ruoqian; Hu, Enyuan; Xin, Huolin L. (2023). Anion-tethered Single Lithium-ion Conducting Polyelectrolytes through UV-induced Free Radical Polymerization for Improved Morphological Stability of Lithium Metal Anodes. Angewandte Chemie International Edition, 62(38) https://dx.doi.org/10.1002/anie.202308309
  29. Basak, Priyanka; Cabelli, Diane E; Chivers, Peter T; Farquhar, Erik R; Maroney, Michael J (2023). In vitro maturation of NiSOD reveals a role for cytoplasmic histidine in processing and metalation. Metallomics https://dx.doi.org/10.1093/mtomcs/mfad054
  30. Polyansky, Dmitry E.; Manbeck, Gerald F.; Ertem, Mehmed Z. (2023). Combined Effects of Hemicolligation and Ion Pairing on Reduction Potentials of Biphenyl Radical Cations. The Journal of Physical Chemistry A, 127(38), 7918-7927 https://dx.doi.org/10.1021/acs.jpca.3c03817
  31. Rahman, M. M.; Hu, E. (2023). Electron Delocalization Enables Sulfone-based Single-solvent Electrolyte for Lithium Metal Batteries. Angewandte Chemie International Edition https://dx.doi.org/10.1002/anie.202311051
  32. Wang, Jason; Rozycki, Matthew Toledo; Tong, Xiao; White, Michael G. (2023). Aggregation of Size-Selected Oxide Clusters Deposited onto Au(111). Langmuir https://dx.doi.org/10.1021/acs.langmuir.3c01220
  33. Winter, Lea R.; Chen, Jingguang G. (2023). Challenges and opportunities in plasma-activated reactions of CO2 with light alkanes. Journal of Energy Chemistry, 84, 424-427 https://dx.doi.org/10.1016/j.jechem.2023.05.038
  34. Bi, Y.; Xu, Y.; Yi, R.; Liu, D.; Zuo, P.; Hu, J.; Li, Q.; Wu, J.; Wang, C.; Tan, S.; Hu, E.; Li, J.; O'Toole R.; Luo L.; Hao X.; Venkatachalam S.; Rijssenbeek J.; Xiao J. (2023). Simultaneous Single Crystal Growth and Segregation of Ni-Rich Cathode Enabled by Nanoscale Phase Separation for Advanced Lithium-Ion Batteries. Energy Storage Materials, 62, 102947 https://dx.doi.org/10.1016/j.ensm.2023.102947
  35. Rodriguez, J; Jimenez-Orozco, C; Florez, E; Viñes, F; Illas, F (2023). C1 Chemistry on Metal Carbide Nanoparticles: Boosting the Conversion of CO2 and CH4. The Journal of Physical Chemistry C, 127(34), 16764-16780 https://dx.doi.org/10.1021/acs.jpcc.3c04541
  36. Xie, Zhenhua; Chen, Jingguang G. (2023). Bimetallic-Derived Catalytic Structures for CO2-Assisted Ethane Activation. Accounts of Chemical Research, 56(18), 2447-2458 https://dx.doi.org/10.1021/acs.accounts.3c00348
  37. Shadike, Zulipiya; Chen, Yiming; Hu, Enyuan; Zhang, Junliang; Yang, Xiao-Qing (2023). Interphasial engineering for Ni-rich NMC cathode materials. Trends in Chemistry https://dx.doi.org/10.1016/j.trechm.2023.08.002
  38. Wei, Kecheng; Lin, Honghong; Zhao, Zhonglong; Zhao, Xueru; Marinkovic, Nebojsa; Morales, Michael; Huang, Zhennan; Perlmutter, Laura; Guan, Huanqin; Harris, Cooro; Chi, Miaofang; Lu, Gang; Sasaki, Kotaro; Sun, Shouheng (2023). Au/Pt Bimetallic Nanowires with Stepped Pt Sites for Enhanced C-C Cleavage in C2+ Alcohol Electro-oxidation Reactions. Journal of the American Chemical Society, 145(34), 19076-19085 https://dx.doi.org/10.1021/jacs.3c07027
  39. He, Y.; Wang, C.; Zou, P.; Lin, R.; Hu, E.; Xin, H.L. (2023). Anion-tethered Single Lithium-ion Conducting Polyelectrolytes through UV-induced Free Radical Polymerization for Improved Morphological Stability of Lithium Metal Anodes. Angewandte Chemie https://dx.doi.org/10.1002/ange.202308309
  40. Rahman, M. M.; Xia, K.; Yang, X.-Q.; Ariyoshi, K.; Hu, E. (2023). Asymmetric Lithium Extraction and Insertion in High Voltage Spinel at Fast Rate. Nano Letters https://dx.doi.org/10.1021/acs.nanolett.3c02042
  41. Huang, Erwei; Liu, Ping (2023). Theoretical Perspective of Promoting Direct Methane-to-Methanol Conversion at Complex Metal Oxide-Metal Interfaces. The Journal of Physical Chemistry Letters, 14(29), 6556-6563 https://dx.doi.org/10.1021/acs.jpclett.3c01525
  42. Mehar, V; Huang, E; Shi, R; Rui, N; Rosales, R; Waluyo, I; Hunt, A; Liu, P; Rodriguez, J (2023). Microscopic Investigation of H2 Reduced CuOx/Cu(111) and ZnO/CuOx/Cu(111) Inverse Catalysts: STM, AP-XPS, and DFT Studies. ACS Catalysis, 13(14), 9857-9870 https://dx.doi.org/10.1021/acscatal.3c02514
  43. Ogbodo, R.; Karunaratne, W. V.; Acharya, G. R.; Emerson, M. S.; Mughal, M.; Yuen, H. M.; Zmich, N.; Nembhard, S.; Wang, F.; Shirota, H.; Lall-Ramnarine, S. I.; Castner, Jr., E. W.; Wishart, J.F.; Nieuwkoop, A. J.; Margulis, C.J. (2023). Structural Origins of Viscosity in Imidazolium and Pyrrolidinium Ionic Liquids Coupled with the NTf2- Anion. The Journal of Physical Chemistry B, 127(28), 6342-6353 https://dx.doi.org/10.1021/acs.jpcb.3c02604
  44. Corrao, Adam A.; Mattei, Gerard S.; Coaty, Christopher M.; Li, Zhuo; Petrova, Victoria; Yin, Liang; Liu, Ping; Khalifah, Peter G. (2023). Salt-Mediated Coarsening in Conversion-Reaction-Synthesized Nanoporous Metals and Nanocomposites Resolved through In Situ Synchrotron Diffraction Studies. Chemistry of Materials, 35(13), 4911-4921 https://dx.doi.org/10.1021/acs.chemmater.2c03786
  45. Banerjee, A., Liu, Q., Shanklin, J., & Ertem, M. Z. (2023). Predicting Mössbauer Parameters of Nonheme Diiron Complexes with Density Functional Theory. Inorganic Chemistry, 62(29), 11402-11413 https://dx.doi.org/10.1021/acs.inorgchem.3c00969
  46. Bai, Ruilin; Lin, Qiaosong; Li, Xinyu; Ling, Fangxin; Wang, Huijuan; Tan, Sha; Hu, Lingxiang; Ma, Mingze; Wu, Xiaojun; Shao, Yu; Rui, Xianhong; Hu, Enyuan; Yao, Yu; Yu, Yan (2023). Toward Complete Transformation of Sodium Polysulfides by Regulating the Second-Shell Coordinating Environment of Atomically Dispersed Fe. Angewandte Chemie International Edition, 62(26) https://dx.doi.org/10.1002/anie.202218165
  47. Danielis, Maila; Jiménez, Juan D.; Rui, Ning; Moncada, Jorge; Betancourt, Luis E.; Trovarelli, Alessandro; Rodriguez, José A.; Senanayake, Sanjaya D.; Colussi, Sara (2023). Tuning the hydrogenation of CO2 to CH4 over mechano-chemically prepared palladium supported on ceria. Applied Catalysis A: General, 660, 119185 https://dx.doi.org/10.1016/j.apcata.2023.119185
  48. Horne, Gregory P.; Celis-Barros, Cristian; Conrad, Jacy K.; Grimes, Travis S.; McLachlan, Jeffrey R.; Rotermund, Brian M.; Cook, Andrew R.; Mezyk, Stephen P. (2023). Impact of lanthanide ion complexation and temperature on the chemical reactivity of N,N,N′,N′-tetraoctyl diglycolamide (TODGA) with the dodecane radical cation. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/d3cp01119d
  49. Conrad, Jacy K.; Iwamatsu, Kazuhiro; Woods, Michael E.; Gakhar, Ruchi; Layne, Bobby; Cook, Andrew R.; Horne, Gregory P. (2023). Impact of iodide ions on the speciation of radiolytic transients in molten LiCl-KCl eutectic salt mixtures. Physical Chemistry Chemical Physics, 25(23), 16009-16017 https://dx.doi.org/10.1039/d3cp01477k
  50. Auty, D.J.; Bartlett, D.; Biller, S.D.; Chauhan, D. ;Chen, M.; Chkvorets, O.; Connolly, S.; Dai, X.; Fletcher, E.; Frankiewicz, K.; Gooding, D.; Grant, C.; Hall, S.; Horne, D.; Hans, S.; Hreljac, B.; Kaptanoglu, T.; Krar, B.; Kraus, C.; Kroupová, T.; Lam, I.; Liu, Y.; Maguire, S.; Miller, C.; et al (2023). A method to load tellurium in liquid scintillator for the study of neutrinoless double beta decay. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1051, 168204 https://dx.doi.org/10.1016/j.nima.2023.168204
  51. Johnsen, Walter D; Deegbey, Mawuli; Grills, David C.; Polyansky, Dmitry E.; Goldberg, Karen I.; Jakubikova, Elena; Mallouk, Thomas E. (2023). Lewis Acids and Electron-Withdrawing Ligands Accelerate CO Coordination to Dinuclear CuI Compounds. Inorganic Chemistry, 62(23), 9146-9157 https://dx.doi.org/10.1021/acs.inorgchem.3c01003
  52. Keller, Niklas D; Vecchi, Pierpaolo; Grills, David C.; Polyansky, Dmitry E.; Bein, Gabriella P.; Dempsey, Jillian L.; Cahoon, James F.; Parsons, Gregory N.; Sampaio, Renato N.; Meyer, Gerald J. (2023). Multi-Electron Transfer at H-Terminated p-Si Electrolyte Interfaces: Large Photovoltages under Inversion Conditions. Journal of the American Chemical Society, 145(20), 11282-11292 https://dx.doi.org/10.1021/jacs.3c01990
  53. Henke, Wade C.; Peng, Yun; Meier, Alex A.; Fujita, Etsuko; Grills, David; Polyansky, Dmitry E.; Blakemore, James D. (2023). Mechanistic roles of metal- and ligand-protonated species in hydrogen evolution with [Cp*Rh] complexes. Proceedings of the National Academy of Sciences, 120(21), 1-9 https://dx.doi.org/10.1073/pnas.2217189120
  54. Ke, Wang; Qin, Xiangdong; Palomino, Robert M; Simonovis, Juan Pablo; Senanayake, Sanjaya D.; Rodriguez, José A.; Zaera, Francisco (2023). Redox Properties of TiO2 Thin Films Grown on Mesoporous Silica by Atomic Layer Deposition. The Journal of Physical Chemistry Letters, 14(20), 4696-4703 https://dx.doi.org/10.1021/acs.jpclett.3c00834
  55. Rotundo, Laura; Ahmad, Shahbaz; Cappuccino, Chiara; Polyansky, Dmitry E.; Ertem, Mehmed Z.; Manbeck, Gerald F. (2023). A Dicationic fac-Re(bpy)(CO)3Cl for CO2 Electroreduction at a Reduced Overpotential. Inorganic Chemistry https://dx.doi.org/10.1021/acs.inorgchem.3c00624
  56. Jimenez-Orozco, C; Florez, E; Rodriguez, J (2023). The α‐WC(0001) Surface as a Hydrogen Sponge: A First Principle Study of H2 Dissociation and Formation of Low and High Coverages. ChemCatChem, 1-10 https://dx.doi.org/10.1002/cctc.202300165
  57. Tan, S.; Rahman, M. M.; Yang, X.-Q.; Hu, E. (2023). Structural and Interphasial Stabilities of Sulfurized Polyacrylonitrile (SPAN) Cathode. ACS Energy Letters, 2496-2504 https://dx.doi.org/10.1021/acsenergylett.3c00281
  58. Zhang, Shengbo; Hu, Qikun; Zhang, Yu-Xiao; Guo, Haoyue; Wu, Yanfen; Sun, Mingze; Zhu, Xingsong; Zhang, Jiangang; Gong, Shuyan; Liu, Ping; Niu, Zhiqiang (2023). Depolymerization of polyesters by a binuclear catalyst for plastic recycling. Nature Sustainability https://dx.doi.org/10.1038/s41893-023-01118-4
  59. Jimenez-Orozco, C; Florez, E; Viñes, F; Rodriguez, J; Illas, F (2023). On the Ethylene Hydrogenation Molecular Mechanism on MoCy Nanoparticles. The Journal of Physical Chemistry C, 127(16), 7666-7673 https://dx.doi.org/10.1021/acs.jpcc.3c00435
  60. Lavroll, Robert H.; Wang, Jason; White, Michael G.; Sautet, Philippe; Alexandrova, Anastassia N. (2023). Mechanism of Stoichiometrically Governed Titanium Oxide Brownian Tree Formation on Stepped Au(111). The Journal of Physical Chemistry C, 127(17), 8030-8040 https://dx.doi.org/10.1021/acs.jpcc.3c00715
  61. Wang, Yufei; Mezyk, Stephen P; McLachlan, Jeffery R; Grimes, Travis S; Zalupski, Peter R; O'Bryan, Hailie M.T; Cook, Andrew R; Abergel, Rebecca J; Horne, Gregory P (2023). Radiolytic Evaluation of 3,4,3-LI(1,2-HOPO) in Aqueous Solutions. The Journal of Physical Chemistry B https://dx.doi.org/10.1021/acs.jpcb.3c01469
  62. Wu, Z. & Hu, E. (2023). Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.3c00117
  63. Huang, Erwei; Rui, Ning; Rosales, Rina; Liu, Ping; Rodriguez, José A. (2023). Activation and Conversion of Methane to Syngas over ZrO2/Cu(111) Catalysts near Room Temperature. Journal of the American Chemical Society, 145(15), 8326-8331 https://dx.doi.org/10.1021/jacs.3c01980
  64. Xie, Zhenhua; Hwang, Sooyeon; Chen, Jingguang G. (2023). Reduction-induced metal/oxide interfacial sites for selective CO2 hydrogenation. SmartMat https://dx.doi.org/10.1002/smm2.1201
  65. Myong, Michele S.; Bird, Matthew J.; Miller, John R. (2023). Kinetics and Energetics of Electron Transfer to Dimer Radical Cations. The Journal of Physical Chemistry B, 127(13), 2881-2886 https://dx.doi.org/10.1021/acs.jpcb.2c07302
  66. Li, Chenzhao; Zhu, Limin; Song, Liang; Zhu, Guangqi; Zhang, Qi; Zhao, Yuyue; Gong, Qing; Sun, Chengjun; Liu, Yuzi; Sasaki, Kotaro; Xie, Jian (2023). Synergistic effect of polyaniline on stabilizing Pt nanoparticles in PEMFCs. Journal of Materials Chemistry A, 11(14), 7756-7766 https://dx.doi.org/10.1039/d2ta08135k
  67. Chen, S. & Hu, E. (2023). Fe-N4O-C Nanoplates Covalently Bonding on Graphene for Efficient CO2 Electroreduction and Zn-CO2 Batteries. Advanced Functional Materials https://dx.doi.org/10.1002/adfm.202300801
  68. Routh, P. K; Marcella, N. and Frenkel, A.I. (2023). Speciation of Nanocatalysts Using X-ray Absorption Spectroscopy Assisted by Machine Learning. The Journal of Physical Chemistry C, 127(12), 5653-5662 https://dx.doi.org/10.1021/acs.jpcc.3c00571
  69. Bottum, S. R.; Teitsworth, T. S.; Han, Q.; Orr, A. D.; Park, J. S.; Jia, X. F.; Cappuccino, C.; Layne, B. H.; Hazari, N.; Concepcion, J. J.; Donley, C. L.; Polyansky, D. E.; Lockett, M. R.; Cahoon, J. F.; Grills, D. C. (2023). In Situ Attenuated Total Reflectance Infrared Spectroelectrochemistry (ATR-IR-SEC) for the Characterization of Molecular Redox Processes on Surface-Proximal Doped Silicon ATR Crystal Working Electrodes. The Journal of Physical Chemistry C, 127(14), 6690-6701 https://dx.doi.org/10.1021/acs.jpcc.2c08991
  70. Bai, R. & Hu, E. (2023). Toward Complete Transformation of Sodium Polysulfides by Regulating the Second-Shell Coordinating Environment of Atomically Dispersed Fe. Angewandte Chemie https://dx.doi.org/10.1002/ange.202218165
  71. Wu, L. (2023). Resolution-Enhanced X-ray Fluorescence Microscopy via Deep Residual Networks. npj Computational Materials https://dx.doi.org/10.1038/s41524-023-00995-9
  72. Liu, Y. & Liao, M. (2023). Enhancing Lithium Storage Performance of Bimetallic Oxides Anode by Synergistic Effects. Journal of Colloid and Interface Science https://dx.doi.org/10.1016/j.jcis.2023.03.017
  73. Faustino, L. A.; Machado, A. E. H.; Maia, P. I. S.; Concepcion, J. J. (2023). Electrocatalytic properties of a novel ruthenium(ii) terpyridine-based complex towards CO2 reduction. Dalton Transactions, 52(14), 4442-4455 https://dx.doi.org/10.1039/d3dt00121k
  74. Rui, N.; Wang, X.; Deng, K.; Moncada, J.; Rosales, R.; Zhang, F.; Xu, W.; Waluyo, I.; Hunt, A.; Stavitski, E.; Senanayake, S. D.; Liu, P.; Rodriguez, J. A. (2023). Atomic Structural Origin of the High Methanol Selectivity over In2O3-Metal Interfaces: Metal-Support Interactions and the Formation of a InOx Overlayer in Ru/In2O3 Catalysts during CO2 Hydrogenation. ACS Catalysis, 13(5), 3187-3200 https://dx.doi.org/10.1021/acscatal.2c06029
  75. Allega, A; Anderson, M.R.; Andringa, S.; Antunes, J.; Askins, M.; Auty, D.J.; Bacon, A.; Barros, N.; Barão, F.; Bayes, R.; Beier, E.W.; Bezerra, T.S.; Bialek, A.; Biller, S.D.; Blucher, E.; Caden, E.; Callaghan, E.J.; Cheng, S.; Chen, M.; Cleveland, B.; Cookman, D.; Corning, J.; Cox, M.A.; et al. (2023). Evidence of Antineutrinos from Distant Reactors Using Pure Water at SNO+. Physical Review Letters, 130(9), Article 091801 https://dx.doi.org/10.1103/physrevlett.130.091801
  76. He, Fan; Zhu, Feng; Liu, Dongliang; Zhou, Yucun; Sasaki, Kotaro; Choi, YongMan; Liu, Meilin; Chen, Yu (2023). A reversible perovskite air electrode for active and durable oxygen reduction and evolution reactions via the A-site entropy engineering. Materials Today, 63, 89-98 https://dx.doi.org/10.1016/j.mattod.2023.02.006
  77. Gonzalez-Lopez, L. & Wishart, J. (2023). On electron beam-induced degradation of vinyl ester thermosets. Polymer Degradation and Stability https://www.osti.gov/biblio/1958597
  78. Li, J.; Huang, P.; Guo, F.; Huang, J.; Xiang, S.; Yang, K.; Deskins, N. A.; Batista, V. S.; Li, G.; Frenkel, A. I. (2023). X-ray Absorption Spectroscopy Studies of a Molecular CO2-Reduction Catalyst Deposited on Graphitic Carbon Nitride. The Journal of Physical Chemistry C, 127(7), 3626-3633 https://dx.doi.org/10.1021/acs.jpcc.2c08587
  79. Xu, J. & Hu, E. (2023). Electrolyte design for Li-ion batteries under extreme operating conditions. Nature https://dx.doi.org/10.1038/s41586-022-05627-8
  80. Jimenez-Orozco, C. & Rodriguez, J. (2023). Selective hydrogenation of acetylene to ethylene: Performance of a Pt monolayer over an a-WC(0001) surface for binding and hydroconversion of acetylene. Surface Science, 728, Article 122197 https://dx.doi.org/10.1016/j.susc.2022.122197
  81. Kunin, A. & White, M. (2023). Momentum-Resolved Exciton Coupling and Valley Polarization Dynamics in Monolayer WS2. Physical Review Letters, 130(4), Article 046202 https://dx.doi.org/10.1103/physrevlett.130.046202
  82. Jia, X.; Nedzbala, H. S.; Bottum, S. R.; Cahoon, J. F.; Concepcion, J. J.; Donley, C. L.; Gang, A.; Han, Q.; Hazari, N.; Kessinger, M. C.; Lockett, M. R.; Mayer, J. M.; Mercado, B. Q.; Meyer, G. J.; Pearce, A. J.; Rooney, C. L.; Sampaio, R. N.; Shang, B.; Wang, H. (2023). Synthesis and Surface Attachment of Molecular Re(I) Complexes Supported by Functionalized Bipyridyl Ligands. Inorganic Chemistry, 62(5), 2359-2375 https://dx.doi.org/10.1021/acs.inorgchem.2c04137
  83. Marcos, F. C. F.; Alvim, R. S.; Lin, L.; Betancourt, L. E.; Petrolini, D. D.; Senanayake, S. D.; Alves, R. M. B.; Assaf, J. M.; Rodriguez, J. A.; Giudici, R.; Assaf, E. M. (2023). The role of copper crystallization and segregation toward enhanced methanol synthesis via CO2 hydrogenation over CuZrO2 catalysts: A combined experimental and computational study. Chemical Engineering Journal, 452, Article 139159 https://dx.doi.org/10.1016/j.cej.2022.139519
  84. Biswas, A. N.; Winter, L. R.; Xie, Z.; Chen, J. G. (2023). Utilizing CO2 as a Reactant for C3 Oxygenate Production via Tandem Reactions. Journal of the American Chemical Society Au, 3(2), 293-305 https://dx.doi.org/10.1021/jacsau.2c00533
  85. Gong, Q.; Zhang, H.; Yu, H.; Jeon, S.; Ren, Y.; Yang, Z.; Sun, C.-J.; Stach, E. A.; Foucher, A. C.; Yu, Y.; Smart, M.; Filippelli, G. M.; Cullen, D. A.; Liu, P.; Xie, J. (2023). Amino-tethering synthesis strategy toward highly accessible sub-3-nm L10-PtM catalysts for high-power fuel cells. Matter, 6(3), 963-982 https://dx.doi.org/10.1016/j.matt.2022.12.011
  86. Yang, C. & Hu, E. (2023). All-temperature zinc batteries with high-entropy aqueous electrolyte. Nature Sustainability https://dx.doi.org/10.1038/s41893-022-01028-x
  87. Le, T. & Liu, P. (2023). Tuning Discharge Behavior of Hollandite α-MnO2 in Hydrated Zinc Ion Battery by Transition Metal Substitution. The Journal of Physical Chemistry C, 127(2), 907-918 https://dx.doi.org/10.1021/acs.jpcc.2c06851
  88. Liang, W.; Wang, X.; Yang, W.; Zhao, S.; Wiley, D.; Haynes, B. S.; Jiang, Y.; Liu, P.; Huang, J. (2023). Tailoring and Identifying Brønsted Acid Sites on Metal Oxo-Clusters of Metal-Organic Frameworks for Catalytic Transformation. ACS Central Science, 9(1), 27-35 https://dx.doi.org/10.1021/acscentsci.2c01140

2022

  1. Wang, Y. & Hu, E. (2022). Tuning discharge voltage by Schottky electron barrier in P2-Na2/3Mg0.205Ni0.1Fe0.05Mn0.645O2. Energy Storage Materials, 55, 587-596 https://dx.doi.org/10.1016/j.ensm.2022.12.027
  2. Wu, D. & Zhu, Y. (2022). Simultaneous Elucidation of Solid and Solution Manganese Environments via Multiphase Operando Extended X-ray Absorption Fine Structure Spectroscopy in Aqueous Zn/MnO2 Batteries. Journal Of the American Chemical Society, 144, 23405-23420 https://dx.doi.org/10.1021/jacs.2c09477
  3. Xu, J. & Hu, E. (2022). Lithium Halides Cathodes for Li Metal Batteries. Joule https://dx.doi.org/10.1016/j.joule.2022.11.002
  4. Liao, M. & Hu, E. (2022). Unravelling the convoluted and dynamic interphasial mechanisms on Li metal anodes. Nature Nanotechnology https://dx.doi.org/10.1038/s41565-022-01273-3
  5. Soto Perez, J. & Sasaki , K. (2022). Combined Rotating Disk Slurry Electrodeposition-Spontaneous Galvanic Displacement for Pt-M (M = Co, Ni, and Cu) Catalyst Synthesis for the Oxygen Reduction Reaction in Alkaline Media. Acs Applied Energy Materials, 5(12), 15175-15187 https://dx.doi.org/10.1021/acsaem.2c02843
  6. Yu, L. & Nykypanchuk, D. (2022). Evolution of micro-pores in Ni-Cr alloys via molten salt dealloying. Scientific Reports, 12(1), Article 20785 https://dx.doi.org/10.1038/s41598-022-20286-5
  7. Graciani, J. & Rodriguez, J. (2022). Conversion of CO2 to methanol and ethanol on Pt/CeOx/TiO2(110): Enabling role of water in C-C bond formation. ACS Catalysis, 12, 15097-15109 https://dx.doi.org/10.1021/acscatal.2c03823
  8. Beiler, A. & Ertem, M. (2022). Heterogeneous Electrochemical Ammonia Oxidation with a Ru-bda Oligomer Anchored on Graphitic Electrodes via CH−π Interactions. ACS Energy Letters, 8(1), 172-178 https://dx.doi.org/10.1021/acsenergylett.2c02483
  9. Zhu, W. & Hu, E. (2022). Ultra-fast non-equilibrium synthesis of cathode materials for Li-ion batteries. Advanced Materials https://dx.doi.org/10.1002/adma.202208974
  10. Shin, N. & Bird, M. (2022). Radicals as Exceptional Electron-Withdrawing Groups: Nucleophilic Aromatic Substitution of Halophenols Via Homolysis-Enabled Electronic Activation. Journal Of the American Chemical Society, 144(47), 21783-21790 https://dx.doi.org/10.1021/jacs.2c10296
  11. Asor, L. & Frenkel, A. (2022). Zn-Doped P-Type InAs Nanocrystal Quantum Dots. Advanced Materials https://dx.doi.org/10.1002/adma.202208332
  12. Guo, H. & Liu, P. (2022). Descriptor-based identification of bimetallic-derived catalysts for selective activation of ethane with CO2. EES Catalysis, 1(1), 17-25 https://dx.doi.org/10.1039/d2ey00051b
  13. Rodrigo, N. & Yang, X. (2022). Use of Ethylene Carbonate Free Ester Solvent Systems with Alternative Lithium Salts for Improved Low Temperature Performance in NCM622|| Graphite Li-ion Batteries. Journal of The Electrochemical Society https://dx.doi.org/10.1149/1945-7111/ac9d0a
  14. di Vacri, M. & Yeh, M. (2022). Identification of background limitations to ultra-sensitive LSC counting through ICP-MS assay of LSC cocktails. Journal Of Radioanalytical and Nuclear Chemistry https://dx.doi.org/10.1007/s10967-022-08591-9
  15. Xu, F. & Liu, P. (2022). Enhanced Oxide Reduction by Hydrogen at Cuprous Oxide-Copper Interfaces near Ascending Step Edges. Journal Of Physical Chemistry C, 126(44), 18645-18651 https://dx.doi.org/10.1021/acs.jpcc.2c03719
  16. Jiménez, J. & Senanayake, S. (2022). Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechano-chemical Synthesis of Pd-CeO2. Acs Catalysis, 12(20), 12809-12822 https://dx.doi.org/10.1021/acscatal.2c01120
  17. Shao, B. & Hu, E. (2022). Enabling Conversion-Type Iron Fluoride Cathode by Halide-Based Solid Electrolyte. Advanced Functional Materials https://dx.doi.org/10.1002/adfm.202206845
  18. Blasczak, V. & Grills, D. (2022). Steric and Lewis Basicity Influence of the Second Coordination Sphere on Electrocatalytic CO2 Reduction by Manganese Bipyridyl Complexes. Inorganic Chemistry, 61(40), 15784-15800 https://dx.doi.org/10.1021/acs.inorgchem.2c02586
  19. Kim, J. & Hu, E. (2022). High Current-Density-Charging Lithium Metal Batteries Enabled by Double-Layer Protected Lithium. Advanced Functional Materials https://dx.doi.org/10.1002/adfm.202207172
  20. Espinosa, M. & Ertem, M. (2022). Correlating Thermodynamic and Kinetic Hydricities of Rhenium Hydrides. Journal Of the American Chemical Society, 144(39), 17939-17954 https://dx.doi.org/10.1021/jacs.2c07192
  21. Wang, H. & Frenkel, A. (2022). Tuning the Placement of Pt "Single Atoms" on a Mixed CeO2-TiO2 Support. Journal Of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.2c05198
  22. Lueckheide, M. & Ertem, M. (2022). Peroxide-Selective Reduction of O-2 at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. Journal Of the American Chemical Society, 144(37), 17295-17306 https://dx.doi.org/10.1021/jacs.2c08140
  23. Yao, L. & Hu, E. (2022). High-Entropy and Superstructure-Stabilized Layered Oxide Cathodes for Sodium-Ion Batteries. Advanced Energy Materials https://dx.doi.org/10.1002/aenm.202201989
  24. Zou, P. & Yang, X. (2022). Localized hydrophobicity in aqueous zinc electrolytes improves zinc metal reversibility. Nano Letters https://dx.doi.org/10.1021/acs.nanolett.2c02514
  25. Huang, E. & Liu, P. (2022). Highly Selective Methane to Methanol Conversion on Inverse SnO2/ Cu2O/Cu(111) Catalysts: Unique Properties of SnO2 Nanostructures and the Inhibition of the Direct Oxidative Combustion of Methane. Acs Catalysis, 12(18) https://dx.doi.org/10.1021/acscatal.2c03060
  26. Rui, N. (2022). CO2 Hydrogenation to Methanol over Inverse ZrO2/Cu(111) Catalysts: The Fate of Methoxy under Dry and Wet Conditions. Journal of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.2c03723
  27. He, Y. & Hu, E. (2022). Dual Passivation of Cathode and Anode through Electrode-Electrolyte Interface Engineering Enables Long Lifespan Li Metal-SPAN Batteries. ACS Energy Letters, 7(9), 2866-2875 https://dx.doi.org/10.1021/acsenergylett.2c01093
  28. Weber, D. & Senanayake, S. (2022). Carbon Nanosphere-Encapsulated Fe Core-Shell Structures for Catalytic CO2 Hydrogenation. Acs Applied Nano Materials https://dx.doi.org/10.1021/acsanm.2c02602
  29. Rong, W. & Liao, M. (2022). Few-Atom Copper Catalyst for the Electrochemical Reduction of CO to Acetate: Synergetic Catalysis Between Neighboring Cu Atoms. Chinese Chemical Society https://dx.doi.org/10.31635/ccschem.022.202201910
  30. Li, C. & Sasaki , K. (2022). Nitrogen-doped PtNi Catalysts on PBI-functionalized Carbon Support for the Oxygen Reduction Reaction in PEMFC. ACS Applied Materials and Interfaces, 23, 26814-26823 https://dx.doi.org/10.1021/acsami.2c05717
  31. Allega, A. & Yeh, M. (2022). Improved search for invisible modes of nucleon decay in water with the SNO+ detector. Physical Review D, 105(11) https://dx.doi.org/10.1103/PhysRevD105.112012
  32. Chen, D. & Jiménez, J. (2022). Mechanistic Investigations of Gas-Phase Catalytic Hydrogenation in Metal-Organic Frameworks: Cooperative Activity of the Metal and Linker Sites in CuxRh3-x(BTC)(2). Journal Of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.2c02592
  33. Mao, Z. & Liu, P. (2022). Trends and descriptors of heterogeneous hydroformylation activity and selectivity of RhM3 (M = Fe, Co, Ni, Cu and Zn) catalysts. Catalysis Science & Technology, (16) https://dx.doi.org/10.1039/d2cy00821a
  34. Lustemberg, P. & Senanayake, S. (2022). Tuning Selectivity in the Direct Conversion of Methane to Methanol: Bimetallic Synergistic Effects on the Cleavage of C−H and O−H Bonds over NiCu/CeO2 Catalysts. Journal of Physical Chemistry Letters, 13(24), 5589 https://dx.doi.org/10.1021/acs.jpclett.2c00885
  35. Chepovetsky, A. & Senanayake, S. (2022). Lithium-Ion Battery Materials as Tunable, Redox Non-Innocent 2 Catalyst Supports. ACS Catalysts, 32 https://dx.doi.org/10.1021/acscatal.2c00935
  36. Nan, B. & Yang, X. (2022). Enhancing Li+ Transport in NMC811||Graphite Lithium-Ion Batteries at Low temperatures by Using Low-Polarity-Solvent Electrolytes. Angewandte Chemie International Edition https://dx.doi.org/10.1002/anie.202205967
  37. Iwamatsu, K. (2022). Radiation-induced reaction kinetics of Zn2+ with e(S)(-) and Cl-2(-) in Molten LiCl-KCl eutectic at 400-600 degrees C. Physical Chemistry Chemical Physics, 24(41), 25088-25098 https://dx.doi.org/10.1039/d2cp01194h
  38. Maroney, M. & Cabelli, D. (2022). Pro5 is not essential for the formation of 'Ni-Hook' in Nickel Superoxide Dismutase. Journal of Inorganic Biochemistry https://www.osti.gov/biblio/1873169
  39. Lin, R. & Yang, X. (2022). Characterization of the structure and chemistry of the solid-electrolyte interface by cryoEM leads to high-performance solid-state Li-metal batteries. Nature Technology https://dx.doi.org/10.1038/s41565-022-01148-7
  40. Qin, K. & Hu, E. (2022). Synergy of carbonyl and azo chemistries for wide-temperature range rechargeable aluminum organic batteries. Nano Energy https://dx.doi.org/10.1016/j.nanoen.2022.107554
  41. Xie, Z. (2022). Catalytic Tandem CO2-Ethane Reactions and Hydroformylation for C3 Oxygenate Production. Acs Catalysis, 12(14) https://dx.doi.org/10.1021/acscatal.2c01700
  42. McGuire, S. & Sasaki , K. (2022). Yttrium-based Double Perovskite Nanorods for Electrocatalysis. Acs Applied Materials & Interfaces https://dx.doi.org/10.1021/acsami.2c07377
  43. Liu, Y. & Frenkel, A. (2022). Z-Contrast Enhancement in Au-Pt Nanocatalysts by Correlative X-ray Absorption Spectroscopy and Electron Microscopy implications for Composition Determination. ACS Applied nano Materials, 42 https://dx.doi.org/10.1021/acsanm.2c00393
  44. Jimenez-Orozco, C. & Rodriguez, J. (2022). Effect of Nanostructuring on the interaction of CO2 with molybdenum carbide nanoparticles. Physical Chemistry Chemical Physics, 43 https://dx.doi.org/10.1039/d2cp01143c
  45. Denny, S. & Chen, J. (2022). Machine Learning prediction and experimental verification of Pt-modified nitride catalysts for ethanol reforming with reduced precious metal loading. Applied Catalysis B-Environmental, 312 https://dx.doi.org/10.1016/j.apcatb.2022.12138
  46. Ramos-Ballesteros, A. & Wishart, J. (2022). Radiation-Induced Long-Lived Transients and Metal Particle Formation in Solid KCl-MgCl2 Mixtures. The Journal of Physical Chemistry C, 126(23), 9820-9830 https://dx.doi.org/10.1021/acs.jpcc.2c01725
  47. Horne, G. & Cook, A. (2022). Transient Radiation-Induced Berkelium(III) and Californium(III) Redox Chemistry in Aqueous Solution. Inorganic Chemistry https://www.osti.gov/biblio/1874890
  48. Pan, Y. & Sasaki , K. (2022). A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer. Applied Catalysis B-Environmental, 306, Article 121071 https://dx.doi.org/10.1016/j.apcatb.2022.12107
  49. Zhang, H. & Sasaki , K. (2022). Surface Regulating of a Double-perovskite Electrode for Protonic Ceramic Fuel Cells to Enhance Oxygen Reduction Activity and Contaminants Poisoning Tolerance. Advanced Energy Matter, (5) https://dx.doi.org/10.1002/aenm.2022007561
  50. Bitters, J. & Senanayake, S. (2022). Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane. Journal of Energy Chemistry, 68(124) https://dx.doi.org/10.1016/j.jechem.2021.11.041
  51. Liao, M. (2022). Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8V. Nature Energy https://dx.doi.org/10.1038/s41560-022-01020-x
  52. Hu, E. (2022). An electrolyte additive allows stable high-voltage cycling of a nickel-rich layered cathode. Nature Energy https://dx.doi.org/10.1038/s41560-022-01021w
  53. Millet, A. & Bird, M. (2022). Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing. Accounts of Chemical Research, 55(10), 1423-1434 https://dx.doi.org/10.1021/acs.accounts.2c00083
  54. Song, L. & Sasaki , K. (2022). One-Step Facile Synthesis of High Activity Nitrogen-Doped PtNiN Oxygen Reduction Catalyst. Acs Applied Energy Materials, 5(4), 5245-5255 https://dx.doi.org/10.1021/acsaem.2c00631
  55. Pei, K. & Sasaki , K. (2022). Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nature Communications, 13(1), Article 2207 https://dx.doi.org/10.1038/s41467-022-29866-5
  56. Zhao, X. & Sasaki , K. (2022). Advanced Pt-based Core-Shell Electrocatalysts for Fuel Cell Cathodes. American Chemical Society https://dx.doi.org/10.1021/acs.accounts.2c00057
  57. Liu, P. (2022). enhanced descriptor identification and mechanism understanding for catalytic activity using a data driven framework: revealing the importance of interactions between elementary steps. Catalysis Science and Technology https://dx.doi.org/10.1039/D2CYO0284A
  58. Cheng, C. & Sasaki , K. (2022). Modulation of coordination environment enhances electrocatalytic efficiency of Mo single atoms toward water splitting. Journals of Materials Chemistry A, 10(16) https://dx.doi.org/10.1039/D2Ta01750d
  59. Kordis, G. & Ertem, M. (2022). Reorganization Energy of Electron Transfer in Ionic Liquids. Journal of Physical Chemistry Letters, 13(14), 3297-3303 https://dx.doi.org/10.1021/acs.jpclett.2c00733
  60. Grills, D. (2022). Coupling Pulse Radiolysis with Nanosecond Time-Resolved Step-Scan FT-IR Spectroscopy: Broadband Mid-Infrared Detection of Radiolytically-Generated Transients. Applied Spectroscopy, 76(9) https://dx.doi.org/10.1177/00037028221097429
  61. Zou, H. & Hu, E. (2022). Low-Valence Metal Single Atoms on Graphdiyne Promotes Electrochemical Nitrogen Reduction via M-to-N2 π-Backdonation. Advanced Functional Materials https://dx.doi.org/10.1002/adfm.202200333
  62. Xie, Z. & Chen, J. (2022). General Descriptors for CO2-Assisted Selective C-H/C-C Bond Scission in Ethane. Journal Of the American Chemical Society, 144(9), 4186-4195 https://dx.doi.org/10.1021/jacs.1c13415
  63. Zhang, B. & Frenkel, A. (2022). Molecular Design of Supported MoOx Catalysts with Surface TaOx Promotion for Olefin Metathesis. ACS Catalysis, 12(5), 3226-3237 https://dx.doi.org/10.1021/acscatal.1c06000
  64. Kang, J. & Rodriguez, J. (2022). Understanding the Surface Structure and Catalytic Activity of SnOx/Au(111) Inverse Catalysts for CO2 and H2 Activation. Journal of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.2c00138
  65. Xie, Z. (2022). Coupling CO2 reduction with ethane aromatization for enhancing catalytic stability of iron-modified ZSM-5. Journal Of Energy Chemistry, 66, 210-217 https://dx.doi.org/10.1016/j.jechem.2021.08.005
  66. Fujita, E. (2022). Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO2 Reduction Using Mn, Re, and Ru Catalysts. Accounts of Chemical research, 55(5) https://dx.doi.org/10.1021/acs.accounts.1c00616
  67. Zhang, Y. & Hu, E. (2022). Mechanistic Insights into the Interplay between Ion Interaction and Water Electrolysis. American Chemical Society Applied Materials and Interfaces, 14(10), 12130-12139 https://dx.doi.org/10.1021/acsami.1c19684
  68. Liao, M. & Yang, X. (2022). Isoxazole-based Electrolytes for Lithium Metal Protection and Lithium-Sulfurized Polyacrylonitrile (SPAN) Battery Operating at Low Temperature. Journal of The Electrochemical Society https://dx.doi.org/10.1149/1945-7111/ac58c5/ac11a6
  69. Biswas, A. & Xie, Z. (2022). Can CO2-assisted alkane dehydrogenation lead to negative CO2 emissions?. Joule, 6(2), 269-273 https://dx.doi.org/10.1016/j.joule.2021.12.008
  70. Marcella, N. & Frenkel, A. (2022). Decoding reactive structures in dilute alloy catalysts. Nature Communications, 13(1), Article 832 https://dx.doi.org/10.1038/s41467-022-28366-w
  71. Fu , J. & Frenkel, A. (2022). Modulating the dynamics of Bronsted acid sites on PtWOx inverse catalyst. Nature Catalysis https://dx.doi.org/10.1038/s41929-022-00745-y
  72. Cosby, M. & Khalifah, P. (2022). Operando Synchrotron Studies of Inhomogeneity during Anode-Free Plating of Li Metal in Pouch Cell Batteries. Journal Of the Electrochemical Society, 169(2), Article 20571 https://dx.doi.org/10.1149/1945-7111/ac5345
  73. Kaptanoglu, T. & Yeh, M. (2022). Cherenkov and scintillation separation in water-based liquid scintillator using an LAPPD (TM). European Physical Journal C, 82(2), Article 169 https://dx.doi.org/10.1140/epjc/s10052-022-10087-5
  74. Xiang, S. & Frenkel, A. (2022). Solving the structure of single-atom catalysts using machine learning - assisted XANES analysis. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/d1cp05513e
  75. Bawane, K. & Wishart, J. (2022). Visualizing Time-Dependent Microstructural and Chemical Evolution during Molten Salt Corrosion of Ni-20Cr Model Alloy using Correlative Quasi In Situ TEM and In Situ Synchrotron X-ray Nanotomography. Corrosion Science, 195, Article 109962 https://dx.doi.org/10.1016/j.corsci.2021.109962
  76. Polyansky, D. (2022). Role of Bimetallic Interactions in the Enhancement of Catalytic CO2 Reduction by a Macrocyclic Cobalt Catalyst. ACS Catalysis, 12(38), 1706-1717 https://dx.doi.org/10.1021/acscatal.1c05043
  77. Gonzalez-Lopez, L. & Wishart, J. (2022). On the mechanism of the steady-state gamma radiolysis-induced scissions of the phenyl-vinyl polyester-based resins. Frontiers in Chemistry, 9, Article 803347 https://dx.doi.org/10.3389/fchem.2021.803347
  78. Chen, X. & Hu, E. (2022). Dynamically preferred state with strong electronic fluctuations from electrochemical synthesis of sodium manganate. Matter https://dx.doi.org/10.1016/j.matt.2021.12.012
  79. Peterson, E. & Senanayake, S. (2022). Infrared reflection absorption spectroscopy and temperature-programmed desorption studies of CO adsorption on Ni/CeO2(111) thin films: The role of the ceria support. Journal Of Vacuum Science & Technology A, 40(1), Article 13209 https://dx.doi.org/10.1116/6.0001409

2021

  1. Rui, N. & Rodriguez, J. (2021). CO2 Hydrogenation on ZrO2/Cu(111) Surfaces: Production of Methane and Methanol. Industrial and Engineering Chemistry Research https://dx.doi.org/10.1021/acs.iecr.1c03229
  2. Foucher, A. & Frenkel, A. (2021). Structural and Valence State Modification of Cobalt in CoPt Nanocatalysts in Redox Conditions. Acs Nano, 15(12), 20619-20632 https://dx.doi.org/10.1021/acsnano.1c09450
  3. Grills, D. (2021). Solvated Electron in Acetonitrile: Radiation Yield, Absorption Spectrum, and Equilibrium Between Cavity- and Solvent-Localized States. The Journal of Physical Chemistry B https://dx.doi.org/10.1021/acs.jpcb.1c08946
  4. Gil-Gonzalez, E. & Hu, E. (2021). Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries. Energy Storage Materials, 45, 484-493 https://dx.doi.org/10.1016/j.ensm.2021.12.008
  5. Mao, Z. (2021). Comparison of Heterogeneous Hydroformylation of Ethylene and Propylene over RhCo3/MCM-41 Catalysts. Acs Catalysis, 11(23), 14575-14585 https://dx.doi.org/10.1021/acscatal.1c04359
  6. Mao, Z. & Chen, J. (2021). Comparison of Heterogeneous Hydroformylation of Ethylene and Propylene over RhCo3/MCM-41 Catalysts. Acs Catalysis, 11(23), 14595-14585 https://dx.doi.org/10.1021/acscatal.1c04359
  7. Biswas, A. & Chen, J. (2021). Oxygenate Production from Plasma-Activated Reaction of CO2 and Ethane. Acs Energy Letters https://dx.doi.org/10.1021/acsenergylett.1c02355
  8. Thanh, L. & Liu, P. (2021). Discharging Behavior of Hollandite alpha-MnO2 in a Hydrated Zinc-Ion Battery. Acs Applied Materials & Interfaces https://dx.doi.org/10.1021/acsami.1c18849
  9. Reina, T. & Rodriguez, J. (2021). Au and Pt Remain Unoxidized on a CeO2-Based Catalyst during the Water-Gas Shift Reaction. Journal Of the American Chemical Society https://dx.doi.org/10.1021/jacs.1c10481
  10. Shadike, Z. & Yang, X. (2021). Engineering and characterization of interphases for lithium metal anodes. Chemical Science https://dx.doi.org/10.1039/d1sc06181j
  11. Pei, K. & Sasaki , K. (2021). An improved oxygen reduction reaction activity and CO2-tolerance of La0.6Sr0.4Co0.2Fe0.8O3-delta achieved by a surface modification with barium cobaltite coatings. Journal Of Power Sources, 514, Article 230573 https://dx.doi.org/10.1016/j.jpowsour.2021.230573
  12. Lin, L. & Rodriguez, J. (2021). Reversing sintering effect of Ni particles on gamma-Mo2N via strong metal support interaction. Nature Communications, 12(1), Article 6978 https://dx.doi.org/10.1038/s41467-021-27116-8
  13. Qian, Y. & Yang, X. (2021). A new cyclic carbonate enables high power/ low temperature lithium-ion batteries. Energy Storage Materials, 45, 14-23 https://dx.doi.org/10.1016/j.ensm.2021.11.029
  14. Wang, J. & White, M. (2021). Surface Structure of Mass-selected Niobium Oxide Nanoclusters on Au(111). Nanotechnology, 32(47), Article 475601 https://dx.doi.org/10.1088/1361-6528/ac1cc0
  15. Cao, M. & Yang, X. (2021). Oxygen redox chemistry in P2-Na0.6Li0.11Fe0.27Mn0.62O2 cathode for high-energy Na-ion batteries. Journal of Materials Chemistry A https://dx.doi.org/10.1039/d1ta08471b
  16. Liu, Y. & Frenkel, A. (2021). Probing Active Sites in CuxPdy Cluster Catalysts by Machine-Learning-Assisted X-ray Absorption Spectroscopy. Acs Applied Materials & Interfaces, 13(45), 53363-53374 https://dx.doi.org/10.1021/acsami.1c06714
  17. Sampaio, R. (2021). Proton-Coupled Group Transfer Enables Concerted Protonation Pathways Relevant to Small-Molecule Activation. Inorganic Chemistry, 60(12), 16953-16965 https://dx.doi.org/10.1021/acs.inorgchem.1c01609
  18. Wang, H. & Frenkel, A. (2021). Aliovalent Doping of CeO2 Improves the Stability of Atomically Dispersed Pt. Acs Applied Materials & Interfaces, 13(44), 52736-52742 https://dx.doi.org/10.1021/acsami.1c18330
  19. Cook, A. (2021). Sub-Picosecond Production of Solute Radical Cations in THF after Radiolysis. The Journal of Physical Chemistry A https://dx.doi.org/10.1021/acs.jpca.1c08568
  20. Aydogan, A. & Sampaio, R. (2021). Mechanistic Investigation of a Visible Light Mediated Dehalogenation/Cyclisation Reaction using Iron(III), Iridium(III) and Ruthenium(II) Photosensitizers. Catalysis Science & Technology https://dx.doi.org/10.1039/D1CY01771C
  21. Huang, E. & Rodriguez, J. (2021). Selective Methane Oxidation to Methanol on ZnO/Cu2O/Cu(111) Catalysts: Multiple Site-dependent Behaviors. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.1c08063
  22. Zhang, H. & Sasaki , K. (2021). An Efficient and Durable Anode for Ammonia Protonic Ceramic Fuel Cells. Energy & Environmental Science https://dx.doi.org/10.1039/d1ee02158c
  23. Celis Barros, C. & Cook, A. (2021). Influence of Uranyl Complexation on the Reaction Kinetics of the Dodecane Radical Cation with Used Nuclear Fuel Extraction Ligands (TBP, DEHBA, and DEHiBA). Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/D1CP03797H
  24. Ajimura, S. & Yeh, M. (2021). The JSNS(2) detector. Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 1014, Article 165742 https://dx.doi.org/10.1016/j.nima.2021.165742
  25. Wei, H. & Frenkel, A. (2021). Single-nanometer iron oxide nanoparticles as tissue permeable MRI contrast agents. Proceedings Of the National Academy Of Sciences Of the United States Of America, 118(42), Article e2102340118 https://dx.doi.org/10.1073/pnas.2102340118
  26. Liu, J. & Hu, E. (2021). Anionic Redox Induced Anomalous Structural Transition in Ni-rich Cathodes. Energy & Environmental Science https://dx.doi.org/10.1039/D1EE02987H
  27. Xia, H. & Hu, E. (2021). A new carbon-incorporated lithium phosphate solid electrolyte. Journal of Power Sources https://dx.doi.org/10.1016/j.jpowsour.2021.230603
  28. Salvatore, K. & Rodriguez, J. (2021). Microwave-Assisted Synthesis of Cu@IrO2 Core-Shell Nanowires for Low-Temperature Methane Conversion. ACS Applied Nano Materials https://dx.doi.org/10.1021/acsanm.1c02620
  29. Wang, F. & Hu, E. (2021). Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries. Advanced Energy Materials https://dx.doi.org/10.1002/aenm.202102016
  30. Huang, C. & Sasaki , K. (2021). Twinning Enhances Efficiencies of Metallic Catalysts toward Electrolytic Water Splitting. Advanced Energy Materials, Article 2101827 https://dx.doi.org/10.1002/aenm.202101827
  31. Liu, L. & Senanayake, S. (2021). Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst. Journal Of Energy Chemistry, 61, 602-611 https://dx.doi.org/10.1016/j.jechem.2021.02.021
  32. Aydogan, A. & Sampaio, R. (2021). Accessing Photoredox Transformations with an Iron(III) Photosensitizer and Green Light. Journal Of the American Chemical Society, 143(38), 15661-15673 https://dx.doi.org/10.1021/jacs.1c06081
  33. Sousa, S. & Ertem, M. (2021). Mechanistic investigation of the aerobic oxidation of 2-pyridylacetate coordinated to a Ru(II) polypyridyl complex. Dalton Transactions, (42), 15248-15259 https://dx.doi.org/10.1039/d1dt02461b
  34. Olagunju, M. & Frenkel, A. (2021). Atomically Resolved Characterization of Optically Driven Ligand Reconfiguration on Nanoparticle Catalyst Surfaces. Acs Applied Materials & Interfaces, 13(37), 44302-44311 https://dx.doi.org/10.1021/acsami.1c11256
  35. Roy, S., Liu, Y., Topsakal, M., Dias, E. T., Gakhar, R., Phillips, W., Wishart, J. F., Leshchev, D., Halstenberg, P., Dai, S., Gill, S. K., Frenkel, A. I., & Bryantsev, V. S. (2021). A Holistic Approach for Elucidating Local Structure, Dynamics, and Speciation in Molten Salts with High Structural Disorder. Journal of the American Chemical Society, 143(37), 15298-15308 https://dx.doi.org/10.1021/jacs.1c06742
  36. Wang, D. & Chen, J. (2021). Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. Chem, 7(9), 2277-2311 https://dx.doi.org/10.1016/j.chempr.2021.02.024
  37. Wang, Y. & Khalifah, P. (2021). Sample environment effects on synchrotron-measured temperature profiles in an approximant of optical floating zone crystal growth. Journal of Crystal Growth https://www.osti.gov/biblio/1818927
  38. Todd, P. & Khalifah, P. (2021). Selectivity in yttrium manganese oxide synthesis via local chemical potentials in hyperdimensional phase space. Journal of the American Chemical Society https://www.osti.gov/biblio/1818916
  39. Munoz-Garcia, A. & Concepcion, J. (2021). Dye-sensitized solar cells strike back. Chemical Society Reviews https://dx.doi.org/10.1039/d0cs01336f
  40. Wang, X. & Liu, P. (2021). Cesium-Induced Active Sites for C-C Coupling and Ethanol Synthesis from CO2 Hydrogenation on Cu/ZnO(000(1)over-bar) Surfaces. Journal Of the American Chemical Society, 143(33), 13103-13112 https://dx.doi.org/10.1021/jacs.1c03940
  41. Curley, J. & Ertem, M. (2021). Understanding the Reactivity and Decomposition of a Highly Active Iron Pincer Catalyst for Hydrogenation and Dehydrogenation Reactions. Acs Catalysis, 11(16), 10631-10646 https://dx.doi.org/10.1021/acscatal.1c03347
  42. Yan, J. & Grills, D. (2021). IR Linewidth and Intensity Amplifications of Nitrile Vibrations Report Nuclear-Electronic Couplings and Associated Structural Heterogeneity in Radical Anions. Chemical Science https://www.osti.gov/biblio/1813956
  43. Li, X. & Yang, X. (2021). Stabilizing transition metal vacancy induced oxygen redox by Co2+ /Co3+ redox and sodium-site doping for layered cathode materials. Angewandte Chemie International Edition https://dx.doi.org/10.1002/anie.202108933
  44. Kang, J. & Rodriguez, J. (2021). Surface Characterization and Methane activation on SnOx/Cu2O/Cu(111) Inverse Oxide/Metal Catalysts. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/d1cp02829d
  45. Koverga, A. & Rodriguez, J. (2021). Spot the difference: hydrogen adsorption and dissociation on unsupported platinum and platinum-coated transition metal carbides. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/d1cp02974f
  46. Lutz, D. & Zhu, Y. (2021). Local and Bulk Probe of Vanadium-Substituted alpha-Manganese Oxide (alpha-KxVyMn8-yO16) Lithium Electrochemistry. Inorganic Chemistry, 60(14), 10398-10414 https://dx.doi.org/10.1021/acs.inorgchem.1c00954
  47. Figueras, M. & Rodriguez, J. (2021). Supported Molybdenum Carbide Nanoparticles as Excellent Catalyst for CO2 Hydrogenation. ACS Catalysis, 11, 9779-9787 https://dx.doi.org/10.1021/acscatal.1c01738
  48. Koverga, A. & Rodriguez, J. (2021). Pushing Cu uphill of the volcano curve: Impact of a WC support on the catalytic activity of copper toward the hydrogen evolution reaction. International Journal Of Hydrogen Energy, 46(49), 25092-25102 https://dx.doi.org/10.1016/j.ijhydene.2021.05.055
  49. Horne, G. & Cook, A. (2021). Curium(III) Radiation‐Induced Reaction Kinetics in Aqueous Media. Dalton Transactions https://dx.doi.org/10.1039/D1DT01268A
  50. Soto-Perez, J. & Sasaki , K. (2021). In Situ X-ray Absorption Spectroscopy of PtNi-Nanowire/Vulcan XC-72R under Oxygen Reduction Reaction in Alkaline Media. Acs Omega, 6(27), 17203-17216 https://dx.doi.org/10.1021/acsomega.1c00792
  51. Wu, Z. & Bak, S. (2021). Understanding the Roles of the Electrode/Electrolyte Interface for Enabling Stable Li∥Sulfurized Polyacrylonitrile Batteries. ACS Applied Materials & Interfaces https://dx.doi.org/10.1021/acsami.1c07903
  52. Cao, L. & Hu, E. (2021). Highly reversible aqueous Zn batteries enabled by zincophilic-zincophobic interfacial layer and interrupted hydrogen bond electrolyte. Angewandte Chemie International Edition, Article 126857 https://dx.doi.org/10.1002/anie.202107378
  53. Marcos, F. & Rodriguez, J. (2021). Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and Kinetics. Chemical Engineering Journal, 427, Article 130947 https://dx.doi.org/10.1016/j.cej.2021.130947
  54. Zhou, Y. & Sasaki , K. (2021). An Efficient Bifunctional Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. Advanced Functional Materials, Article 2105386 https://dx.doi.org/10.1002/adfm.202105386
  55. Rodrigo, N. & Yang, X. (2021). Improved Low Temperature Performance of Graphite/Li Cells Using Isoxazole as a Novel Cosolvent in Electrolytes. Journal of The Electrochemical Society, 168(7), Article 70527 https://dx.doi.org/10.1149/1945-7111/ac11a6
  56. Strasser, J. & Frenkel, A. (2021). Electrochemical Cleaning Stability and Oxygen Reduction Reaction Activity of 1-2 nm Dendrimer-Encapsulated Au Nanoparticles. Chemelectrochem, 8(13), 2545-2555 https://dx.doi.org/10.1002/celc.202100549
  57. Vargo, N. & Ertem, M. (2021). Calcium-Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angewandte Chemie-International Edition https://dx.doi.org/10.1002/anie.202105421
  58. Salcedo, A. & Rodriguez, J. (2021). Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO2 Catalyst: Active Sites and Role of Metal-Support Interactions. ACS Catalysis https://dx.doi.org/10.1021/acscatal.1c01604
  59. Till, N. & Bird, M. (2021). The Application of Pulse Radiolysis to the Study of Ni(I) Intermediates in Ni-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.1c04652
  60. Huang, G. & Khalifah, P. (2021). Automated extraction of physical parameters from experimentally obtained thermal profiles using a machine learning approach. Computational Materials Science, 194, Article 110459 https://dx.doi.org/10.1016/j.commatsci.2021.110459
  61. Liu, X. & Wishart, J. (2021). Formation of three-dimensional bicontinuous structures via molten salt dealloying studied in real-time by in situ synchrotron X-ray nano-tomography. Nature Communications, 12(1), Article 3441 https://dx.doi.org/10.1038/s41467-021-23598-8
  62. Lin, W. & Sasaki , K. (2021). A Cu2O-derived Polymeric Carbon Nitride Heterostructured Catalyst for the Electrochemical Reduction of Carbon Dioxide to Ethylene. Chemsuschem https://dx.doi.org/10.1002/cssc.202100659
  63. Li, Z. & Jiménez, J. (2021). Planar defect-driven electrocatalysis of CO2-to-C2H4 conversion. Journal Of Materials Chemistry A https://dx.doi.org/10.1039/d1ta02565a
  64. Huang, P. & Frenkel, A. (2021). Effect of Carbon Doping on CO2-Reduction Activity of Single Cobalt Sites in Graphitic Carbon Nitride. Chemnanomat https://dx.doi.org/10.1002/cnma.202100164
  65. Rotundo, L. & Fujita, E. (2021). Photochemical CO2 reduction using Re(I) tricarbonyl complexes with bipyridyl-type ligands with and without 2nd coordination sphere effects. ChemPhotoChem https://dx.doi.org/10.1002/cptc.202000307
  66. Park, J. & Yeh, M. (2021). Slow control and monitoring system at the JSNS(2). Progress Of Theoretical and Experimental Physics, 2021(6), Article 063C01 https://www.osti.gov/biblio/1823634
  67. Lozano-Reis, P. & Rodriguez, J. (2021). Assessing the activity of Ni clusters supported on TiC(001) towards CO2 and H2 dissociation. Journal of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.1c03219
  68. Shi, D. & Yang, X. (2021). Reversible dual anionic-redox chemistry in NaCrSSe with fast charging capability. Journal of Power Sources https://dx.doi.org/10.1016/j.jpowsour.2021.230022
  69. Liao, M. (2021). Novel Low-Temperature Electrolyte Using Isoxazole as the Main Solvent for Lithium-Ion Batteries. ACS Applied Materials & Interfaces https://dx.doi.org/10.1021/acsami.1c05894
  70. DiMarco, B. & Fujita, E. (2021). Structural and Electronic Influences on Rates of Tertpyridine- Amine CoIIIH Formation During Catalytic H2 Evolution in an Aqueous Environment. ChemPhysChem https://dx.doi.org/10.1002/cphc.202100295
  71. Cao, L. & Hu, E. (2021). Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nature Nanotechnology https://dx.doi.org/10.1038/s41565-021-00905-4
  72. Nijamudheen, A. & Ertem, M. (2021). Distinct Mechanisms and Hydricities of Cp*Ir-Based CO2 Hydrogenation Catalysts in Basic Water. Acs Catalysis, 11(9), 5776-5788 https://dx.doi.org/10.1021/acscatal.0c04772
  73. Lee, E. & Sasaki , K. (2021). High Pressure Nitrogen-Infused Ultrastable Fuel Cell Catalyst for Oxygen Reduction Reaction. Acs Catalysis, 11(9), 5525-5531 https://dx.doi.org/10.1021/acscatal.1c00395
  74. Han, L. & Adzic, R. (2021). Modification of the coordination environment of active sites on MoC for high-efficiency CH4 production. Advanced Energy Materials, Article 2100044 https://dx.doi.org/10.1002/aenm.202100044
  75. Anderson, M. & Yeh, M. (2021). Development, characterisation, and deployment of the SNO plus liquid scintillator. Journal Of Instrumentation, 16(5), Article P05009 https://dx.doi.org/10.1088/1748-0221/16/05/P05009
  76. Wright, C. & Dooryhee, E. (2021). Toward In Situ Synchrotron Mapping of Crystal Selection Processes during Crystal Growth. Chemistry Of Materials, 33(9), 3359-3367 https://dx.doi.org/10.1021/acs.chemmater.1c00602
  77. Lin, R. (2021). Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials. Nature Communications https://dx.doi.org/10.1038/s41467-02
  78. Hoque, M. & Ertem, M. (2021). Synthesis, Characterization, and Water Oxidation Activity of Isomeric Ru Complexes. Inorganic Chemistry, 60(8), 5791-5803 https://dx.doi.org/10.1021/acs.inorgchem.1c00112
  79. Grinter, D. & Rodriguez, J. (2021). Adsorption and Activation of CO2 on Pt/CeOx/TiO2(110): Role of the Pt-CeOx Interface. Surface Science https://dx.doi.org/10.1016/j.susc.2021.121852
  80. Mattei, G. & Khalifah, P. (2021). High-Energy Lateral Mapping (HELM) Studies of Inhomogeneity and Failure Mechanisms in NMC622/Li Pouch Cells. Chemistry Of Materials, 33(7), 2378-2386 https://dx.doi.org/10.1021/acs.chemmater.0c04537
  81. Lawrence, R. & Frenkel, A. (2021). Remote controlled optical manipulation of bimetallic nanoparticle catalysts using peptides. Catalysis Science & Technology, 11(7), 2386-2395 https://dx.doi.org/10.1039/d1cy00189b
  82. Yang, Y. & Ertem, M. (2021). An amide-based second coordination sphere promotes the dimer pathway of Mn-catalyzed CO2-to-CO reduction at low overpotential. Chemical Science, 12(13), 4779-4788 https://dx.doi.org/10.1039/d0sc05679k
  83. Ramos-Ballesteros, A. & Wishart, J. (2021). Gamma radiation-induced defects in KCl, MgCl2, and ZnCl2 salts at room temperature. Physical Chemistry Chemical Physics, 23(17), 10384-10394 https://dx.doi.org/10.1039/d1cp00520k
  84. Coaty, C. & Khalifah, P. (2021). Anisotropic nanoporous morphology of ZnO-supported Co that enhances catalytic activity. Nanoscale, 13, 8242-8253 https://dx.doi.org/10.1039/d0nr08998b
  85. Orozco, I. & Rodriguez, J. (2021). Understanding Methanol Synthesis on Inverse ZnO/CuOx/Cu Catalysts: Stability of CH3O Species and Dynamic Nature of the Surface. Journal Of Physical Chemistry C, 125(12), 6673-6683 https://dx.doi.org/10.1021/acs.jpcc.1c00392
  86. Badiei, Y. & Concepcion, J. (2021). Plasma-Initiated Graft Polymerization of Acrylic Acid onto Fluorine-Doped Tin Oxide as a Platform for Immobilization of Water-Oxidation Catalysts. Acs Applied Materials & Interfaces, 13(12), 14077-14090 https://dx.doi.org/10.1021/acsami.0c19730
  87. Tu, C. & Chen, J. (2021). Insight into Acetic Acid Synthesis from the Reaction of CH4 and CO2. Acs Catalysis, 11(6), 3384-3401 https://dx.doi.org/10.1021/acscatal.0c05492
  88. Tu, C. & Chen, J. (2021). Insight into Acetic Acid Synthesis from the Reaction of CH4 and CO2. Acs Catalysis, 11(6), 3384-3401 https://dx.doi.org/10.1021/acscatal.0c05492
  89. Takasugi, S. & Fujita, E. (2021). H2O2 production on carbon cathode loaded with nickel carbonate catalyst and on oxide photoanode without external bias. RSC Advances, (19), 11224-11232 https://dx.doi.org/10.1039/D1RA01045J
  90. Nganga, J. & Ertem, M. (2021). Methane Generation from CO2 with a Molecular Rhenium Catalyst. Inorganic Chemistry, 60(6), 3572-3584 https://dx.doi.org/10.1021/acs.inorgchem.0c02579
  91. Land, B. & Yeh, M. (2021). MeV-scale performance of water-based and pure liquid scintillator detectors. Physical Review D, 103(5), Article 52004 https://dx.doi.org/10.1103/PhysRevD.103.052004
  92. Collins-Wildman, D. & Frenkel, A. (2021). A solvent-free solid catalyst for the selective and color-indicating ambient-air removal of sulfur mustard. Communications Chemistry, 4(1), Article 33 https://dx.doi.org/10.1038/s42004-021-00465-7
  93. Lin, R. (2021). TEMImageNet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images. Scientific Reports, 11(1), Article 5386 https://dx.doi.org/10.1038/s41598-021-84499-w
  94. Routh, P. & Frenkel, A. (2021). Latent Representation Learning for Structural Characterization of Catalysts. Journal Of Physical Chemistry Letters, 12(8), 2086-2094 https://dx.doi.org/10.1021/acs.jpclett.0c03792
  95. Liu, H. & Ertem, M. (2021). Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary beta-Hydride Elimination and Hydrogen Formation Steps. Inorganic Chemistry, 60(5), 3410-3417 https://dx.doi.org/10.1021/acs.inorgchem.0c03815
  96. Xie, Z. (2021). Simultaneously upgrading CO2 and light alkanes into value-added products. Aiche Journal, Article e17249 https://dx.doi.org/10.1002/aic.17249
  97. Gokhale, S. & Yeh, M. (2021). A spectrometric approach to measuring the Rayleigh scattering length for liquid scintillator detectors. Journal Of Instrumentation, 16(3), Article P03009 https://dx.doi.org/10.1088/1748-0221/16/03/P03009
  98. Bawane, K., Manganaris, P., Wang, Y., Sure, J., Ronne, A., Halstenberg, P., Dai, S., Gill, S. K., Sasaki, K., Chen-Wiegart, Y. K., Gakhar, R., Mahurin, S. M., Pimblott, S. M., Wishart, J. F., & He, L. (2021). Determining oxidation states of transition metals in molten salt corrosion using electron energy loss spectroscopy. Scripta Materialia, 197, Article 113790 https://dx.doi.org/10.1016/j.scriptamat.2021.113790
  99. Li, X. & Shadike, Z. (2021). Whole-Voltage-Range Oxygen Redox in P2-Layered Cathode Materials for Sodium-Ion Batteries. Advanced Materials https://dx.doi.org/10.1002/adma.202008194
  100. Wang, Q. & Shadike, Z. (2021). Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance. Advanced Energy Materials https://dx.doi.org/10.1002/aenm.202003455
  101. Jimenez-Orozco, C. & Rodriguez, J. (2021). Size and Stoichiometry Effects on the Reactivity of MoCy Nanoparticles Towards Ethylene. Journal of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.0c10689
  102. Cai, Z. & Hu, E. (2021). A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm-2 and 20 mAh cm-2. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.0c11753
  103. Shi, D. & Shadike, Z. (2021). Anionic Redox Reaction Triggered by trivalent Al3+ in P3-Na0. 65Mn0. 5Al0. 5O2. Chemical Communications https://dx.doi.org/10.1039/D1CC00373A
  104. Winter, L. & Chen, J. (2021). N-2 Fixation by Plasma-Activated Processes. Joule, 5(2), 300-315 https://dx.doi.org/10.1016/j.joule.2020.11.009
  105. Li, Y. & Frenkel, A. (2021). Dynamic Structure of Active Sites in Ceria-Supported Pt Catalysts for the Water Gas Shift Reaction. Nature Communications, 12(1), Article 914 https://dx.doi.org/10.1038/s41467-021-21132-4
  106. Hu, E. (2021). Oxygen-redox reactions in LiCoO2 cathode without O-O bonding during charge-discharge. Joule https://dx.doi.org/10.1016/j.joule.2021.01.006
  107. Xie, Z. (2021). Bimetallic-Derived Catalysts and Their Application in Simultaneous Upgrading of CO2 and Ethane. Matter, 4(2), 408-440 https://dx.doi.org/10.1016/j.matt.2020.11.013
  108. Cui, J. & Hwang, S. (2021). Origin of Anomalous High-Rate Na-Ion Electrochemistry in Layered Bismuth Telluride Anodes. Matter https://dx.doi.org/10.1016/j.matt.2021.01.005
  109. Guo, Z. & Yeh, M. (2021). Muon flux measurement at China Jinping Underground Laboratory. Chinese Physics C, 45(2), Article 25001 https://dx.doi.org/10.1088/1674-1137/abccae
  110. Shadike, Z. (2021). Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nature Nanotechnology https://dx.doi.org/10.1038/s41565-020-00845-5
  111. Zhou, J. & Senanayake, S. (2021). Growth, sintering, and chemical states of Co supported on reducible CeO2(111) thin films: The effects of the metal coverage and the nature of the support. Journal Of Chemical Physics, 154(4), Article 44704 https://dx.doi.org/10.1063/5.0036952
  112. Zhang, F. & Rodriguez, J. (2021). Metal-support Interactions and C1 Chemistry: Transforming Pt-CeO2 into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane. ACS Catalysis, 11, 1613-1623 https://dx.doi.org/10.1021/acscatal.0c04694ACS
  113. Xiao, B. & Liao, M. (2021). Vacancy‐Enabled O3 Phase Stabilization for Manganese‐rich Layered Sodium Cathodes. Angewandte Chemie International Edition https://dx.doi.org/10.1002/anie.202016334
  114. Zhang, H. & Liu, P. (2021). Rationalization of promoted reverse water gas shift reaction by Pt3Ni alloy: Essential contribution from ensemble effect. Journal Of Chemical Physics, 154(1), Article 14702 https://dx.doi.org/10.1063/5.0037886
  115. Hu, J. & Hu, E. (2021). Fundamental Linkage Between Structure, Electrochemical Properties, and Chemical Compositions of LiNi1-x-yMnxCoyO2 Cathode Materials. ACS Applied Materials & Interfaces https://dx.doi.org/10.1021/acsami.0c18942
  116. Hart, J. & Frenkel, A. (2021). Multimodal Spectroscopic Study of Surface Termination Evolution in Cr2TiC2Tx MXene. Advanced Materials Interfaces, Article 2001789 https://dx.doi.org/10.1002/admi.202001789
  117. Bell, C. & Sasaki , K. (2021). Substoichiometric Tuning of the Electronic Properties of Titania. Thin Solid Films, 717, Article 138437 https://dx.doi.org/10.1016/j.tsf.2020.138437

2020

  1. Liu, X. & Hu, E. (2020). Prelithiated Li-Enriched Gradient Interphase toward Practical High-Energy NMC-Silicon Full Cell. ACS Energy Letters https://dx.doi.org/10.1021/acsenergylett.0c02487
  2. Ebrahim, A. & Frenkel, A. (2020). Capture and Decomposition of the Nerve Agent Simulant, DMCP, Using Zeolitic Imidazolate Framework (ZIF-8). Acs Applied Materials & Interfaces, 12(52), 58326-58338 https://dx.doi.org/10.1021/acsami.0c12985
  3. Orozco, I. & Rodriguez, J. (2020). In-Situ Studies of Methanol Decomposition Over Cu(111) and Cu2O/Cu(111): Effects of Reactant Pressure, Surface Morphology and Hot Spots of Active Sites. Journal of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.0c09572
  4. Bi, Y. & Hu, E. (2020). Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science, 370 https://dx.doi.org/10.1126/science.abc3167
  5. Zhang, J. & Hu, E. (2020). Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide. Nature Communications https://dx.doi.org/10.1038/s41467-020-20198-w
  6. Shin, K. & Bak, S. (2020). Biomimetic Composite Architecture Achieves Ultrahigh Rate Capability and Cycling Life of Sodium Ion Battery Cathodes. Applied Physics Reviews, 7 https://dx.doi.org/10.1063/5.0020805
  7. Cao, L. & Hu, E. (2020). Solvation Structure Design for Aqueous Zn Metal Batteries. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.0c09794
  8. Toigawa, T. & Cook, A. (2020). Radiation-Induced Effects on the Extraction Properties of Hexa-n-octylnitrilo-triacetamide (HONTA) Complexes of Americium and Europium. Physical Chemistry Chemical Physics https://www.osti.gov/biblio/1737419
  9. Souza, B. & Sampaio, R. (2020). Spectroscopic characterization of a new Re(I) tricarbonyl complex with a thiosemicarbazone derivative: towards sensing and electrocatalytic applications. Dalton Transactions, 49(45), 16368-16379 https://dx.doi.org/10.1039/d0dt01078b
  10. Koverga, A. & Rodriguez, J. (2020). Not all platinum surfaces are the same: effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction. Electrochimica Acta https://dx.doi.org/10.1016/j.electacta.2020.137598T
  11. Gross, E. & Hall, G. (2020). The 1.66 μm Spectrum of the Ethynyl Radical, CCH. Journal of Molecular Spectroscopy https://www.osti.gov/biblio/1732147
  12. Guo, Y. & Rodriguez, J. (2020). Modulation of the Effective Metal-Support Interactions for the Selectivity of Ceria Supported Noble Metal Nanoclusters in Atmospheric CO2 Hydrogenation. Chemcatchem https://dx.doi.org/10.1002/cctc.202001531
  13. Hans, S. & Yeh, M. (2020). Light Yield Quenching and Quenching Remediation in Liquid Scintillator Detectors. Journal Of Instrumentation, 15(12), Article P12020 https://dx.doi.org/10.1088/1748-0221/15/12/P12020
  14. Horne, G. & Cook, A. (2020). Does addition of 1-octanol as a phase modifier provide radical scavenging radioprotection for N,N,N ',N '-tetraoctyldiglycolamide (TODGA)?. Physical Chemistry Chemical Physics, 22(43), 24978-24985 https://dx.doi.org/10.1039/d0cp04310a
  15. Chang, Q. & Chen, J. (2020). Boosting Activity and Selectivity of CO2 Electroreduction by Pre-Hydridizing Pd Nanocubes. Small, Article 2005305 https://dx.doi.org/10.1002/smll.202005305
  16. Lukatskaya, M. & Yang, X. (2020). Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal-Organic Frameworks in Aqueous Electrolytes. Acs Nano https://dx.doi.org/10.1021/acsnano.0c07292
  17. Yang, S. & Shadike, Z. (2020). High-rate cathode CrSSe based on anion reactions for lithium ion battery. Journal of Materials Chemistry A https://dx.doi.org/10.1039/D0TA08012H
  18. Shaheen, N. & Vukmirovic, M. (2020). Mechanism of Electrochemical Oxidation of Nitroxide Radicals in Ethaline Deep Eutectic Solvent. Journal of the Electrochemical Society, 167(14) https://dx.doi.org/10.1149/1945-7111/abc439
  19. Ren, X. & Shadike, Z. (2020). Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO2 Batteries. Advanced Materials https://dx.doi.org/10.1002/adma.202004898
  20. Gao, N. & Khalifah, P. (2020). Fast Diagnosis of Failure Mechanisms and Lifetime Prediction of Li Metal Batteries. Small Methods, Article 2000807 https://dx.doi.org/10.1002/smtd.202000807
  21. Wu, C. & Rodriguez, J. (2020). Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nature Communications, 11, Article 5767 https://dx.doi.org/10.1038/s41467-020-19634-8
  22. Wang, P. & Yang, X. (2020). Elucidation of the Jahn-Teller Effect in a Pair of Sodium Isomer. Nano Energy, 77 https://dx.doi.org/10.1016/j.nanoen.2020.105167
  23. Hemraj-Benny, T. & Wishart, J. (2020). Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. ECS Transactions, 98(10), 73-87 https://dx.doi.org/10.1149/09810.0073ecst
  24. Roy, S., Wu, F., Wang, H., Ivanov, A. S., Sharma, S., Halstenberg, P., Gill, S. K., Abeykoon, A. M. M., Kwon, G., Topsakal, M., Layne, B., Sasaki, K., Zhang, Y., Mahurin, S. M., Dai, S., Margulis, C. J., Maginn, E. J., & Bryantsev, V. S. (2020). Structure and dynamics of the molten alkali-chloride salts from an X-ray, simulation, and rate theory perspective. Physical Chemistry Chemical Physics, 22(40), 22900-22917 https://dx.doi.org/10.1039/d0cp03672b
  25. Mattei, G. & Khalifah, P. (2020). Enumeration as a Tool for Structure Solution: A Materials Genomic Approach to Solving the Cation-Ordered Structure of Na3V2(PO4)(2)F-3. Chemistry Of Materials, 32(20), 8981-8992 https://dx.doi.org/10.1021/acs.chemmater.0c03190
  26. Shadike, Z. (2020). Review on Organosulfur Materials for Rechargeable Lithium Batteries. Materials Horizons https://dx.doi.org/10.1039/d0mh01364a
  27. Lustemberg, P. & Rodriguez, J. (2020). Breaking Simple Scaling Relations Through Metal-Oxide Interactions: Understanding Room Temperature Activation of Methane on M-CeO2 (M= Pt, Ni or Co) Interfaces. Journal of Physical Chemistry Letters https://dx.doi.org/10.1021/acs.jpclett.0c02109
  28. Xie, Z. (2020). Interfacial Active Sites for CO2 Assisted Selective Cleavage of C-C/C-H Bonds in Ethane. Chem, 6(10), 2703-2716 https://dx.doi.org/10.1016/j.chempr.2020.07.011
  29. Ma, Y. & White, M. (2020). Reactivity of a Zirconia-Copper Inverse Catalyst for CO2 Hydrogenation. The Journal of Physical Chemistry https://www.osti.gov/biblio/1670666
  30. Carrillo, P. & White, M. (2020). In Situ Structural Study of Manganese and Iron Oxide Promoted Rhodium Catalysts for Oxygenate Synthesis. Applied Catalysis A https://www.osti.gov/biblio/1670667
  31. Rui, N. & Rodriguez, J. (2020). Hydrogenation of CO2 to Methanol on a Au delta+-In2O3-x Catalyst. Acs Catalysis, 10(19), 11307-11317 https://dx.doi.org/10.1021/acscatal.0c02120
  32. Metavarayuth, K. & Senanayake, S. (2020). Direct Identification of Mixed-Metal Centers in Metal-Organic Frameworks: Cu-3(BTC)(2) Transmetalated with Rh2+ Ions. Journal Of Physical Chemistry Letters, 11(19), 8138-8144 https://dx.doi.org/10.1021/acs.jpclett.0c02539
  33. Timoshenko, J. & Frenkel, A. (2020). Silver clusters shape determination from in-situ XANES data. Pergamon-Elsevier Science Ltd, 175, Article 108049 https://dx.doi.org/10.1016/j.radphyschem.2018.11.003
  34. Marcos, F. & Rodriguez, J. (2020). Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio. Journal of CO2 Utilization, 40 https://www.osti.gov/biblio/1637476
  35. Takedo, N. & Miller, J. (2020). The Inverted Region in Bimolecular Electron Transfer in Solution Enabled by Delocalization. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.0c04780
  36. Aharmim, B. & Yeh, M. (2020). Search for hep solar neutrinos and the diffuse supernova neutrino background using all three phases of the Sudbury Neutrino Observatory. Physical Review D, 102(6), Article 62006 https://dx.doi.org/10.1103/PhysRevD.102.062006
  37. Yang, J. & Bak, S. (2020). Structural Stabilization of P2-type Sodium Iron Manganese Oxides by Electrochemically Inactive Mg-substitution: Insights of Redox Behavior and Voltage Decay. ChemSusChem https://dx.doi.org/10.1002/cssc.202001963
  38. Hu, J. & Hu, E. (2020). Mesoscale-architecture-based crack evolution dictating cycling stability of advanced lithium ion batteries. Nano Energy, 79 https://dx.doi.org/10.1016/j.nanoen.2020.105420
  39. Figueras, M. & Rodriguez, J. (2020). Supported Molybdenum Carbide Nanoparticles as Hot Hydrogen Reservoirs for Catalytic Applications. Journal of Physical Chemistry Letters, 11, 8437-8441 https://dx.doi.org/10.1021/acs.jpclett.0c02608
  40. Zhao, X. & Sasaki , K. (2020). High-Performance Nitrogen-Doped Intermetallic PtNi Catalyst for the Oxygen Reduction Reaction. Acs Catalysis, 10(18), 10637-10645 https://dx.doi.org/10.1021/acscatal.0c03036
  41. Han, L. & Rui, N. (2020). Modulating Single-Atom Palladium Sites with Copper for Enhanced Ambient Ammonia Electrosynthesis. Angewandte Chemie-International Edition https://dx.doi.org/10.1002/anie.202010159
  42. Marcella, N. & Frenkel, A. (2020). Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy. Physical Chemistry Chemical Physics, 22(34), 18902-18910 https://dx.doi.org/10.1039/d0cp02098b
  43. Lozano-Reis, P. & Rodriguez, J. (2020). Structural, Electronic and Magnetic Properties of Ni Nanoparticles Supported on the TiC(001) Surface. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/d0cp04884d
  44. Han, J. & Bak, S. (2020). New High-Performance Pb-Based Nanocomposite Anode Enabled by Wide-Range Pb Redox and Zintl Phase Transition. Advanced Functional Materials https://dx.doi.org/10.1002/adfm.202005362
  45. Ke, W. & Rodriguez, J. (2020). Nucleation and Initial Stages of Growth during the Atomic Layer Deposition of Titanium Oxide on Mesoporous Silica. Nano Letters, 20(9), 6884-6890 https://dx.doi.org/10.1021/acs.nanolett.0c02990
  46. Vovchok, D. (2020). Deciphering Dynamic Structural and Mechanistic Complexity in Cu/CeO2/ZSM-5 Catalysts for the Reverse Water-Gas Shift Reaction. Acs Catalysis, 10(17), 10216-10228 https://dx.doi.org/10.1021/acscatal.0c01584
  47. Shi, L. & Shadike, Z. (2020). Reaction Heterogeneity in Practical High-Energy Lithium-Sulfur Pouch Cells. Advanced Functional Materials https://dx.doi.org/10.1039/D0EE02088E
  48. Steinruck, H. & Wishart, J. (2020). Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. Angewandte Chemie-International Edition https://dx.doi.org/10.1002/anie.202007745
  49. Caravaca, J. & Yeh, M. (2020). Characterization of water-based liquid scintillator for Cherenkov and scintillation separation. European Physical Journal C, 80(9), Article 867 https://dx.doi.org/10.1140/epjc/s10052-020-8418-4
  50. Zhou, Y. & Frenkel, A. (2020). Ethylene Dehydroaromatization over Ga-ZSM-5 Catalysts: Nature and Role of Gallium Speciation. Angewandte Chemie-International Edition https://dx.doi.org/10.1002/anie.202007147
  51. Dispenza, C. & Wishart, J. (2020). On the nature of macroradicals formed upon radiolysis of aqueous poly(N-vinylpyrrolidone) solutions. Radiation Physics and Chemistry, 174, Article 108900 https://dx.doi.org/10.1016/j.radphyschem.2020.108900
  52. Yang, L. & Shadike, Z. (2020). A Co- and Ni-free P2/O3 biphasic lithium stabilized layered oxide for sodium-ion batteries and its cycling behavior. Advanced Functional Materials https://dx.doi.org/10.1002/adfm.202003364
  53. Artrith, N. & Chen, J. (2020). Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning. Acs Catalysis, 10(16), 9438-9444 https://dx.doi.org/10.1021/acscatal.0c02089
  54. Rotundo, L. & Manbeck, G. (2020). Molecular Catalysts with Intramolecular Re-O Bond for Electrochemical Reduction of Carbon Dioxide. Inorganic Chemistry, 59(17), 12187-12199 https://dx.doi.org/10.1021/acs.inorgchem.0c01181
  55. Phillips, W. & Wishart, J. (2020). Design and performance of high-temperature furnace and cell holder for in-situ spectroscopic, electrochemical, and radiolytic investigations of molten salts. Review of Scientific Instruments, 91, Article 083105 https://dx.doi.org/10.1063/1.5140463
  56. Li, Z. & Khalifah, P. (2020). Synchrotron Operando Depth Profiling Studies of State-of-Charge Gradients in Thick Li(Ni0.8Mn0.1Co0.1)O-2 Cathode Films. Chemistry Of Materials, 32(15), 6358-6364 https://dx.doi.org/10.1021/acs.chemmater.0c00983
  57. Ye, L. & Hu, E. (2020). Toward Higher Voltage Solid-State Batteries by Metastability and Kinetic Stability Design. Advanced Energy Materials https://dx.doi.org/10.1002/aenm.202001569
  58. Bird, M. (2020). Pushing the limits of the electrochemical window with pulse radiolysis in chloroform. Physical Chemistry Chemical Physics, 22(26), 14660-14670 https://dx.doi.org/10.1039/d0cp01948h
  59. Salvatore, K. & Rodriguez, J. (2020). Optimized Microwave-based Synthesis of Thermally-Stable Inverse Catalytic Core-Shell Motifs for CO2 Hydrogenation. ACS Applied Materials & Interfaces https://dx.doi.org/10.1021/acsami.0c06430
  60. Senanayake, S. (2020). Low Temperature Activation of Methane on Metal-Oxides and Complex Interfaces: Insights from Surface Science. Accounts of Chemical Research, 53 https://dx.doi.org/10.1021/acs.accounts.0c00194
  61. Anderson, M. & Yeh, M. (2020). Measurement of neutron-proton capture in the SNO plus water phase. Physical Review C, 102(1), Article 14002 https://dx.doi.org/10.1103/PhysRevC.102.014002
  62. Akerib, D. & Yeh, M. (2020). Projected sensitivity of the LUX-ZEPLIN experiment to the 0 nu beta beta decay of Xe-136. Physical Review C, 102(1), Article 14602 https://dx.doi.org/10.1103/PhysRevC.102.014602
  63. Deng, K. & Rodriguez, J. (2020). Studies of CO2 Hydrogenation over Cobalt/Ceria Catalysts with in situ Characterization: The Effect of Cobalt Loading and Metal-Support Interactions on the Catalytic Activity. Catalysis Science & Technology https://dx.doi.org/10.1039/d0cy00962h
  64. Park, J. & Yeh, M. (2020). Performance of PMTs for the JSNS(2) experiment. Journal Of Instrumentation, 15(7), Article T07003 https://dx.doi.org/10.1088/1748-0221/15/07/T07003
  65. Koverga, A. & Rodriguez, J. (2020). Promoting effect of tungsten carbide on the catalytic activity of Cu for CO(2)reduction. Physical Chemistry Chemical Physics, 22(24), 13666-13679 https://dx.doi.org/10.1039/d0cp00358a
  66. Luo, C. & Hu, E. (2020). A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America https://dx.doi.org/10.1073/pnas.2006301117
  67. Song, Y. & Bak, S. (2020). Tailoring Solution-Processable Li Argyrodites Li6+xP1-xMxS5I (M = Ge, Sn) and Their Microstructural Evolution Revealed by Cryo-TEM for All-Solid-State Batteries. Nano Letters, 20(6), 4337-4345 https://dx.doi.org/10.1021/acs.nanolett.0c01028
  68. Jin, T. & Yang, X. (2020). Realizing Complete Solid-Solution Reaction in High Sodium Content P2-Type Cathode for High-Performance Sodium-Ion Batteries. Angewandte Chemie-International Edition https://dx.doi.org/10.1002/ange.202003972
  69. Jiminez-Orozco, C. & Rodriguez, J. (2020). Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by delta-MoC(001): An Ab Initio Thermodynamic and Kinetic Study. Acs Catalysis, 10(11), 6213-6222 https://dx.doi.org/10.1021/acscatal.0c00144
  70. Manbeck, G. (2020). Comprehensive Mechanisms of Electrocatalytic CO2 Reduction by [Ir(bip)(ppy)(CH3CN)](PF6)(2). Acs Catalysis, 10(11), 6497-6509 https://dx.doi.org/10.1021/acscatal.9b04371
  71. Vukmirovic, M. (2020). Copper Electrodeposition from Deep Eutectic Solvents - Voltammetric Studies Providing Insights into the Role of Substrate: Platinum vs. Glassy Carbon. The Journal of Physical Chemistry https://dx.doi.org/10.1021/acs.jpcb.0c02735
  72. Sasaki , K. (2020). Designing high performance Pt monolayer core-shell electrocatalysts for fuel cells. Current Opinion In Electrochemistry, 368-375 https://dx.doi.org/10.1016/j.coelec.2020.03.020
  73. Aubry, T. & Bird, M. (2020). Tunable Dopants with Intrinsic Counterion Separation Reveal the Effects of Electron Affinity on Dopant Intercalation and Free Carrier Production in Sequentially Doped Conjugated Polymer Films. Advanced Functional Materials, Article 2001800 https://dx.doi.org/10.1002/adfm.202001800
  74. Bird, M. (2020). General Method for Determining Redox Potentials Without Electrolyte. The Journal of Physical Chemistry A https://dx.doi.org/10.1021/acs.jpca.0c02948
  75. Chen, R. & Rodriguez, J. (2020). Template-free fabrication of fractal porous Y2O3 monolithic foam and its functional modification by Ni-doping. Science China Materials https://dx.doi.org/10.1007/s40843-020-1317-1
  76. Wang, X. (2020). The Role of Electron Localization in Covalency and Electrochemical Properties of Lithium-Ion Battery Cathode Materials. Advanced Functional Materials https://dx.doi.org/10.1002/adfm.202001633
  77. Ertem, M. (2020). Oxygen Atom Transfer as an Alternative Pathway for Oxygen- Oxygen Bond Formation. Inorganic Chemistry, 59(9), 5966-5974 https://dx.doi.org/10.1021/acs.inorgchem.9b03751
  78. Chang, Q. & Chen, J. (2020). Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nature Communications, 11(1), Article 2178 https://dx.doi.org/10.1038/s41467-020-15843-3
  79. Shi, R. & Rodriguez, J. (2020). Preparation and Structural Characterization of ZrO2/CuOx/Cu(111) Inverse Model Catalysts. Journal of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.0c00852
  80. Liu, Z. & Rodriguez, J. (2020). Water-promoted interfacial pathways in methane oxidation to methanol on a CeOx-Cu2O catalyst. Science, 368, 513-516 https://dx.doi.org/10.1126/science.aba5005
  81. Song, J. & Hu, E. (2020). Controlling Surface Phase Transition and Chemical Reactivity of O3-Layered Metal Oxide Cathodes for High-Performance Na-Ion Batteries. Journal of the American Chemical Society, 5(6), 1718-1725 https://dx.doi.org/10.1021/acsenergylett.0c00700
  82. Liang, Z. & Adzic, R. (2020). Platinum and Palladium Monolayer Electrocatalysts for Formic Acid Oxidation. Topics In Catalysis https://dx.doi.org/10.1007/s11244-020-01264-5
  83. Cui, C. & Hu, E. (2020). Structure and Interface Design Enable Stable Li-Rich Cathode. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.0c02302
  84. Xie, Z. (2020). Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nature Communications, 11, Article 1887 https://dx.doi.org/10.1038/s41467-020-15849-x
  85. Luneau, M. & Frenkel, A. (2020). Enhancing catalytic performance of dilute metal alloy nanomaterials. Communications Chemistry, 3(1) https://dx.doi.org/10.1038/s42004-020-0293-2
  86. Kang, L. & Frenkel, A. (2020). Photo-thermo Catalytic Oxidation over a TiO2-WO3-Supported Platinum Catalyst. Angewandte Chemie-International Edition https://dx.doi.org/10.1002/anie.202001701
  87. Song, L. (2020). Enhancing Oxygen Reduction Performance of Pt Monolayer Catalysts by Pd(111) Nanosheets on WNi Substrate. Acs Catalysis, 10(7), 4290-4298 https://dx.doi.org/10.1021/acscatal.0c00040
  88. Ebrahim, A. & Frenkel, A. (2020). Multimodal Characterization of Materials and Decontamination Processes for Chemical Warfare Protection. Acs Applied Materials & Interfaces, 12(13), 14721-14738 https://dx.doi.org/10.1021/acsami.9b19494
  89. Grissom, T. & Frenkel, A. (2020). Metal-Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents. Acs Applied Materials & Interfaces, 12(13), 14641-14661 https://dx.doi.org/10.1021/acsami.9b20833
  90. Betancourt, L. (2020). Enhancing ORR Performance of Bimetallic PdAg Electrocatalysts by Designing Interactions between Pd and Ag. Acs Applied Energy Materials, 3(3), 2342-2349 https://dx.doi.org/10.1021/acsaem.9b01920
  91. Figueras, M. & Rodriguez, J. (2020). Boosting the activity of transition metal carbides towards methane activation by nanostructuring. Physical Chemistry Chemical Physics , 22 https://dx.doi.org/10.1039/D0CP00228C
  92. Niu, X. & Chen, J. (2020). CO2-Assisted propane aromatization over phosphorus-modified Ga/ZSM-5 catalysts. Catalysis Science & Technology, 10(6), 1881-1888 https://dx.doi.org/10.1039/c9cy02589h
  93. Tang, C. & Xie, Z. (2020). Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. Angewandte Chemie International https://dx.doi.org/10.1002/anie.202003842
  94. Liao, W. & Liu, P. (2020). Methanol Synthesis from CO2 Hydrogenation over a Potassium-Promoted CuxO/Cu(111) (x≤2) Model Surface: Rationalizing the Potential of Potassium in Catalysis. ACS Catalysis https://dx.doi.org/10.1021/acscatal.9b05226
  95. Li, Z. & Yang, X. (2020). Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy, 72 https://dx.doi.org/10.1016/j.nanoen.2020.104655
  96. Mani, T. & Grills, D. (2020). Vibrational Spectroscopy Reveals Effects of Electron Push-Pull and Solvent Polarity on Electron Delocalization in Radical Anions of Donor−Acceptor Compounds. The Journal of Physical Chemistry B https://dx.doi.org/10.1021/acs.jpcb.9b11747
  97. Yue, X. & Yang, X. (2020). Petaloid-shaped ZnO coated Carbon Felt as a Controllable Host to Construct Hierarchical Li Composite Anode. Nano Energy https://www.osti.gov/biblio/1601346
  98. Rui, N. (2020). Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Applied Catalysis B-Environmental, 282, Article 119581 https://dx.doi.org/10.1016/j.apcatb.2020.119581
  99. Danielis, M. & Rodriguez, J. (2020). Methane Oxidation Activity and Nanoscale Characterization of Pd/CeO2 Catalysts Prepared by Dry Milling Pd Acetate and Ceria. Applied Catalysis B-Environmental, 282, Article 119567 https://dx.doi.org/10.1016/j.apcatb.2020.119567
  100. Wang, Y. & Xie, Z. (2020). Strong Evidence of the Role of H2O in Affecting Methanol Selectivity from CO2 Hydrogenation over Cu-ZnO-ZrO2. Chem, 6(2), 419-430 https://dx.doi.org/10.1016/j.chempr.2019.10.023
  101. Llobet, A. & Ertem, M. (2020). Second Coordination Sphere Effects in an Evolved Ru Complex Based on a Highly Adaptable Ligand Results in Rapid Water Oxidation Catalysis. Journal of the American Chemical Society, 142(11), 5068-5077 https://dx.doi.org/10.1021/jacs.9b11935
  102. Kang, J. & Rodriguez, J. (2020). Growth and structural studies of In/Au(111) alloys and InOx/Au(111) inverse oxide/metal model catalysts. Journal of Chemical Physics, 152(5), Article 54702 https://dx.doi.org/10.1063/1.5139237
  103. Hamlyn, R. & Senanayake, S. (2020). Structure and Chemical State of Cesium on Well-Defined Cu(111) and Cu2O/Cu(111) Surfaces. Journal Of Physical Chemistry C, 124(5), 3107-3121 https://dx.doi.org/10.1021/acs.jpcc.9b10608
  104. Kanega, R. & Fujita, E. (2020). CO2 Hydrogenation and Formic Acid Dehydrogenation using Ir Catalysts with Amide-Based Ligands. Organometallics https://dx.doi.org/10.1021/acs.organomet.9b00809
  105. Duchon, T. & Senanayake, S. (2020). Establishing Structure−Sensitivity of Ceria Reducibility: Real-Time Observations of Surface−Hydrogen Interactions. Journal of Materials Chemistry A https://dx.doi.org/10.1039/c9ta11784a
  106. Liu, H. & Khalifah, P. (2020). Best practices for operando depth-resolving battery experiments. Journal of Applied Crystallography, 53, 133-139 https://dx.doi.org/10.1107/S1600576719016315
  107. Liu, H. & Khalifah, P. (2020). Best Practices for Operando Depth-Resolved Battery Experiments. Journal Of Applied Crystallography, 53, 133-139 https://dx.doi.org/10.1107/S1600576719016315
  108. Wang, P. & Yang, X. (2020). Both Cationic and Anionic Redox Chemistry in a P2-Type Sodium Layered Oxide. Nano Energy https://dx.doi.org/10.1016/j.nanoen.2020.104474
  109. Gill, S. K., Huang, J., Mausz, J., Gakhar, R., Roy, S., Vila, F. D., Topsakal, M., Phillips, W., Layne, B., Mahurin, S. M., Halstenberg, P., Dai, S., Wishart, J. F., Bryantsev, V. S., & Frenkel, A. I. (2020). Connections between the speciation and solubility of Ni(II) and Co(II) in molten ZnCl2. Journal of Physical Chemistry B, 24(7), 1253-1258 https://dx.doi.org/10.1021/acs.jpcb.0c00195
  110. Hamlyn, R. & Rodriguez, J. (2020). Morphology and Chemical Behavior of Model CsOx/Cu2O/Cu(111) Nanocatalysts for Methanol Synthesis: Reaction with CO2 and H2. Journal of Chemical Physics, 152, 044701-1-044701-9 https://dx.doi.org/10.1063/1.5129152
  111. Ma, Z. & Wang, J. (2020). NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy https://www.osti.gov/biblio/1582567
  112. Schatzman, S. & Cabelli, D. (2020). Copper-only superoxide dismutase enzymes and iron starvation stress in Candida fungal pathogens. Journal Of Biological Chemistry, 295(2), 570-583 https://dx.doi.org/10.1074/jbc.RA119.011084
  113. Cook, A. (2020). Dynamic Broadening Alters Triplet Extinction Coefficients in Fluorene Oligomers and Polymers. Journal of Chemical Physics , 152(2), 024901 https://dx.doi.org/10.1063/1.5132798
  114. Zhang, F. & Senanayake, S. (2020). Effects of Zr Doping into Ceria for the Dry Reforming of Methane over Ni/CeZrO2 Catalysts: In Situ Studies with XRD, XAFS, and APXPS. ACS Catalysis, (10), 3274-3284 https://dx.doi.org/10.1021/acscatal.9b04451
  115. Wang, L. & Concepcion, J. (2020). High-Redox-Potential Chromophores for Visible-Light-Driven Water Oxidation at Low pH. Acs Catalysis, 10(1), 580-585 https://dx.doi.org/10.1021/acscatal.9b04034
  116. Wang, X. (2020). Pair distribution function analysis: Fundamentals and application to battery materials. Chinese Physics B, 29, 028802-1-028802-10 https://dx.doi.org/10.1088/1674-1056/ab6656
  117. Jiang, Q. & Hu, E. (2020). A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angewandte Chemie, International edition, 59, 1-6 https://dx.doi.org/10.1002/anie.201914395

2019

  1. Rodriguez, J. (2019). Activation of Gold on Metal Carbides: Novel Catalysts for C1 Chemistry. Frontiers in Chemical Research https://www.osti.gov/biblio/1579501
  2. Sampaio, R. (2019). Unexpected Roles of Triethanolamine in the Photochemical Reduction of CO2 to Formate by Ruthenium Complexes. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.9b11897
  3. Yin, L. & Khalifah, P. (2019). Thermodynamics of antisite defects in layered NMC cathodes: systematic insights from high-precision powder diffraction analyses. Chemistry of Materials https://dx.doi.org/10.1021/acs.chemmater.9b03646
  4. Wang, D. & Concepcion, J. (2019). Self-Assembled Chromophore-Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell. Journal Of Physical Chemistry C, 123(50), 30039-30045 https://dx.doi.org/10.1021/acs.jpcc.9b07125
  5. Aharmim, B. & Yeh, M. (2019). Cosmogenic neutron production at the Sudbury Neutrino Observatory. SNO Collaboration, 100(11), Article 112005 https://dx.doi.org/10.1103/PhysRevD.100.112005
  6. Alducin, M. & Camillone, N. (2019). Electrons and Phonons Cooperate in the Laser-Induced Desorption of CO from Pd(111). Physical Review Letters, 123(24), Article 246802 https://dx.doi.org/10.1103/PhysRevLett.123.246802
  7. Luo, L. & Hu, E. (2019). Synthesis and Properties of Stable Sub-2-nm-Thick Aluminum Nanosheets: Oxygen Passivation and Two-Photon Luminescence. Chem https://www.osti.gov/biblio/1579901
  8. Zhou, Z. & Liu, P. (2019). Interface-confined triangular FeOx nanoclusters on Pt(111). The Journal of Chemical Physics https://dx.doi.org/10.1063/1.5129266
  9. Marinkovic, N. & Adzic, R. (2019). Infrared spectroelectrochemical configurations for in situ measurements. Kretschmann configuration; Otto configuration; IRRAS, electric field; Fresnel equations, 84(11), 1235-1247 https://dx.doi.org/10.2298/JSC190828103M
  10. Zugic, B. & Frenkel, A. (2019). Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97. Journal Of Catalysis, 380, 366-374 https://dx.doi.org/10.1016/j.jcat.2019.08.041
  11. Cheng, B. & Yang, S. (2019). Photoionization studies of benzene-argon complexes with synchrotron VUV radiation. Aip Advances, 9(12) https://dx.doi.org/10.1063/1.5127120
  12. Shen, D. & Vukmirovic, M. (2019). Understanding the Role of Complexation in the Charge-Transfer Kinetics of the Cu2+ + e ↔ Cu1+ Redox Reaction in Ethaline Deep Eutectic Solvent. Journal of The Electrochemical Society https://www.osti.gov/biblio/1574915
  13. Rodriguez, J. (2019). Water-gas shift Reaction on K/Cu(111) and Cu/K/TiO2(110) Surfaces: Alkali Promotion of Water Dissociation and the Production of H2. ACS Catalysis https://www.osti.gov/biblio/1572352
  14. Gomez, E. & Chen, J. (2019). Tandem Reactions of CO2 Reduction and Ethane Aromatization. Journal Of the American Chemical Society, 141(44), 17771-17782 https://dx.doi.org/10.1021/jacs.9b08538
  15. Orozco, I. & Rodriguez, J. (2019). Hydroxylation of ZnO/Cu(111) inverse catalysts under ambient water vapor and the water-gas shift reaction. Journal of Physics D: Applied Physics, 52(45), Article 454001 https://dx.doi.org/10.1088/1361-6463/ab37da
  16. Guan, E. & Frenkel, A. (2019). New Role of Pd Hydride as a Sensor of Surface Pd Distributions in Pd-Au Catalysts. Chemcatchem https://dx.doi.org/10.1002/cctc.201901847
  17. Muraca, A. & White, M. (2019). Ultrafast dynamics of acetone photooxidation on TiO2(110). Journal of Chemical Physics Communications https://www.osti.gov/biblio/1572365
  18. Miller, J. (2019). The Impact of Huge Structural Changes on Electron Transfer and Measurement of Redox Potentials: Reduction of ortho-12-Carborane. Journal Of Physical Chemistry B https://www.osti.gov/biblio/1572367
  19. Ryerson, J. & Miller, J. (2019). Structure and Photophysics of Indigoids for Singlet Fission: Cibalackrot. Journal of Physical Chemistry https://www.osti.gov/biblio/1572370
  20. Liu, Y. & Frenkel, A. (2019). Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning. Journal Of Chemical Physics, 151(16), Article 164201 https://dx.doi.org/10.1063/1.5126597
  21. Qi, K. & Liu, P. (2019). Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nature Communications, 10, Article 5231 https://dx.doi.org/10.1038/s41467-019-12997-7
  22. Brady, A. & Liu, P. (2019). Transition Metal Substitution of Hollandite alpha-MnO2: Enhanced Potential and Structural Stability on Lithiation from First-Principles Calculation. Journal Of Physical Chemistry C, 123(41), 25042-25051 https://dx.doi.org/10.1021/acs.jpcc.9b05376
  23. Wang, D. & Concepcion, J. (2019). Self-Assembled Chromophore−Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell. The Journal of Physical Chemistry C, 123, 30039-30045 https://dx.doi.org/10.1021/acs.jpcc.9b07125
  24. Marinkovic, N. & Sasaki , K. (2019). Determination of Single- and Multi-Component Nanoparticle Sizes by X-ray Absorption Spectroscopy. Journal Of the Electrochemical Society, 165(15), J3222-J3230 https://dx.doi.org/10.1149/2.0281815jes
  25. Holroyd, R. & Miller, J. (2019). Rate vs Free Energy Change for Attaching Highly-Mobile Electrons to Molecules in Nonpolar Liquids. Journal Of Physical Chemistry B https://www.osti.gov/biblio/1572366
  26. Yan, B. & Chen, J. (2019). Effect of oxide support on catalytic performance of FeNi-based catalysts for CO2-assisted oxidative dehydrogenation of ethane. Chemcatchem https://dx.doi.org/10.1002/cctc.201901585
  27. Yao, S. & Rodriguez, J. (2019). Exploring Metal-Support Interactions To Immobilize Subnanometer Co Clusters on gamma-Mo2N: A Highly Selective and Stable Catalyst for CO2 Activation. Acs Catalysis, 9(10), 9087-9097 https://dx.doi.org/10.1021/acscatal.9b01945
  28. Guo, H. & Liu, P. (2019). Rationalization of Diversity in Spinel MgFe2O4 Surfaces. Advanced Materials Interfaces, Article 1901218 https://dx.doi.org/10.1002/admi.201901218
  29. Prats, H. & Rodriguez, J. (2019). Kinetic Monte Carlo simulations unveil synergic effects at work on bifunctional catalysts. ACS Catalysis https://www.osti.gov/biblio/1566288
  30. Wang, T. & Shadike, Z. (2019). Anionic redox reaction in layered NaCr2/3Ti1/3S2 through electron holes formation and dimerization of S-S. Nature Communications https://www.osti.gov/biblio/1569554
  31. McKinnon, M. & Ertem, M. (2019). An Investigation of Electrocatalytic CO2 Reduction Using a Manganese Tricarbonyl Biquinoline Complex. Frontiers In Chemistry, 7, Article 628 https://dx.doi.org/10.3389/fchem.2019.00628
  32. Shakya, D. & Senanayake, S. (2019). Selective Catalytic Chemistry at Rhodium(II) Nodes in Bimetallic Metal-Organic Frameworks. Angewandte Chemie-International Edition https://dx.doi.org/10.1002/anie.201908761
  33. Wang, G. & Yang, X. (2019). High Performance Lithium-ion and Lithium-Sulfur Batteries using Prelithiated Phosphorus/Carbon Composite Anode. Energy Storage Materials https://www.osti.gov/biblio/1562482
  34. Gomez, E. & Chen, J. (2019). Carbon dioxide reduction in tandem with light-alkane dehydrogenation. Nature Reviews Chemistry, 3(11), 638-649 https://dx.doi.org/10.1038/s41570-019-0128-9
  35. Deng, T. & Hu, E. (2019). Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries. Joule https://www.osti.gov/biblio/1566883
  36. Kottwitz, M. & Frenkel, A. (2019). Local Structure and Electronic State of Atomically Dispersed Pt Supported on Nanosized CeO2. Acs Catalysis, 9(9), 8738-8748 https://dx.doi.org/10.1021/acscatal.9b02083
  37. Li, K. & Chen, J. (2019). CO2 Hydrogenation to Methanol over ZrO2-Containing Catalysts: Insights into ZrO2 Induced Synergy. Acs Catalysis, 9(9), 7840-7861 https://dx.doi.org/10.1021/acscatal.9b01943
  38. Haselschwardt, S. & Yeh, M. (2019). A Liquid Scintillation Detector for Radioassay of Gadolinium-Loaded Liquid Scintillator for the LZ Outer Detector. Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 937, 148-163 https://dx.doi.org/10.1016/j.nima.2019.05.055
  39. Rossini, A. & Wishart, J. (2019). High-Field MAS Dynamic Nuclear Polarization Using Radical Defects Created by γ-Irradiation. Journal of Physical Chemistry Letters https://www.osti.gov/biblio/1550797
  40. Castner, Jr., E. & Wishart, J. (2019). Structural Analysis of Ionic Liquids With Symmetric and Asymmetric Fluorinated Anions. Journal of Chemical Physics https://www.osti.gov/biblio/1557109
  41. Luneau, M. & Frenkel, A. (2019). Dilute Pd/Au Alloy Nanoparticles Embedded in Colloid-Templated Porous SiO2 : Stable Au-Based Oxidation Catalysts. Chemistry Of Materials, 31(15), 5759-5768 https://dx.doi.org/10.1021/acs.chemmater.9b01779
  42. Plata, J. & Rodriguez, J. (2019). Understanding the photocatalytic properties of the Pt/CeOx/TiO2 systems: structural effects on the electronic and optic properties. ChemPhysChem https://www.osti.gov/biblio/1550795
  43. Singh, N. & Ertem, M. (2019). Reactivity of bio-inspired Cu(II) (N2/Py2) complexes with peroxide at room temperature. Journal of Inorganic Biochemistry, 197 https://dx.doi.org/10.1016/j.jinorgbio.2019.03.014
  44. Gomez, E. & Xie, Z. (2019). The effects of bimetallic interactions for CO2-assisted oxidative dehydrogenation and dry reforming of propane. Aiche Journal, 65(8), Article UNSP e16670 https://dx.doi.org/10.1002/aic.16670
  45. Zhao, E. & Hu, E. (2019). Local Structure Adaptability through Multi Cations for Oxygen Redox Accommodation in Li-Rich Layered Oxides. Energy Storage Materials https://www.osti.gov/biblio/1557714
  46. Kettner, M. & Senanayake, S. (2019). Anion-mediated electronic effects in reducible oxides: Tuning the valence band of ceria via fluorine doping. The Journal of Chemical Physics, 151 https://dx.doi.org/10.1063/1.5109955
  47. Jimenez-Orozco, C. & Rodriguez, J. (2019). Binding and activation of ethylene on Tungsten carbide and Platinum surfaces. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/C9CP03214B
  48. Cao, M. & Shadike, Z. (2019). Sodium Storage Property and Mechanism of NaCr1/4Fe1/4Ni1/4Ti1/4O2 Cathode at Various Cut-off Voltage. Energy Storage Materials https://dx.doi.org/10.1016/j.ensm.2019.07.022
  49. Zhang, H. & Liu, P. (2019). Mo6S8-Based Single-Metal-Atom Catalysts for Direct Methane to Methanol Conversion. Journal of Chemical Physics https://www.osti.gov/biblio/1530524
  50. Li, S. & Hu, E. (2019). Surface-to-bulk redox coupling through thermally-driven Li redistribution in Li- and Mn-rich layered cathode materials. Journal of the American Chemical Society https://www.osti.gov/biblio/1542786
  51. Horne, G. & Cook, A. (2019). 31P NMR Study of the Activated Radioprotection Mechanism of Octylphenyl-N,N-diisobutylcarbamoylmethyl Phosphine Oxide (CMPO) and Analogues. Dalton Transactions https://dx.doi.org/10.1039/C9DT01950B
  52. Coaty, C. & Khalifah, P. (2019). Morphological Tuning of Nanoporous Metals Prepared with Conversion Reaction Synthesis via Thermal Annealing. Journal of Physical Chemistry C, 123, 17873-17883 https://dx.doi.org/10.1021/acs.jpcc.9b04172
  53. Kim, S. & Bak, S. (2019). Reversible Conversion Reactions and Small First Cycle Irreversible Capacity Loss in Metal Sulfide-Based Electrodes Enabled by Solid Electrolytes. Advanced Functional Materials, 29(27), Article 1901719 https://dx.doi.org/10.1002/adfm.201901719
  54. Jimenez-Orozco, C. & Rodriguez, J. (2019). Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: binding and hydrogenation of ethylidyne. 6Th National Conference On Engineering Physics and the 1St International Conference On Applied Physics Engineering & Innovation, 1247, Article 1700233 https://dx.doi.org/10.1088/1742-6596/1247/1/012003
  55. Jimenez-Orozco, C. & Rodriguez, J. (2019). Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: binding and hydrogenation of ethylidyne. Journal of Physics: Conference Series, 1247 https://dx.doi.org/10.1088/1742-6596/1247/1/012003
  56. Zhang, J. & Hu, E. (2019). Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nature Energy https://www.osti.gov/biblio/1529891
  57. Qiu, Q. & Shadike, Z. (2019). Improving the Electrochemical Performance and Structural Stability of LiNi0.8Co0.15Al0.05O2 Cathode Material at High Voltage Charging through Ti Substitution. ACS Applied Materials & Interfaces https://www.osti.gov/biblio/1526693
  58. Yuan, Z. & Bak, S. (2019). Activating Layered Double Hydroxide with Multivacancies by Memory Effect for Energy-Efficient Hydrogen Production at Neutral pH. ACS Energy Letters, 4(6), 1412-1418 https://dx.doi.org/10.1021/acsenergylett.9b00867
  59. Zhang, Z. & Yao, S. (2019). CuZnCoOx multifunctional catalyst for in situ hydrogenation of 5-hydroxymethylfurfural with ethanol as hydrogen carrier. Journal Of Catalysis, 373, 314-321 https://dx.doi.org/10.1016/j.jcat.2019.04.011
  60. Takasugi, S. & Fujita, E. (2019). Significance of an anion effect in the selective oxidation of Ce3+ to Ce4+ over a porous WO3 photoanode. ElectroChimica Acta, 307, 369-374 https://dx.doi.org/10.1016/j.electacta.2019.03.178
  61. Marinkovic, N. & Adzic, R. (2019). Pt-Based Catalysts for Electrochemical Oxidation of Ethanol. Topics In Current Chemistry, 377(3), Article 11 https://dx.doi.org/10.1007/s41061-019-0236-5
  62. Yan, B. & Chen, J. (2019). Tuning CO2 hydrogenation selectivity via metal-oxide interfacial sites. Journal Of Catalysis, 374, 60-71 https://dx.doi.org/10.1016/j.jcat.2019.04.036
  63. Gill, S. K., Ge, M., Yan, H., Sasaki, K., Liang, Z., Isaacs, H., Kisslinger, K., Ecker, L., & Chu, Y. S. (2019). Quantitative Nanoscale 3D Imaging of Intergranular Corrosion of 304 Stainless Steel Using Hard X-Ray Nanoprobe. Journal of the Electrochemical Society, 166(11), C3320-C3325 https://dx.doi.org/10.1149/2.0401911jes
  64. Liu, H. & Lin, R. (2019). Elucidating the Limit of Li Insertion into the Spinel Li4Ti5O12. ACS Materials Letters https://www.osti.gov/biblio/1529890
  65. Wang, L. & Concepcion, J. (2019). Self-Assembled Bilayers as an Anchoring Strategy: Catalysts, Chromophores, and Chromophore-Catalyst Assemblies. Journal Of the American Chemical Society, 141(20), 8020-8024 https://dx.doi.org/10.1021/jacs.9b01044
  66. Liu, D. & Shadike, Z. (2019). Review of Recent Development of in situ/operando Characterization Techniques for Lithium Battery Research. Advanced Materials https://www.osti.gov/biblio/1507700
  67. Li, M. & Adzic, R. (2019). Platinum monolayer electrocatalysts for methanol oxidation. Journal of The Electrochemical Society, 166(7) https://dx.doi.org/10.1149/2.0321907jes
  68. Winter, L. & Chen, J. (2019). Elucidating the roles of metallic Ni and oxygen vacancies in CO2 hydrogenation over Ni/CeO2 using isotope exchange and in situ measurements. Applied Catalysis B: Environmental, 245, 360-366 https://dx.doi.org/10.1016/j.apcatb.2018.12.069
  69. Song, B. & Hu, E. (2019). Understanding the Low Voltage Hysteresis of Anionic Redox in Na2Mn3O7. Chemistry of Materials https://www.osti.gov/biblio/1512261
  70. Wang, J. & Chen, J. (2019). Enhancing Activity and Reducing Cost for Electrochemical Reduction of CO2 by Supporting Palladium on Metal Carbides. Angewandte Chemie International Edition, 58(19), 6271-6275 https://dx.doi.org/10.1002/anie.201900781
  71. Tian, Y. & Frenkel, A. (2019). Correlated Multimodal Approach Reveals Key Details of Nerve-Agent Decomposition by Single-Site Zr-Based Polyoxometalates. Journal of Physical Chemistry Letters, 10(9), 2295-2299 https://dx.doi.org/10.1021/acs.jpclett.9b01002
  72. Liu, D. & Yang, X. (2019). Evolution of Solid Electrolyte Interface (SEI) on TiO2 electrodes in Aqueous Li ion Battery Studied Using Scanning Electrochemical Microscopy. The Journal of Physical Chemistry C https://www.osti.gov/biblio/1514711
  73. Zhou, Y. & Liang, Z. (2019). Unveiling the Interfacial Effects for Enhanced Hydrogen Evolution Reaction on MoS2/WTe2 Hybrid Structures. Small, 15(19), Article 1900078 https://dx.doi.org/10.1002/smll.201900078
  74. Guo, Z. & Yeh, M. (2019). Slow liquid scintillator candidates for MeV-scale neutrino experiments. Astroparticle Physics, 109, 33-40 https://dx.doi.org/10.1016/j.astropartphys.2019.02.001
  75. Cumming, J. (2019). Improving light yield measurements for low-yield scintillators. Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 925, 1-5 https://dx.doi.org/10.1016/j.nima.2019.01.014
  76. Shadike, Z. (2019). Synthesis and Characterization of a Molecularly Designed High Performance Organodisulfide as Cathode Material for Lithium Batteries. Advanced Energy Materials https://www.osti.gov/biblio/1507114
  77. Bross, D. & Yu, H. (2019). Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited. Journal of Physical Chemistry A https://www.osti.gov/biblio/1508523
  78. Matheu, R. & Ertem, M. (2019). The development of molecular water oxidation catalysts. Nature Chemistry https://www.osti.gov/biblio/1529883
  79. Gong, M. & Lin, R. (2019). One-Nanometer-Thick Pt3Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. Acs Catalysis, 9(5), 4488-4494 https://dx.doi.org/10.1021/acscatal.9b00603
  80. Lymar, S. & Polyansky, D. (2019). Hydrogen Bonding between Hydroxylic Donors and MLCT-Excited Ru(bpy)2(bpz)2+ Complex: Implications for Photoinduced Electron-Proton Transfer. Chemical Communications, (42) https://dx.doi.org/10.1039/C9CC01896D
  81. Zhao, P. & White, M. (2019). Ultrafast extreme ultraviolet photoemission without space charge. Xxi International Conference On Ultrafast Phenomena 2018 (Up 2018), 205, Article 2014 https://dx.doi.org/10.1051/epjconf/201920502014
  82. Koverga, A. & Rodriguez, J. (2019). CO, CO2, and H-2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites. Journal of Physical Chemistry C, 123(14), 8871-8883 https://dx.doi.org/10.1021/acs.jpcc.8b11840
  83. Matsubara, Y. & Grills, D. (2019). Thermodynamic Cycles Relevant to Hydrogenation of CO2 to Formic Acid in Water and Acetonitrile. Chemistry Letters https://www.osti.gov/biblio/1507111
  84. Lin, R. (2019). Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery. Nature Communications https://www.osti.gov/biblio/1507699
  85. Rodriguez, J. (2019). Potassium-Promoted Reduction of Cu2O/Cu(111) by CO. Journal of Physical Chemistry C, 123(13), 8057-8066 https://dx.doi.org/10.1021/acs.jpcc.8b07403
  86. Senanayake, S. (2019). Highly Active Ceria-Supported Ru Catalyst for the Dry Reforming of Methane: In Situ Identification of Ru delta+-Ce3+ Interactions for Enhanced Conversion. Acs Catalysis, 9(4), 3349-3359 https://dx.doi.org/10.1021/acscatal.8b05162
  87. Zhao, E. & Yang, X. (2019). Exploring reaction dynamics in lithium-sulfur batteries by time-resolved operando sulfur K-edge X-ray absorption spectroscopy. Chemical Communications https://www.osti.gov/biblio/1507701
  88. Yue, X. & Yang, X. (2019). Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy https://www.osti.gov/biblio/1502810
  89. Mao, Y. & Yang, X. (2019). High-voltage Charging Induced Strain, Heterogeneity, and Micro-cracks in Secondary Particles of a Nickel-rich Layered Cathode Material. Advanced Functional Materials https://www.osti.gov/biblio/1498873
  90. Zhang, S. & Frenkel, A. (2019). Effects of Molecular and Electronic Structures in CoOx/CeO2 Catalysts on NO Reduction by CO. Journal Of Physical Chemistry C, 123(12), 7166-7177 https://dx.doi.org/10.1021/acs.jpcc.8b12442
  91. McKinnon, M. & Grills, D. (2019). Synergistic Metal-Ligand Redox Cooperativity for Electrocatalytic CO2 Reduction Promoted by a Ligand-Based Redox Couple in Mn and Re Tricarbonyl Complexes. Organometallics, 38(6), 1317-1329 https://dx.doi.org/10.1021/acs.organomet.8b00584
  92. Lockhart, J. & Hall, G. (2019). Kinetic Study of the OH + Ethylene Reaction using Frequency Modulated Laser Absorption Spectroscopy. International Journal of Chemical Kinetics https://www.osti.gov/biblio/1501591
  93. Wang, Y. & Chen, J. (2019). Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nature Communications, 10, Article 1166 https://dx.doi.org/10.1038/s41467-019-09072-6
  94. Prats, H. & Rodriguez, J. (2019). Room Temperature Methane Capture and Activation by Ni Clusters Supported on TiC(001): Effects of Metal-Carbide Interactions on the Cleavage of the C-H Bond. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.8b13552
  95. Yan, Y. & Bak, S. (2019). Confinement of Ultrasmall Cobalt Oxide Clusters within Silicalite-1 Crystals for Efficient Conversion of Fructose into Methyl Lactate. Acs Catalysis, 9(3), 1923-1930 https://dx.doi.org/10.1021/acscatal.8b03230
  96. Rodriguez, J. (2019). The behavior of inverse oxide/metal catalysts: CO oxidation and water-gas shift reactions over ZnO/Cu(111) surfaces. Surface Science, 681, 116-121 https://dx.doi.org/10.1016/j.susc.2018.09.008
  97. Matheu, R. & Ertem, M. (2019). FOCUS REVIEW - Seven Coordinated Molecular Ru-Water Oxidation Catalysts: a Coordination Chemistry Journey. Chemical Reviews https://www.osti.gov/biblio/1497379
  98. Chem, L. & Hu, E. (2019). Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery. Chem https://www.osti.gov/biblio/1501611
  99. Gunthardt, C. & Hall, G. (2019). Anomalous intensities in the 2+1 REMPI spectrum of the E 1Π ‐ X 1Σ+ transition of CO. Journal of Physical Chemistry A https://www.osti.gov/biblio/1498862
  100. Aharmim, B. & Yeh, M. (2019). Constraints on neutrino lifetime from the Sudbury Neutrino Observatory. Physical Review D, 99(3), Article 32013 https://dx.doi.org/10.1103/PhysRevD.99.032013
  101. Liu, J. & Yang, X. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy https://www.osti.gov/biblio/1498872
  102. Anderson, M. & Yeh, M. (2019). Search for invisible modes of nucleon decay in water with the SNO plus detector. Physical Review D, 99(9), Article 32008 https://dx.doi.org/10.1103/PhysRevD.99.032008
  103. Vovchok, D. (2019). Location and chemical speciation of Cu in ZSM-5 during the water-gas shift reaction. Catalysis Today, 323, 216-224 https://dx.doi.org/10.1016/j.cattod.2018.07.049
  104. Mudiyanselage, K. & Senanayake, S. (2019). XPS and NEXAFS study of the reactions of acetic acid and acetaldehyde over UO2(100) thin film. Surface Science, 680, 107-112 https://dx.doi.org/10.1016/j.susc.2018.10.017
  105. Singh, H. & Frenkel, A. (2019). Identification of dopant site and its effect on electrochemical activity in Mn-doped Lithium Titanate. The Royal Society of Chemistry https://www.osti.gov/biblio/1493188
  106. Burke, J. & Bird, M. (2019). Energetics and Escape of Interchain-Delocalized Ion Pairs in Nonpolar Media. Advanced Materials https://dx.doi.org/10.1002/adma.201806863
  107. Anderson, M. & Yeh, M. (2019). Measurement of the B-8 solar neutrino flux in SNO plus with very low backgrounds. Physical Review D, 99(1), Article 12012 https://dx.doi.org/10.1103/PhysRevD.99.012012
  108. Lopez Camara, A. & Rodriguez, J. (2019). Novel manganese-promoted inverse CeO2/CuO catalyst: In situ characterization and activity for the water-gas shift reaction. Catalysis Today https://www.osti.gov/biblio/1489744
  109. Wolf, T. & Frenkel, A. (2019). Endogenous Dynamic Nuclear Polarization for Natural Abundance O-17 and Lithium NMR in the Bulk of Inorganic Solids. Journal Of the American Chemical Society, 141(1), 451-462 https://dx.doi.org/10.1021/jacs.8b11015
  110. Taifan, W. & Frenkel, A. (2019). Operando Structure Determination of Cu and Zn on Supported MgO/SiO2 Catalysts during Ethanol Conversion to 1,3-Butadiene. Acs Catalysis, 9(1), 269-285 https://dx.doi.org/10.1021/acscatal.8b03515
  111. Timoshenko, J. & Frenkel, A. (2019). Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning. Nano Letters, 19(1), 520-529 https://dx.doi.org/10.1021/acs.nanolett.8b04461
  112. Badiei, Y. & Concepcion, J. (2019). Rapid identification of homogeneous O-2 evolution catalysts and comparative studies of Ru(II)-carboxamides vs. Ru(II)-carboxylates in water-oxidation. Journal Of Catalysis, 369, 10-20 https://dx.doi.org/10.1016/j.jcat.2018.10.009
  113. Luo, Q. & Yao, S. (2019). Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis. Journal Of Catalysis, 369, 143-156 https://dx.doi.org/10.1016/j.jcat.2018.11.002

2018

  1. Marinkovic, N. & Sasaki , K. (2019). Determination of Single- and Multi-Component Nanoparticle Sizes by X-ray Absorption Spectroscopy. Journal Of the Electrochemical Society, 165(15), J3222-J3230 https://dx.doi.org/10.1149/2.0281815jes
  2. Jimenez-Orozco, C. & Rodriguez, J. (2019). Platinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: binding and hydrogenation of ethylidyne. 6Th National Conference On Engineering Physics and the 1St International Conference On Applied Physics Engineering & Innovation, 1247, Article 1700233 https://dx.doi.org/10.1088/1742-6596/1247/1/012003
  3. Matyushov, D. & Newton, M. (2018). Thermodynamics of Reactions Affected by Medium Reorganization. Journal Of Physical Chemistry B, 122(51), 12302-12311 https://dx.doi.org/10.1021/acs.jpcb.8b08865
  4. Aharmim, B. & Yeh, M. (2018). Tests of Lorentz invariance at the Sudbury Neutrino Observatory. Physical Review D, 98(11), Article 112013 https://dx.doi.org/10.1103/PhysRevD.98.112013
  5. Zhang, F. & Senanayake, S. (2018). Reaction of Methane with MOx/CeO2 (M = Fe, Ni, and Cu) Catalysts: In Situ Studies with Time-Resolved X-ray Diffraction. Journal Of Physical Chemistry C, 122(50), 28739-28747 https://dx.doi.org/10.1021/acs.jpcc.8b09319
  6. Yun, S. & Bak, S. (2018). Rational Design of Hierarchically Open-Porous Spherical Hybrid Architectures for Lithium Ion Batteries. Advanced Energy Materials https://www.osti.gov/biblio/1485779
  7. Wang, Q. & Shadike, Z. (2018). Tuning P2-Structured Cathode Material by Na-Site Mg Substitution for Na-Ion Batteries. Journal of the American Chemical Society https://www.osti.gov/biblio/1488528
  8. Cook, A. (2018). Electron Transport with Mobility, μ > 86 cm2/Vs, in a 74 nm Long Polyfluorene.. Journal of Physical Chemistry Letters https://www.osti.gov/biblio/1489352
  9. Pinero, J. & Rodriguez, J. (2018). Diversity of Adsorbed Hydrogen on the TiC (001) Surface at High Coverages. Journal of Physical Chemistry https://www.osti.gov/biblio/1484881
  10. Rodriguez, J. (2018). Growth, Structure and Catalytic Properties of ZnOx Grown on CuOx/Cu(111) Surfaces. Journal of Physical Chemistry C https://www.osti.gov/biblio/1484882
  11. Hsieh, Y. & Polyansky, D. (2018). Modification of CO2 Reduction Activity of Nanostructured Silver Electrocatalysts by Surface Halide Anions. ACS Appl. Energy Mater. https://dx.doi.org/10.1021/acsaem.8b01692
  12. Song, B. & Hu, E. (2018). A Novel P3-type Na2/3Mg1/3Mn2/3O2 as High Capacity Sodium-Ion Cathode Using Reversible Oxygen Redox. Journal of Material Chemistry A https://www.osti.gov/biblio/1485260
  13. Goulas, K. & Chen, J. (2018). Spectroscopic characterization of a highly selective NiCu3/C hydrodeoxygenation catalyst. Catalysis Science & Technology, 8(23), 6100-6108 https://dx.doi.org/10.1039/c8cy01280f
  14. Yan, B. & Chen, J. (2018). Highly active subnanometer Rh clusters derived from Rh-doped SrTiO3 for CO2 reduction. Applied Catalysis B-Environmental , 2374, 1003-1011 https://dx.doi.org/10.1016/j.apcatb.2018.06.074
  15. Li, Y. & Bak, S. (2018). Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness. Advanced Energy Materials https://www.osti.gov/biblio/1491135
  16. Huang, P. & Frenkel, A. (2018). Selective CO2 Reduction Catalyzed by Single Cobalt Sites on Carbon Nitride under Visible-Light Irradiation. Journal Of the American Chemical Society, 140(47), 16042-16047 https://dx.doi.org/10.1021/jacs.8b10380
  17. Zhu, J. & Senanayake, S. (2018). Insights into CO2 adsorption and chemical fixation properties of VPI-100 metal-organic frameworks. Journal Of Materials Chemistry A, 6(44), 22195-22203 https://dx.doi.org/10.1039/c8ta06383d
  18. Cabelli, D. (2018). Superoxide Dismutase Mimics: Redox activity goes organic. News and Views in Nature Chemistry, 1173-1175 https://www.osti.gov/biblio/1491151
  19. Hu, J. & Sasaki , K. (2018). Determination of Hydrogen Oxidation Reaction Mechanism Based on Pt-H-ad Energetics in Alkaline Electrolyte. Journal Of the Electrochemical Society, 165(15), J3355-J3362 https://dx.doi.org/10.1149/2.0471815jes
  20. Xie, Z. (2018). Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity. Applied Catalysis B-Environmental, 236, 280-293 https://dx.doi.org/10.1016/j.apcatb.2018.05.035
  21. Liu, C. & Wang, J. (2018). Favorable Core/Shell Interface within Co2P/Pt Nanorods for Oxygen Reduction Electrocatalysis. Nano Letters https://dx.doi.org/10.1021/acs.nanolett.8b03666
  22. Chen, G. & Sasaki , K. (2018). Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. Journal Of Materials Chemistry A, 6(42), 20725-20736 https://dx.doi.org/10.1039/c8ta06686h
  23. Rong, X. & Hu, E. (2018). Anionic Redox Reaction-Induced High-Capacity and Low-Strain Cathode with Suppressed Phase Transition. Joule https://dx.doi.org/10.1016/j.joule.2018.10.022
  24. Wang, W. & Shadike, Z. (2018). Synthesis and electrochemical properties of Li1.3Nb0.3Cr0.4O2 as a high-capacity cathode material for rechargeable Lithium batteries. Chemical Communications https://dx.doi.org/10.1039/C8CC07660J
  25. Ning, J. & Frenkel, A. (2018). Controlling Anisotropic Growth of Colloidal ZnSe Nanostructures. Journal Of the American Chemical Society, 140(44), 14627-14637 https://dx.doi.org/10.1021/jacs.8b05941
  26. Lee, J. & Chen, J. (2018). Understanding the Role of Functional Groups in Polymeric Binder for Electrochemical Carbon Dioxide Reduction on Gold Nanoparticles. Advanced Functional Materials, 28(45), Article 1804762 https://dx.doi.org/10.1002/adfm.201804762
  27. Okoli, C. & Sasaki , K. (2018). Highly Dispersed Carbon Supported PdNiMo Core with Pt Monolayer Shell Electrocatalysts for Oxygen Reduction Reaction. ECS Transactions , 85(12), 67-89 https://dx.doi.org/10.1149/08512.0067ecst
  28. Song, L. & Vukmirovic, M. (2018). Enhanced Oxygen Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts. Journal of The Electrochemical Society https://www.osti.gov/biblio/1480984
  29. Onishi, N. & Fujita, E. (2018). Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation Catalyzed by Iridium Complexes Bearing Pyridyl-pyrazole Ligands: Effect of an Electron-donating Substituent on the Pyrazole Ring on the Catalytic Activity and Durability. Advance Synthesis and Catalysis https://www.osti.gov/biblio/1489353
  30. Gao, D. & Chen, J. (2018). Activity and Selectivity Control in CO2 Electroreduction to Multicarbon Products over CuOx Catalysts via Electrolyte Design. Acs Catalysis, 8(11), 10012-10020 https://dx.doi.org/10.1021/acscatal.8b02587
  31. Rong, X. & Hu, E. (2018). Anionic Redox Reaction Induced High-Capacity and Low-Strain Cathode with Suppressed Phase-Transition. Joule https://www.osti.gov/biblio/1477970
  32. Vovchok, D. (2018). Structural and chemical state of doped and impregnated mesoporous Ni/CeO2 catalysts for the water-gas shift. Applied Catalysis A-General, 567, 1-11 https://dx.doi.org/10.1016/j.apcata.2018.08.026
  33. Polyansky, D. (2018). Solvent-dependent transition from concerted electron-proton to proton transfer in photoinduced reactions between phenols and polypyridine Ru complexes with proton-accepting sites. Dalton Transactions, (47), 15917-15928 https://dx.doi.org/10.1039/C8DT03858A
  34. Yang, X. & Chen, J. (2018). Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles. Journal Of the American Chemical Society, 140(41), 13387-13391 https://dx.doi.org/10.1021/jacs.8b08379
  35. Maroney, M. & Cabelli, D. (2018). The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase. Inorganic Chemistry https://www.osti.gov/biblio/1476287
  36. Jiang, Z. & Chen, J. (2018). Pt-modified TaC as an efficient electrocatalyst for ethanol oxidation in acid and alkaline electrolytes. Applied Catalysis B-Environmental, 234, 329-336 https://dx.doi.org/10.1016/j.apcatb.2018.04.052
  37. Matyushov, D. & Newton, M. (2018). Q-model of electrode reactions: altering force constants of intramolecular vibrations. Physical Chemistry Chemical Physics, 20(37), 24176-24185 https://dx.doi.org/10.1039/c8cp03759k
  38. Lin, Z. & Chen, J. (2018). Cobalt-modified molybdenum carbide as a selective catalyst for hydrodeoxygenation of furfural. Applied Catalysis B-Environmental, 233, 160-166 https://dx.doi.org/10.1016/j.apcatb.2018.03.113
  39. Wang, F. & Hu, E. (2018). Rechargeable Aqueous Zn2+ Battery with High Power Density and Long Cycle-life. Energy & Environmental Science https://www.osti.gov/biblio/1476764
  40. Khalifah, P. (2018). Extending the limits of powder diffraction analysis: diffraction parameter space, occupancy defects, and atomic form factors. Review of Scientific Instruments https://www.osti.gov/biblio/1469791
  41. Twagirayezu, S. & Hall, G. (2018). Frequency measurements and self-broadening of sub-Doppler transitions in the v1 + v3 band of C2H2. Journal of Chemical Physics https://www.osti.gov/biblio/1473639
  42. Yue, X. & Yang, X. (2018). CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Materials https://www.osti.gov/biblio/1473663
  43. Mani, T. & Grills, D. (2018). Nitrile Vibration Reports Induced Electric Field and Delocalization of Electron in Charge-Transfer State of Aryl Nitriles. Journal of Physical Chemistry A https://www.osti.gov/biblio/1473657
  44. Xu, S. & Hu, E. (2018). Suppressing the Voltage Decay of Low-Cost P2-Type Iron Based Cathode Materials for Sodium-ion Batteries. Journal of Materials Chemistry A https://www.osti.gov/biblio/1476275
  45. Timoshenko, J. & Frenkel, A. (2018). Subnanometer Substructures in Nanoassemblies Formed from Clusters under a Reactive Atmosphere Revealed Using Machine Learning. Journal Of Physical Chemistry C, 122(37), 21686-21693 https://dx.doi.org/10.1021/acs.jpcc.8b07952
  46. Song, L. & Wang, J. (2018). Temperature-Dependent Kinetics and Reaction Mechanism of Ammonia Oxidation on Pt, Ir, and PtIr Alloy Catalysts. Journal of Electrochemical Society , 165(15) https://www.osti.gov/biblio/1473653
  47. Lockhart, J. & Hall, G. (2018). Investigating the Photodissociation of H2O2 using Frequency Modulation Laser Absorption Spectroscopy to Monitor Radical Products. Chemical Physics Letters, 711, 1-7 https://dx.doi.org/10.1016/j.cplett.2018.09.004
  48. Liu, S. & Liu, P. (2018). Optimized Pt-based Catalysts for Oxygen Reduction Reaction in Alkaline Solution: A First Principle Study. Journal of the electrochemical Society, 165(15), J3090-J3094 https://dx.doi.org/10.1149/2.0171815jes
  49. Wang, L. & Chen, J. (2018). Insight into the Synergistic Effect between Nickel and Tungsten Carbide for Catalyzing Urea Electrooxidation in Alkaline Electrolyte. Applied Catalysis B-Environmental, 232, 365-370 https://dx.doi.org/10.1016/j.apcatb.2018.03.064
  50. Zuo, Z. & Liu, P. (2018). Dry Reforming of Methane on Single Site Ni/MgO Catalysts: Importance of Site Confinement. ACS Catalysis https://dx.doi.org/10.1021/acscatal.8b02277
  51. Wang, L. & Fujita, E. (2018). Additive-Free Ruthenium-Catalyzed Hydrogen Production from Aqueous Formaldehyde with High Efficiency and Selectivity. ACS Catalysis https://www.osti.gov/biblio/1473638
  52. Concepcion, J. (2018). O-O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis. Inorganic Chemistry, 57(17), 10533-10542 https://dx.doi.org/10.1021/acs.inorgchem.8b00329
  53. Zheng, D. & Yang, X. (2018). The Progress of Li-S Batteries-Understanding of the Sulfur Redox Mechanism: Dissolved Polysulfide Ions in the Electrolytes. Advanced Materials Technologies , 3(9), Article 1700233 https://dx.doi.org/10.1002/admt.201700233
  54. Corder, C. & White, M. (2018). Ultrafast extreme ultraviolet photoemission without space charge. Structural Dynamics, 5(5), Article 54301 https://dx.doi.org/10.1063/1.5045578
  55. Xie, Q. & Hu, E. (2018). Layered double hydroxides with atomic-scale defects for superior electrocataiysis. Nano Research, 11(9), 4524-4534 https://dx.doi.org/10.1007/s12274-018-2033-9
  56. Zheng, D. & Yang, X. (2018). Systematic and rapid screening for the redox shuttle inhibitors in lithium-sulfur batteries. Electrochimica Acta, 282, 687-693 https://dx.doi.org/10.1016/j.electacta.2018.06.117
  57. Yan, B. & Chen, J. (2018). Active sites for tandem reactions of CO2 reduction and ethane dehydrogenation. Proceedings Of the National Academy Of Sciences Of the United States Of America, 115(33), 8278-8283 https://dx.doi.org/10.1073/pnas.1806950115
  58. Liu, P. (2018). Mechanistic study of dry reforming of ethane by CO2 on a bimetallic PtNi(111) model surface. Catalysis Science & Technology, 8(15), 3748-3758 https://dx.doi.org/10.1039/c8cy00880a
  59. Hu, E. (2018). Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nature Energy https://www.osti.gov/biblio/1460715
  60. Lei, W. & Rodriguez, J. (2018). Hybrid 0D-2D black phosphorus quantum dots-graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy, 50, 552-561 https://dx.doi.org/10.1016/j.nanoen.2018.06.001
  61. Wang, F. & Shadike, Z. (2018). How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface. Angewandte Chemie https://dx.doi.org/10.1002/anie.201806748
  62. Grills, D. (2018). Mechanistic Aspects of CO2 Reduction Catalysis with Manganese-Based Molecular Catalysts. Coordination Chemistry Reviews https://www.osti.gov/biblio/1460701
  63. Liu, J. & Khalifah, P. (2018). Li3VP3O9N as a Multielectron Redox Cathode for Li-Ion Battery. Chemistry Of Materials, 30(14), 4609-4616 https://dx.doi.org/10.1021/acs.chemmater.8b01114
  64. Piao, J. & Yang, X. (2018). Stabilizing Cathode Materials of Lithium Ion Batteries by Controlling Interstitial Sites on the Surface. Chem https://www.osti.gov/biblio/1466634
  65. Bak, S. (2018). In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Materials https://www.osti.gov/biblio/1454825
  66. Cai, Z. & Bak, S. (2018). Introducing Fe2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angew Chem https://www.osti.gov/biblio/1454823
  67. Schneider, T. & Ertem, M. (2018). [RuII(tpy)(bpy)Cl]+-Catalyzed Reduction of Carbon Dioxide. Mechanistic Insights by Carbon-13 Kinetic Isotope Effect. Chemical Communications https://dx.doi.org/10.1039/C8CC03009J
  68. Zhao, B. & Chen, J. (2018). High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite. Chemical Communications, 54(53), 7354-7357 https://dx.doi.org/10.1039/c8cc03829e
  69. Wang, J. & Chen, J. (2018). L-Phenylalanine-Templated Platinum Catalyst with Enhanced Performance for Oxygen Reduction Reaction. Acs Applied Materials & Interfaces, 10(25), 21321-21327 https://dx.doi.org/10.1021/acsami.8b04578
  70. Carrillo, P. & White, M. (2018). In-Situ Formation of FeRh Nanoalloys for Oxygenate Synthesis. ACS Catalysis , 7279-7286 https://dx.doi.org/10.1021/acscatal.8b02235
  71. Lin, Z. & Chen, J. (2018). Hydrodeoxygenation of biomass-derived oxygenates over metal carbides: from model surfaces to powder catalysts. Green Chemistry, 20(12), 2679-2696 https://dx.doi.org/10.1039/c8gc00239h
  72. Lin, L. & Rodriguez, J. (2018). In-situ Characterization of Cu/CeO2 Nanocatalysts for CO2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity. Journal of Physical Chemistry C https://www.osti.gov/biblio/1440347
  73. Lustemberg, P. & Rodriguez, J. (2018). Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-enabled Catalytic Conversion by Site Blocking. Journal of the American Chemical Society https://www.osti.gov/biblio/1440348
  74. Matheu, R. & Ertem, M. (2018). The Behavior of the Ru-bda Water Oxidation Catalysts at Low Oxidation States. Chemistry A European Journal https://www.osti.gov/biblio/1460704
  75. Miyase, Y. & Fujita, E. (2018). Modification of BiVO4/WO3 composite photoelectrodes with Al2O3 via chemical vapor deposition for highly efficient oxidative H2O2 production from H2O. Sustainable Energy & Fuels, RSC https://dx.doi.org/10.1039/C8SE00070K
  76. Yao, S. (2018). Combining CO2 Reduction with Ethane Oxidative Dehydrogenation by Oxygen-Modification of Molybdenum Carbide. Acs Catalysis, 8(6), 5374-5381 https://dx.doi.org/10.1021/acscatal.8b00541
  77. Lapp, A. & Frenkel, A. (2018). Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized using a Direct Electrochemical Method. Jacs https://www.osti.gov/biblio/1436448
  78. Rodriguez, J. (2018). Imaging the Ordering of a Weakly Adsorbed Two-Dimensional Condensate: Ambient-Pressure Microscopy and Spectroscopy of CO2 Molecules on Rutile TiO2(110). Physical Chemistry Chemical Physics https://www.osti.gov/biblio/1436267
  79. Fan, X. & Hu, E. (2018). High Energy-Density and Reversibility of Iron Fluoride Cathode Enabled Via an Intercalation-Extrusion Reaction. Nature Communications https://www.osti.gov/biblio/1436283
  80. Liu, J. & Hu, E. (2018). Large scale synthesis and comprehensive structure study of δ-MnO2. Inorganic Chemistry https://dx.doi.org/10.1021/acs.inorgchem.8b00461
  81. Eren, B. & Liu, Z. (2018). Structure of Copper-Cobalt Surface Alloys in Equilibrium with Carbon Monoxide Gas. Journal Of the American Chemical Society, 140(21), 6575-6581 https://dx.doi.org/10.1021/jacs.7b13621
  82. Timoshenko, J. & Frenkel, A. (2018). Neural network approach for characterizing structural transformations by X-ray absorption fine structure. Phys. Rev. Letters https://www.osti.gov/biblio/1436268
  83. Adhikari, S. & Wishart, J. (2018). Pulse Radiolysis and Computational Studies on a Pyrrolidinium Dicyanamide Ionic Liquid: Detection of the Dimer Radical Anion. Journal of Physical Chemistry A https://www.osti.gov/biblio/1433984
  84. Le, A. & Sears, T. (2018). Analysis of the ~ A - ~X bands of the Ethynyl Radical near 1.48micro-m and Re-evaluation of ~X State Energies. Journal of Molecular Spectroscopy https://www.osti.gov/biblio/1433987
  85. Song, L. (2018). Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts. ECS Transactions, 85(12), 57-65 https://dx.doi.org/10.1149/08512.0057ecst
  86. Liang, Z. (2018). Electrochemical CO2 reduction on oxide-derived Cu surface with various oxide thicknesses. ECS Transactions, 85(12), 195-199 https://dx.doi.org/10.1149/08512.0195ecst
  87. Wan, W. & Chen, J. (2018). A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo2C Surfaces. Topics In Catalysis, 61(5 to 6), 439-445 https://dx.doi.org/10.1007/s11244-018-0901-x
  88. Wang, L. & Ertem, M. (2018). Highly Efficient and Selective Methanol Production from Paraformaldehyde and Water at Room Temperature. ACS Catalysis https://www.osti.gov/biblio/1460702
  89. Liu, D. & Frenkel, A. (2018). Identifying Dynamic Structural Changes of Active Sites in Pt-Ni Bimetallic Catalysts Using Multimodal Approaches. Acs Catalysis, 8(5), 4120-4131 https://dx.doi.org/10.1021/acscatal.8b00706
  90. Winter, L. & Chen, J. (2018). Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation. Applied Catalysis B-Environmental, 224, 442-450 https://dx.doi.org/10.1016/j.apcatb.2017.10.036
  91. Grills, D. (2018). Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy. Physical Chemistry Chemical Physics https://www.osti.gov/biblio/1430880
  92. Shimoda, T. & Fujita, E. (2018). Photocatalytic CO2 Reduction by Trigonal Bipyramidal Cobalt(II) Polypyridyl Complexes: Nature of Cobalt(I) and Cobalt(0) Complexes upon Their Reactions with CO2, CO and Proton. Inorganic Chemistry https://www.osti.gov/biblio/1433980
  93. Wang, Q. & Yang, X. (2018). Tunnel-structured Na0.66[Mn0.66Ti0.34]O2-xFx (x < 0.1) cathode for high performance sodium-ion batteries. Energy Storage Materials https://www.osti.gov/biblio/1434003
  94. Vovchok, D. & Senanayake, S. (2018). In Situ Characterization of Mesoporous Co/CeO2 Catalysts for the High-Temperature Water-Gas Shift. Journal Of Physical Chemistry C, 122(16), 8998-9008 https://dx.doi.org/10.1021/acs.jpcc.8b01271
  95. Hu, M. & Hanson, J. (2018). Structure and Thermal Stability of (H2O)(4) Tetrahedron and (H2O)(6) Hexagon Adsorbed on NaY Zeolite Studied by Synchrotron-Based Time-Resolved X-ray Diffraction. Industrial & Engineering Chemistry Research, 57(14), 4988-4995 https://dx.doi.org/10.1021/acs.iecr.8b00483
  96. Gomez, E. & Chen, J. (2018). Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts. Nature Communications , 9 , Article 1398 https://dx.doi.org/10.1038/s41467-018-03793-w
  97. Kanega, R. & Fujita, E. (2018). Picolinamide-based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of N Amide Substituent on Activity and Stability. Eur. J. Chem https://www.osti.gov/biblio/1430848
  98. Rodriguez, J. (2018). High Activity of Au/K/TiO2(110) for CO oxidation: Alkali Enhanced Dispersion of Au and Bonding of CO. Journal of Physical Chemistry C https://www.osti.gov/biblio/1430849
  99. Wang, J. (2018). Temperature-Dependent Kinetic Study of Ammonia Oxidation Reaction on Gas Diffusion Electrodes in NH3-Saturated 1 M KOH Solutions. ECS Transactions https://www.osti.gov/biblio/1430851
  100. Manso, R. & Wang, J. (2018). CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction. ECS Transactions https://www.osti.gov/biblio/1430852
  101. Zhang, Y. & Wang, J. (2018). Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Electrolyte: Evidence for Surface Proton Transfer Effects. ECS Transactions https://www.osti.gov/biblio/1430856
  102. Zhang, F. & Senanayake, S. (2018). In Situ Elucidation of the Active State of Co-CeOx Catalysts in the Dry Reforming of Methane: The Important Role of the Reducible Oxide Support and Interactions with Cobalt. Acs Catalysis, 8(4), 3550-3560 https://www.osti.gov/biblio/1462401
  103. Koike, K. & Fujita, E. (2018). Investigation of excited state, reductive quenching, and intramolecular electron transfer of Ru(II)‐Re(I) supramolecular photocatalysts for CO2 reduction using time‐resolved IR measurements. Chem. Sci. https://www.osti.gov/biblio/1425101
  104. Wu, Q. & Chen, J. (2018). Growth of Nanoparticles with Desired Catalytic Functions by Controlled Doping-Segregation of Metal in Oxide. Chemistry Of Materials, 30(5), 1585-1592 https://dx.doi.org/10.1021/acs.chemmater.7b04699
  105. Tackett, B. & Chen, J. (2018). Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core-Shell Particles with Nitride Cores. Acs Catalysis, 8(3), 2615-2621 https://dx.doi.org/10.1021/acscatal.7b04410
  106. Mahajan, D. & Adzic, R. (2018). Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts. Ultrasonics Sonochemistry, 41, 427-434 https://dx.doi.org/10.1016/j.ultsonch.2017.09.049
  107. Senanayake, S. (2018). Interfaces in Heterogeneous Catalytic Reactions: Ambient Pressure XPS as a Tool to Unravel Surface Chemistry. Journal of Spectroscopy and Related Phenomena https://www.osti.gov/biblio/1425096
  108. Senanayake, S. (2018). New In Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real Time, Chemical and Structure Sensitive X-ray Probes. Synchrotron Radiation News https://www.osti.gov/biblio/1425097
  109. Matheu, R. & Ertem, M. (2018). The Role of Seven Coordination in Ru-catalyzed Water Oxidation. ACS Catalysis journal https://www.osti.gov/biblio/1425070
  110. Castner, Jr., E. & Wishart, J. (2018). Photo-induced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors. Journal of Physical Chemistry https://www.osti.gov/biblio/1425075
  111. Dharmagunawardhane, H. & Palomino, R. (2018). Unexpected visible light driven photocatalytic activity without cocatalysts and sacrificial reagents from a (GaN)(1-x)(ZnO)(x) solid solution synthesized at high pressure over the entire composition range. Rsc Advances, 8(16), 8976-8982 https://dx.doi.org/10.1039/c7ra08509e
  112. Shadike, Z. (2018). Advanced Characterization Techniques for Sodium-Ion Battery Studies. Advanced Energy Materials https://www.osti.gov/biblio/1425180
  113. Liu, S. & Hu, E. (2018). Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing. Advanced Energy Materials https://dx.doi.org/10.1002/aenm.201703092
  114. Zhao, B. & Chen, J. (2018). LaFe0.9Ni0.1O3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane. Journal Of Catalysis, 358, 168-178 https://dx.doi.org/10.1016/j.jcat.2017.12.012
  115. Cook, A. (2018). p-Carborane Conjugation in Radical Anions of Cage-Cage and Cage-Phenyl Compounds. The Journal of Physical Chemistry Part A https://www.osti.gov/biblio/1425003
  116. Kunkel, C. & Rodriguez, J. (2018). Combining Theory and Experiment for Multitechnique Characterization of Activated CO2 on Transition Metal Carbide (001) Surfaces. Journal of Physical Chemistry C https://www.osti.gov/biblio/1425041
  117. Hu, E. (2018). Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating. Accounts of Chemical Research https://www.osti.gov/biblio/1425177
  118. Zhu, J. & Senanayake, S. (2018). A New Class of Metal-Cyclam-Based Zirconium Metal-Organic Frameworks for CO2 Adsorption and Chemical Fixation. Journal Of the American Chemical Society, 140(3), 993-1003 https://dx.doi.org/10.1021/jacs.7b10643
  119. Luo, S. & Senanayake, S. (2018). Enhanced, robust light-driven H-2 generation by gallium-doped titania nanoparticles. Physical Chemistry Chemical Physics, 20(3), 2104-2112 https://dx.doi.org/10.1039/c7cp04155a
  120. Mahapatra, M. (2018). Adsorption and Structure of Chiral Epoxides on Pd(111): Propylene Oxide and Glycidol. Journal Of Physical Chemistry C, 122(2), 1215-1222 https://dx.doi.org/10.1021/acs.jpcc.7b10852
  121. Palomino, R. (2018). Hydrogenation of CO2 on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal-Oxide Interface in Methanol Synthesis. Journal Of Physical Chemistry B, 122(2), 794-800 https://dx.doi.org/10.1021/acs.jpcb.7b06901
  122. Shirota, H. & Wishart, J. (2018). Effects of Aromaticity in Cations and Their Functional Groups on the Temperature Dependence of Low-Frequency Spectrum. Journal of Physical Chemistry B https://dx.doi.org/10.1021/jp509412z
  123. Zhang, Z. & Chen, J. (2018). In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 20(1), 197-205 https://dx.doi.org/10.1039/c7gc02774e

2017

  1. Gomez, E. & Xie, Z. (2019). The effects of bimetallic interactions for CO2-assisted oxidative dehydrogenation and dry reforming of propane. Aiche Journal, 65(8), Article UNSP e16670 https://dx.doi.org/10.1002/aic.16670
  2. Liu, S. & Liu, P. (2017). Oxygen Reduction Reaction on Ag(111) in Alkaline Solution: A Combined Density Functional Theory and Kinetic Monte Carlo Study. ChemcatChem https://www.osti.gov/biblio/1424995
  3. Cai, B. & Vukmirovic, M. (2017). Core-shell structuring of pure metallic aerogels towards highly efficient Pt utilization for the oxygen reduction reaction. Angewandte Chemie International Edition https://dx.doi.org/10.1002/anie.201710997
  4. Luo, S. & Palomino, R. (2017). Enhanced, Robust Light-Driven H2 Generation by Gallium Doped Titania Nanoparticles. Physical Chemistry Chemical Physics, 2104-2112 https://dx.doi.org/10.1039/C7CP04155A
  5. CHEN, H. (2017). Escape of Anions from Geminate Recombination 1 in THF due to Charge Delocalization. Phys. Chem. Chem. Phys. https://www.osti.gov/biblio/1412781
  6. Posada-Perez, S. & Rodriguez, J. (2017). Highly active Au/delta-MoC and Au/beta- Mo2C catalysts for the low-temperature water gas shift reaction: effects of the carbide metal/carbon ratio on the catalyst performance. Catalysis Science & Technology https://dx.doi.org/10.1039/c7cy00639j
  7. Aharmim, B. & Yeh, M. (2017). Search for neutron-antineutron oscillations at the Sudbury Neutrino Observatory. Physical Review D, 96(9), Article 92005 https://dx.doi.org/10.1103/PhysRevD.96.092005
  8. Zhang, K. (2017). Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in Operating Battery. Nano Letters https://www.osti.gov/biblio/1409510
  9. Khalifah, P. (2017). Observation of Vacancies, Faults, and Superstructures in Ln(5)Mo(2)O(12) (Ln = La, Y, and Lu) Compounds with Direct Mo-Mo Bonding. Inorganic Chemistry, 56(21), 12866-12880 https://www.osti.gov/biblio/1425105
  10. Kim, M. & Bak, S. (2017). Self-assembled Li3V2(PO4)(3)/reduced graphene oxide multilayer composite prepared by sequential adsorption. Journal Of Power Sources, 367, 167-176 https://dx.doi.org/10.1016/j.jpowsour.2017.09.057
  11. Rodriguez, J. (2017). Inverse Catalysts for CO Oxidation: Enhanced Oxide-Metal Interactions in MgO/Au(111), CeO2/Au(111), and TiO2/Au(111). Acs Sustainable Chemistry & Engineering, 5(11), 10783-10791 https://dx.doi.org/10.1021/acssuschemeng.7b02744
  12. Liu, Y. & Liu, P. (2017). Structure and Electronic Properties of Interface-Confined Oxide Nanostructures. Acs Nano, 11(11), 11449-11458 https://dx.doi.org/10.1021/acsnano.7b06164
  13. Ma, Z. & Wang, J. (2017). Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts. Journal of Electroanalytical Chemistry https://www.osti.gov/biblio/1425009
  14. Wang, P. (2017). Honeycomb-Ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as High Voltage Layered Cathodes for Sodium-Ion Batteries. ACS Energy Letters https://www.osti.gov/biblio/1409508
  15. Matyushov, D. (2017). Electrode Reactions in Slowly Relaxing Media. J Chem Phys https://www.osti.gov/biblio/1407474
  16. Rong, X. (2017). Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode. Joule https://www.osti.gov/biblio/1407472
  17. Shaffer, D. (2017). Lability and Basicity of Bipyridine-Carboxylate-Phosphonate Ligand Accelerate Single-Site Water Oxidation by Ruthenium-Based Molecular Catalysts. Jacs https://www.osti.gov/biblio/1405937
  18. Lyu, Y. (2017). Correlations between Transition Metal Chemistry, Local Structure and Global Structure in Li2Ru0.5Mn0.5O3 Investigated in a Wide Voltage Window. Chemistry of Materials https://www.osti.gov/biblio/1405938
  19. Bird, M. (2017). Effects of Electrolytes on Redox Potentials Through Ion Pairing. Journal of Electroanalytical Chemistry https://www.osti.gov/biblio/1405940
  20. Khalifah, P. (2017). Influence of Thermal Annealing on Free Carrier Concentration in (GaN)(1-x)(ZnO)(x) Semiconductors. Journal of Physical Chemistry C, 121(42), 23249-23258 https://www.osti.gov/biblio/1425025
  21. Xue, M. (2017). Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports. Journal of Physical Chemistry C https://www.osti.gov/biblio/1412738
  22. Sorensen, A. (2017). Temperature Quenching in LAB based liquid scintillator. The European Physical Journal C https://www.osti.gov/biblio/1412792
  23. Caravaca, J. & Yeh, M. (2017). Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators. The European Physical Journal C https://www.osti.gov/biblio/1424993
  24. Ertem, M. (2017). Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO2 Hydrogenation. ChemSusChem https://dx.doi.org/10.1002/cssc.201701676
  25. Shaffer, D. (2017). O-O Bond Formation in Ruthenium-Catalyzed Water Oxidation: Single-Site Nucleophilic Attack vs O-O Radical Coupling. Chemical Society Reviews https://www.osti.gov/biblio/1405932
  26. Cai, Z. (2017). Single-Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis. Advanced Energy Materials https://www.osti.gov/biblio/1395946
  27. Timoshenko, J. & Lu, D. (2017). Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles. Journal of Physical Chemistry Letters https://www.osti.gov/biblio/1425047
  28. Jimenez-Orozco, C. (2017). Acetylene and Ethylene Adsorption on a beta-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-terminations for Bonding and Hydrogenation Reactions. Journal of Physical Chemistry C https://www.osti.gov/biblio/1395939
  29. Kattle, S. (2017). Response to Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts". Science https://www.osti.gov/biblio/1392266
  30. Grills, D. (2017). Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis. Chemsuschem https://dx.doi.org/10.1002/cssc.201701559
  31. Jiang, Z. (2017). Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural. Acs Catalysis https://dx.doi.org/10.1021/acscatal.7b01682
  32. Rodriguez, J. (2017). Ceria-based model catalysts: Fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chemical Society Reviews https://www.osti.gov/biblio/1377054
  33. Kattel, S. (2017). Active Sites for CO2 Hydrogenation to Methanol on Cu/ZnO Catalysts. Science https://www.osti.gov/biblio/1377055
  34. Liu, Z. (2017). Elucidating the Interaction between Ni and CeOx in Ethanol Steam Reforming Catalysts: A Perspective of Recent Studies over Model and Powder Systems. Applied Catalysis B https://www.osti.gov/biblio/1377056
  35. Yu, H. (2017). A coherent discrete variable representation method on a sphere. J. Chem. Phys. https://www.osti.gov/biblio/1377058
  36. Liu, Z. (2017). Methanol Steam Reforming over Ni-CeO2 Model and Powder Catalysts: Pathways to High Stability and Selectivity for H2/CO2 Production. Catalysis Today https://www.osti.gov/biblio/1377059
  37. Kuttiyiel, K. (2017). Janus structured Pt-FeNC nanoparticles as a catalyst for the oxygen reduction reaction. https://www.osti.gov/biblio/1377060
  38. Shadike, Z. (2017). Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide . https://www.osti.gov/biblio/1377061
  39. Liu, Z. (2017). In Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal-Support Interactions and C-H Bond Activation at Low Temperature. Angewandte Chemie https://www.osti.gov/biblio/1377057
  40. Lin, F. (2017). Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chemical Review https://www.osti.gov/biblio/1377367
  41. Kanega, R. (2017). CO2 Hydrogenation Catalysts with Deprotonated Picolinamide Ligands. https://www.osti.gov/biblio/1395940
  42. Matheu, R. (2017). Hydrogen Bonding Rescues Overpotential in Seven Coordinated Ru Water Oxidation Catalysts. https://www.osti.gov/biblio/1405933
  43. Lymar, S. (2017). Role of Hydrogen Bonding in Photoinduced Electron-Proton Transfer from Phenols to a Polypyridine Ru Complex with a Proton-Accepting Ligand. The Journal of Physical Chemistry Letters https://dx.doi.org/%2010.1021/acs.jpclett.7b01614
  44. Zhao, S. (2017). Multimodal study of the speciations and activities of supported Pd catalysts during the hydrogenation of ethylene. https://www.osti.gov/biblio/1395943
  45. Mani, T. (2017). Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy . https://www.osti.gov/biblio/1399684
  46. Wang, Q. (2017). Utilizing Co2+/Co3+ Redox Couple in P2-layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries. Advanced Science https://www.osti.gov/biblio/1376159
  47. Rodriguez, J. (2017). Highly Active Pt/MoC and Pt/TiC Catalysts for the Low-Temperature Water-gas Shift Reaction: Effects of the Carbide Metal/Carbon Ratio on the Catalyst Performance. Catalysis Today https://www.osti.gov/biblio/1376160
  48. Stanislavchuk, T. & Khalifah, P. (2017). Infrared-active optical phonons in LiFePO4 single crystals. Journal of Applied Physics https://dx.doi.org/10.1063/1.4995282
  49. Kattel, S. (2017). Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface . https://www.osti.gov/biblio/1395947
  50. Vila, F. (2017). Anomalous Structural Disorder in Supported Pt Nanoparticles . https://www.osti.gov/biblio/1395941
  51. Vukmirovic, M. (2017). Single Platinum Atoms Electrocatalysts: Oxygen Reduction and Hydrogen Oxidation Reactions. Croatia Chemica Acta 2017 https://www.osti.gov/biblio/1377023
  52. Liu, J. & Khalifah, P. (2017). In Situ Neutron Diffraction Studies of the Ion Exchange Synthesis Mechanism of Li2Mg2P3O9N: Evidence for a Hidden Phase Transition. Journal Of the American Chemical Society , 139(27), 9192-9202 https://www.osti.gov/biblio/1425044
  53. Liu, J. (2017). In Situ Neutron Diffraction Studies of the Ion Exchange Synthesis Mechanism of Li2Mg2P3O9N: Evidence for a Hidden Phase Transition . https://www.osti.gov/biblio/1392264
  54. Meng, X. (2017). Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission . https://www.osti.gov/biblio/1409641
  55. Yao, H. (2017). Designing Air-Stable O3-Type Cathode Materials by Com-bined Structure Modulation for Na-Ion Batteries. Journal of American Chemical Society https://www.osti.gov/biblio/1372445
  56. Bird, M. (2017). Fast Holes, Slow Electrons, and Medium Control of Polaron Size and Mobility in the DA Polymer F8BT. The Journal of Physical Chemistry C https://www.osti.gov/biblio/1376158
  57. Huang, H. & Khalifah, P. (2017). Self-Referenced Method for Estimating Refractive Index and Absolute Absorption of Loose Semiconductor Powders. Chemistry of Materials https://dx.doi.org/10.1021/acs.chemmater.6b04463
  58. Manbeck, F. (2017). Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts . https://www.osti.gov/biblio/1376171
  59. Manbeck, G. (2017). Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydro-gen Production Photocatalysts. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.7b02142
  60. Tian, X. (2017). High-Performance Core-Shell Catalyst with Nitride Nanoparticles as a Core: Well-Defined Titanium Copper Nitride Coated with an Atomic Pt Layer for the Oxygen Reduction Reaction . https://www.osti.gov/biblio/1377049
  61. Bak, S. (2017). Na-Ion Intercalation and Charge Storage Mechanism in Two-Dimensional Vanadium Carbide . https://www.osti.gov/biblio/1366345
  62. Yu, H. (2017). A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C2H3. J. Chem. Phys https://www.osti.gov/biblio/1366346
  63. Lall-Ramnarine, S. (2017). Connecting Structural and Transport Properties of Ionic Liquids with Cationic Oligoether Chains. Journal of the Electrochemical Society https://www.osti.gov/biblio/1366347
  64. Wang, G. (2017). Sulfur Redox Reactions on Nanostructured Highly Oriented Pyrolytic Graphite Electrodes: Direct Evidence for Superior Electrocatalytic Performance on Defect Sites. Carbon https://www.osti.gov/biblio/1439794
  65. Lall-Ramnarine, S. (2017). Exploring the use of ionic liquid mixtures to enhance the performance of dicationic ionic liquids. Journal of the Electrochemical Society https://www.osti.gov/biblio/1358033
  66. Suarez, S. (2017). Investigation of dynamics in BMIM TFSA ionic liquid through variable temperature and pressure NMR relaxometry and diffusometry. Journal of the Electrochemical Society https://www.osti.gov/biblio/1358032
  67. Mezyk, S. (2017). The chemistry of separations ligand degradation by organic radical cations. Procedia Chemistry https://www.osti.gov/biblio/1358034
  68. Xu, Y. (2017). In-situ Visualization of State-of-Charge Heterogeneity within a LiCoO2 Particle that Evolves upon Cycling at Different Rates. ACS Energy Letters https://www.osti.gov/biblio/1358026
  69. Caravaca, J. (2017). Experiment to demonstrate separation of Cherenkov and scintillation signals . https://www.osti.gov/biblio/1372444
  70. Gao, D. (2017). Enhancing CO2 Electroreduction with the Metal-Oxide Interface . https://www.osti.gov/biblio/1368679
  71. Guild, C. (2017). Water-Gas-Shift over Metal-Free Nanocrystalline Ceria: An Experimental and Theoretical Study . https://www.osti.gov/biblio/1368675
  72. Smalley, J. (2017). Potential of Zero Charge and Its Temperature Derivative for Au(111) Electrode|Alkanethiol SAM|1.0 M Aqueous Electrolyte Solution Interfaces: Impact of Electrolyte Solution Ionic Strength and Its Effect on the Structure of the Modified Electrode|Electrolyte Solution Interface. Journal of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.6b10954
  73. Boyle, D. (2017). Elucidation of Active Sites for the Reaction of Ethanol on TiO2/Au(111) . https://www.osti.gov/biblio/1372450
  74. Wang, Q. (2017). Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition . https://www.osti.gov/biblio/1395944
  75. Wan, W. & Chen, J. (2017). Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces. Chemical Society Reviews https://dx.doi.org/10.1039/c6cs00862c
  76. Lin, L. & Chen, J. (2017). Pt/Mo2C/C-cp as a highly active and stable catalyst for ethanol electrooxidation. Journal Of Power Sources https://dx.doi.org/10.1016/j.jpowsour.2017.02.001
  77. Waskasi, M. (2017). Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules. Journal of Physical Chemistry https://www.osti.gov/biblio/1349562
  78. CHEN, H. (2017). Chain Length Dependence of Energies of Electron and Triplet Polarons in Oligofluorenes. J. Phys. Chem. C https://www.osti.gov/biblio/1349560
  79. Dinpajooh, M. (2017). Free energy functionals for polarization fluctuations: Pekar factor revisited. Journal of Chemical Physics https://www.osti.gov/biblio/1349561
  80. Matyushov, D. (2017). Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents. Journal of Physical Chemistry https://www.osti.gov/biblio/1347381
  81. Nganga, J. (2017). Electrochemical Reduction of CO2 Catalyzed by Re(pyridine-oxazoline)(CO)3Cl Complexes. Inorganic Chemistry https://www.osti.gov/biblio/1349563
  82. Luo, S. (2017). Importance of Low Dimensional CeOx Nanostructures in Pt/CeOx-TiO2 Catalysts for the Water-Gas Shift Reaction. Jpcc https://www.osti.gov/biblio/1347370
  83. Hicks, S. (2017). Lifetimes in(124)Te: Examining critical-point symmetry in the Te nuclei . https://www.osti.gov/biblio/1395942
  84. An, W. (2017). Interfacial and Alloying Effects on Activation of Ethanol from First-Principles. https://www.osti.gov/biblio/1361266
  85. Kim, J. (2017). Electronic Structural Studies on the Improved Thermal Stability of Li(Ni0.8Co0.15Al0.05)O2 by ZrO2 Coating for Lithium Ion Batteries. Journal of Applied Electrochemistry https://www.osti.gov/biblio/1348290
  86. Cao, M. (2017). Suppressing Chromium Disproportion Reaction in O3-type Layered Cathode Material for High Capacity Sodium-ion Batteries. Journal of Materials Chemistry A https://www.osti.gov/biblio/1346753
  87. Betancourt, L. (2017). Rotating Disk Slurry Au Electrodeposition at Unsupported Carbon Vulcan XC-72 and Ce3+ Impregnation for Ethanol Oxidation in Alkaline Media. https://www.osti.gov/biblio/1366354
  88. Ngo, K. (2017). Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes. Journal of the American Chemical Society (JACS) https://www.osti.gov/biblio/1345736
  89. Liu, Y. (2017). Enhanced oxidation resistance of active nanostructures via dynamic size effect. https://www.osti.gov/biblio/1358014
  90. Xie, Z. (2017). Comparison of Methodologies of Activation Barrier Measurements for Reactions with Deactivation . https://www.osti.gov/biblio/1358017
  91. Matsubu, J. (2017). Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts . https://www.osti.gov/biblio/1358016
  92. Posada-Perez, S. (2017). Adsorption and dissociation of molecular hydrogen on orthorhombic beta-Mo2C and cubic delta-MoC (001) surfaces . https://www.osti.gov/biblio/1358020
  93. Zheng, D. (2017). Investigation of Li-S Battery Mechanism by Real-Time Monitoring the Changes of Sulfur and Polysulfide Species during the Discharge and Charge. ACS Applied Materials & Interfaces https://www.osti.gov/biblio/1342633
  94. Xu, J. (2017). Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries . https://www.osti.gov/biblio/1342638
  95. Li, Y. (2017). Enhancing Electrocatalytic Performance of Bifunctional Cobalt-Manganese-Oxynitride Nanocatalysts on Graphene . https://www.osti.gov/biblio/1354693
  96. Sherman, B. (2017). Light-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore-Catalyst Assembly. https://www.osti.gov/biblio/1349575

2016

  1. Matsubara, Y. (2016). Experimental Insight into the Thermodynamics of the Dissolution of Electrolytes in Room- Temperature Ionic Liquids: From the Mass Action Law to the Absolute Standard Chemical Potential of a Proton. ACS Omega https://www.osti.gov/biblio/1341613
  2. Plonka, A. (2016). In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-based Metal Organic Frameworks. https://www.osti.gov/biblio/1349576
  3. Xu, P. (2016). Periodic domain boundary ordering in a dense molecular adlayer: Sub-saturation carbon monoxide on Pd(111). Surface Science, 46-54 https://dx.doi.org/10.1016/j.susc.2016.12.004
  4. Jimenez-Orozco, C. (2016). Acetylene adsorption on delta-MoC(001), TiC(001) and ZrC(001) surfaces: a comprehensive periodic DFT study. https://www.osti.gov/biblio/1351740
  5. Lei, W. (2016). Bandgap- and Local Field-Dependent Photoactivity of Ag/Black Phosphorus Nanohybrids . https://www.osti.gov/biblio/1345735
  6. Manbeck, G. (2016). Hydricity, Electrochemistry, and Excited-State Chemistry of Ir Complexes for CO2 Reduction. Faraday Discussions https://www.osti.gov/biblio/1337642
  7. Zuo, Z. (2016). The Low‐Temperature Conversion of Methane to Methanol on Ce‐Ox/Cu2O catalysts: Water Controlled Activation of the C‐H Bond. The Journal of the American Chemical Society https://www.osti.gov/biblio/1333200
  8. Lustemberg, P. (2016). Room Temperature Activation of Methane and Dry Reforming with CO2 on Ni-CeO2(111)Surfaces: Effect of Ce3+ Sites and Metal-Support Interactions on C-H bond Cleavage. ACS Catalysis https://www.osti.gov/biblio/1333201
  9. Shaffer, D. (2016). Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine-Dicarboxylate Complexes . https://www.osti.gov/biblio/1344227
  10. Liu, Z. (2016). Elucidating the interaction between Ni and CeOx in ethanol steam reforming catalysts: A perspective of recent studies over model and powder systems . https://www.osti.gov/biblio/1331071
  11. Grinter, D. (2016). In situ growth, structure, and real-time chemical reactivity of well-defined CeOx-Ru(0001) model surfaces . https://www.osti.gov/biblio/1331072
  12. Yan, B. (2016). Dry Reforming of Ethane and Butane with CO2 over PtNi/CeO2 Bimetallic Catalysts . https://www.osti.gov/biblio/1342631
  13. Kattel, S. (2016). CO2 hydrogenation on Pt, PtiSiO(2) and Pt/TiO2: Importance of synergy between Pt and oxide support . https://www.osti.gov/biblio/1341672
  14. Myint, M. (2016). Reforming and oxidative dehydrogenation of ethane with CO2 as a soft oxidant over bimetallic catalysts . https://www.osti.gov/biblio/1341673
  15. Wang, L. (2016). Efficient Hydrogen Storage and Production using an Iridium Catalyst with an Imidazoline-Based Proton-Responsive Ligand in Water. ChemSusChem https://www.osti.gov/biblio/1337648
  16. Kuttiyiel, K. (2016). Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction . https://www.osti.gov/biblio/1346747
  17. Zuo, Z. (2016). Low-Temperature Conversion of Methane to Methanol on CeOx/Cu2O Catalysts: Water Controlled Activation of the C-H Bond . https://www.osti.gov/biblio/1345747
  18. Fickel, D. (2016). Chloromethane to olefins over H-SAPO-34: Probing the hydrocarbon pool mechanism . https://www.osti.gov/biblio/1341680
  19. Chen, G. (2016). Oxygen Reduction Kinetics on Pt Monolayer Shell Highly Affected by the Structure of Bimetallic AuNi Cores. Chemistry of Materials https://www.osti.gov/biblio/1329922
  20. Alexandrou, K. (2016). Improving the radiation hardness of graphene field effect transistors . https://www.osti.gov/biblio/1341676
  21. Grinter, D. (2016). Potassium and Water Coadsorption on TiO2(110): OH-Induced Anchoring of Potassium and the Generation of Single-Site Catalysts . https://www.osti.gov/biblio/1337656
  22. Xiong, K. (2016). Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces . https://www.osti.gov/biblio/1338591
  23. Senanayake, S. (2016). Interfacial Cu+ promoted surface reactivity: Carbon monoxide oxidation reaction over polycrystalline copper-titania catalysts . https://www.osti.gov/biblio/1329786
  24. Lall-Ramnarine, S. & Wishart, J. (2016). The Effect of Lengthening Cation Ether Tails On Ionic Liquid Properties. ECS Transactions https://www.osti.gov/biblio/1425011
  25. Lall-Ramnarine, S. & Wishart, J. (2016). Transport Properties of Ionic Liquid Mixtures Containing Heterodications. ECS - Transactions https://www.osti.gov/biblio/1425013
  26. Twagirayezu, S. (2016). Quadrupole splittings in the near-infrared spectrum of 14NH3. Journal of Chemical Physics https://www.osti.gov/biblio/1328384
  27. Vukmirovic, M. (2016). Controllable Deposition of Platinum Layers on Oxide Surfaces for the Synthesis of Fuel Cell Catalysts. ChemElectroChem https://www.osti.gov/biblio/1326755
  28. Zhang, Z. (2016). A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life. Advanced Energy Materials https://www.osti.gov/biblio/1326759
  29. Kattel, S. (2016). Optimizing Binding Energies of Key Intermediates for CO2 Hydrogenation to Methanol over Oxide-Supported Copper . https://www.osti.gov/biblio/1345746
  30. Xu, Y. (2016). Structural Integrity - Searching the Key Factor to Suppress the Voltage Fade of Li-rich Layered Cathode Materials through 3D X-ray Imaging and Spectroscopy Techniques. Nano Energy https://www.osti.gov/biblio/1326739
  31. Manbeck, G. (2016). Proton-Coupled Electron Transfer in a Strongly Coupled Photosystem II-Inspired Chromophore-Imidazole-Phenol Complex: Stepwise Oxidation and Concerted Reduction . https://www.osti.gov/biblio/1336211
  32. Li, M. (2016). Separation of scintillation and Cherenkov lights in linear alkyl benzene . https://www.osti.gov/biblio/1331067
  33. Zheng, D. (2016). Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery . https://www.osti.gov/biblio/1342632
  34. An, W. (2016). The complex behavior of the Pd-7 cluster supported on TiO2(110) during CO oxidation: adsorbate-driven promoting effect . https://www.osti.gov/biblio/1342650
  35. Liu, J. (2016). Quantification of Honeycomb Number-Type Stacking Faults: Application to Na3Ni2BiO6 Cathodes for Na-Ion Batteries . https://www.osti.gov/biblio/1336212
  36. Buck, C. (2016). Metal-loaded organic scintillators for neutrino physics . https://www.osti.gov/biblio/1336174
  37. Magee, J. (2016). Infrared Spectroscopy Investigation of Fe-Promoted Rh Catalysts Supported on Titania and Ceria for CO Hydrogenation . https://www.osti.gov/biblio/1333205
  38. Peterson, R. (2016). The Phylogeny and Active Site Design of Eukaryotic Cu-only Superoxide Dismutases. Journal of Biological Chemistry https://www.osti.gov/biblio/1336119
  39. Yu, H. (2016). An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion. Journal of Chemical Physics https://www.osti.gov/biblio/1303029
  40. Goncharov, V. (2016). Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode. Journal of Chemical Physics https://www.osti.gov/biblio/1303027
  41. Zhou, J. (2016). Imaging surface morphology, chemistry and conductivity, and local spectroscopy of LiNi1/3Fe1/3Mn4/3O4 crystalline facets using XRF/TEY implemented scanning transmission X-ray microscopy. Physical Chemistry Chemical Physics https://www.osti.gov/biblio/1303150
  42. Le, A. (2016). The near-infrared spectrum of ethynyl radical. Journal of Chemical Physics https://www.osti.gov/biblio/1303024
  43. Hoffman, F. (2016). Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO . https://www.osti.gov/biblio/1303022
  44. Grinter, D. (2016). Water-gas shift reaction over gold nanoparticles dispersed on nanostructured CeOx-TiO2(110) surfaces: Effects of high ceria coverage . https://www.osti.gov/biblio/1303023
  45. Biassoni, M. (2016). Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project . https://www.osti.gov/biblio/1336229
  46. Hoffman, P. (2016). Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO . https://www.osti.gov/biblio/1333202
  47. Grinter, D. (2016). Water-gas shift reaction over gold nanoparticles dispersed on nanostructured CeOx-TiO2(110) surfaces: Effects of high ceria coverage . https://www.osti.gov/biblio/1333203
  48. Schneider, T. (2016). Mechanism of Photocatalytic Reduction of CO2 by Re(bpy)(CO)(3)Cl from Differences in Carbon Isotope Discrimination . https://www.osti.gov/biblio/1331074
  49. Zhou, Y. (2016). High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries. Advanced Energy Materials https://www.osti.gov/biblio/1336072
  50. Zhu, S. (2016). The Role of Citric Acid in Perfecting Platinum Monolayer on Palladium Nanoparticles during the Surface Limited Redox Replacement Reaction. Journal Of the Electrochemical Society https://dx.doi.org/10.1149/2.0061612jes
  51. Hu, J. (2016). Increasing Stability and Activity of Core-Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti-Au@Pt/C . https://www.osti.gov/biblio/1329805
  52. Wu, Q. (2016). Understanding the Interactions of CO2 with Doped and Undoped SrTiO3 . https://www.osti.gov/biblio/1333196
  53. Liu, S. (2016). Mechanism of Oxygen Reduction Reaction on Pt(111) in Alkaline Solution: Importance of Chemisorbed Water on Surface. https://www.osti.gov/biblio/1328388
  54. Kokkin, D. (2016). Detection and characterization of singly deuterated silylene, SiHD, via optical spectroscopy. Journal of Chemical Physics https://www.osti.gov/biblio/1263914
  55. Hong, S. (2016). Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111). https://www.osti.gov/biblio/1329916
  56. Rodriguez, J. (2016). Inverse Oxide/Metal Catalysts in Fundamental Studies and Practical Applications: A Perspective of Recent Developments . https://www.osti.gov/biblio/1326742
  57. Liu, Z. (2016). Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni-CeO2(111) catalysts: an in situ study of C-C and O-H bond scission . https://www.osti.gov/biblio/1333206
  58. Posada-Perez, S. (2016). Highly Active Au/delta-MoC and Cu/delta-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability . https://www.osti.gov/biblio/1326741
  59. Liu, F. (2016). A novel small molecule compound of Lithium Iodine and 3-Hydroxypropionitride as Solid-state Electrolyte for Lithium-Air Batteries. https://www.osti.gov/biblio/1326753
  60. Kattel, S. (2016). CO2 Hydrogenation over Oxide-Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity . https://www.osti.gov/biblio/1333197
  61. Xie, Y. (2016). Water Oxidation by Ruthenium Complexes Incorporating Multifunctional Bipyridyl Diphosphonate Ligands . https://www.osti.gov/biblio/1333198
  62. Chen, G. (2016). Evaluation of Oxygen Reduction Activity by the Thin-Film Rotating Disk Electrode Methodology: the Effects of Potentiodynamic Parameters . https://www.osti.gov/biblio/1333204
  63. Plata, J. (2016). Cu Deposited on CeOx-Modified TiO2(110): Synergistic Effects at the Metal-Oxide Interface and the Mechanism of the WGS Reaction . https://www.osti.gov/biblio/1326740
  64. Li, H. (2016). Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions . https://www.osti.gov/biblio/1336109
  65. Jimenez-Orozco, C. (2016). Systematic Theoretical Study of Ethylene Adsorption on delta-MoC(001), TiC(001), and ZrC(001) Surfaces . https://www.osti.gov/biblio/1326743
  66. Nguyen-Phan, T. (2016). Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H-2 production . https://www.osti.gov/biblio/1337641
  67. Liu, Z. (2016). Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C-H Bond Breaking . https://www.osti.gov/biblio/1333199
  68. Craig, P. (2016). Electronic Spectra of the Tetraphenylcyclobutadienecyclopentadienylnickel(II) Cation and Radical. Journal Of Physical Chemistry A https://www.osti.gov/biblio/1255730
  69. DUan, L. (2016). Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3)]2+ (6DHBP = 6,6ʹ-(OH)2bpy). Inorganic Chemistry https://www.osti.gov/biblio/1335424
  70. Zheng, D. (2016). Stability of the Solid Electrolyte Interface on the Li Electrode in Li-S Batteries . https://www.osti.gov/biblio/1336056
  71. Yu, H. (2016). Full-dimensional Quantum Calculations of Vibrational Levels of NH4+ and Isotopomers on An Accurate Ab Initio Potential Energy Surface. J. Phys. Chem. A https://www.osti.gov/biblio/1245399
  72. Wen, B. (2016). Li3Mo4P5O24: A Two-Electron Cathode for Lithium-Ion Batteries with Three-Dimensional Diffusion Pathways . https://www.osti.gov/biblio/1257965
  73. Blyth, D. (2016). Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory . https://www.osti.gov/biblio/1257960
  74. Bligaard, T. (2016). Toward Benchmarking in Catalysis Science: Best Practices, Challenges, and Opportunities . https://www.osti.gov/biblio/1257959
  75. Liu, W. (2016). A Highly-Active and Stable Hydrogen Evolution Catalyst Based on Pyrite-Structured Cobalt Phosphosulfide. Nature Communications https://www.osti.gov/biblio/1245394
  76. Mudiyanselage, K. (2016). How to stabilize highly active Cu+ cations in a mixed-oxide catalyst . https://www.osti.gov/biblio/1246791
  77. Garrick, T. (2016). The Effect of the Surface Composition of Ru-Pt Bimetallic Catalysts for Methanol Oxidation. Electrochimica Acta https://dx.doi.org/10.1016/j.electacta.2016.02.134
  78. Hoecker, J. (2016). Controlling Heteroepitaxy by Oxygen Chemical Potential: Exclusive Growth of (100) Oriented Ceria Nanostructures on Cu(111) . https://www.osti.gov/biblio/1303025
  79. Caliandro, R. (2016). Static and Dynamical Structural Investigations of Metal-Oxide Nanocrystals by Powder X-ray Diffraction: Colloidal Tungsten Oxide as a Case Study . https://www.osti.gov/biblio/1336039
  80. Mezyk, S. (2016). The role of organic solvent radical cations in separations ligand degradation . https://www.osti.gov/biblio/1329809
  81. Kim, H. (2016). Scalable Fabrication of Micron-Scale Graphene Nanomeshes for High-Performance Supercapacitor Applications. Energy & Environmental Science https://www.osti.gov/biblio/1335394
  82. von Krosigk, B. & Yeh, M. (2016). Measurement of Alpha-particle quenching in LAB based scintillator in independent small-scale experiments. European Physical Journal C https://www.osti.gov/biblio/1439848
  83. Liu, W. (2016). A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide . https://www.osti.gov/biblio/1247983
  84. Hack, J. (2016). Identification of Ion-Pair Structures in Solution by Vibrational Stark Effects . https://www.osti.gov/biblio/1247984
  85. Nguyen-Phan, T. (2016). Unraveling the Hydrogenation of TiO2 and Graphene Oxide/TiO2 Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis . https://www.osti.gov/biblio/1248809
  86. Holmes-Ross, H. (2016). Rotational and Angular Distributions of NO Products from NO-Rg(Rg = He, Ne, Ar) Complex Photodissociation. Journal of Chemical Physics https://www.osti.gov/biblio/1235882
  87. Zhang, T. (2016). Organic Pollutant Photodecomposition by Ag/KNbO3 Nanocomposites: A Combined Experimental and Theoretical Study . https://www.osti.gov/biblio/1247985
  88. Tian, X. (2016). Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction . https://www.osti.gov/biblio/1257951
  89. Posada-Perez, S. (2016). The conversion of CO2 to methanol on orthorhombic beta-Mo2C and Cu/beta-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity . https://www.osti.gov/biblio/1351739
  90. von Wald Cresce, A. (2016). Anion Solvation in Carbonate-Based Electrolytes. Journal of Physical Chemistry C. https://www.osti.gov/biblio/1335377
  91. Senanayake, S. (2016). Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal-Oxide Interface and Importance of Ce3+ Sites . https://www.osti.gov/biblio/1246804
  92. Ho, J. (2016). Calculating Free Energy Changes in Continuum Solvation Models . https://www.osti.gov/biblio/1335434
  93. Ashenfelter, J. (2016). Background radiation measurements at high power research reactors . https://www.osti.gov/biblio/1235885
  94. Nguyen-Phan, T. (2016). Visible Light-Driven H-2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods . https://www.osti.gov/biblio/1335401
  95. Sasaki, K. (2016). Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Mono layer Electrocatalysts . https://www.osti.gov/biblio/1335400
  96. Porosoff, M. (2016). Catalytic reduction of CO2 by H-2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities . https://www.osti.gov/biblio/1335402
  97. Andringa, S. & Yeh, M. (2016). Current Status and Future Prospects of the SNO plus Experiment. Advances in High Energy Physics https://www.osti.gov/biblio/1439849
  98. Zheng, D. (2016). Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide . https://www.osti.gov/biblio/1235890
  99. Hwang, S. (2016). Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons . https://www.osti.gov/biblio/1302999

2015

  1. Yu, X. (2015). Strategies to curb structural changes of lithium/transition metaloxide cathode materials & the changes effects on thermal & cycling stability. Chinese Physics B https://www.osti.gov/biblio/1233371
  2. Hu, E. (2015). Utilizing Environmental Friendly Fe with Unique Electronic Structure as Substitution Element in Spinel Structured Cathode Material for Safer High Energy Lithium-ion Batteries. Advanced Energy Materials https://www.osti.gov/biblio/1229522
  3. Porosoff, M. (2015). Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation . https://www.osti.gov/biblio/1246794
  4. An, W. (2015). Potassium-Induced Effect on the Structure and Chemical Activity of the CuxO/Cu(111) (x <= 2) Surface: A Combined Scanning Tunneling Microscopy and Density Functional Theory Study . https://www.osti.gov/biblio/1335403
  5. Campecino, J. (2015). A Semisynthetic Strategy Leads to Alteration of the Backbone Amidate Ligand in the NiSOD Active Site. Jacs https://www.osti.gov/biblio/1335404
  6. Armstrong, D. (2015). Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report) . https://www.osti.gov/biblio/1335389
  7. Caliandro, R. (2015). Tailored multivariate analysis for modulated enhanced diffraction . https://www.osti.gov/biblio/1335384
  8. Getzoff, E. (2015). Structural, functional and immunogenic insights on Cu,Zn Superoxide Dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus. https://www.osti.gov/biblio/1235891
  9. Xu, S. (2015). Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO2 Hydrogenation. Eur. J. Inorg. Chem, 5591-5594 https://www.osti.gov/biblio/1335387
  10. Estes, D. (2015). The Reaction of Cobaloximes with Hydrogen: Products and Thermodynamics. https://www.osti.gov/biblio/1183829
  11. Newton, M. (2015). Extension of Hopfield's Electron Transfer Model To Accommodate Site-Site Correlation. https://www.osti.gov/biblio/1335383
  12. Garg, K. (2015). Striking Differences of Properties of Geometric Isomers of [Ir(tpy)(ppy)H]+: Experimental and Computational Studies on their Hydricities, Interaction with CO2, and Photochemistry. https://www.osti.gov/biblio/1263904
  13. Min, S. (2015). Electrocatalytic Reduction of Carbon Dioxide with a Well-Defined PN3-Ru Pincer Complex . https://www.osti.gov/biblio/1248808
  14. Onishi, N. (2015). Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands. Catal. Sci. Tech. https://dx.doi.org/10.1039/c5cy01865j
  15. Senanayake, S. (2015). Surface Reactions of Ethanol over UO2(100) Thin Film. https://www.osti.gov/biblio/1235892
  16. Elbert, K. (2015). Elucidating Hydrogen Oxidation/Evolution Kinetics in Base and Acid by Enhanced Activities at the Optimized Pt Shell Thickness on the Ru Core . https://www.osti.gov/biblio/1235883
  17. Liu, P. (2015). Potassium-induced effect on structure and chemical activity of CuxO/Cu(111) (x<=2) surface: a combined STM and DFT study. ChemcatChem https://www.osti.gov/biblio/1224792
  18. Suarez, S. (2015). Do TFSA Anions Slither? Pressure Exposes the Role of TFSA Conformational Exchange in Self-Diffusion. Journal of Physical Chemistry B https://dx.doi.org/10.1021/acs.jpcb.5b08658
  19. Yue, J. (2015). O3-type Layered Transition Metal Oxide Na(NiCoFeTi)1/4O2 as a High Rate and Long Cycle Life Cathode Material for Sodium Ion Batteries. Journal of Materials Chemistry A https://dx.doi.org/10.1039/C5TA05769H
  20. Kelly, T. (2015). Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces. https://www.osti.gov/biblio/1224193
  21. Giacomo Asara, G. (2015). Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO2 hydrogenation. https://www.osti.gov/biblio/1224763
  22. Pratt, A. (2015). Structural, functional and immunogenic insights on Cu,Zn Superoxide Dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus. https://www.osti.gov/biblio/1224775
  23. Rodriguez, J. (2015). Hydrogenation of CO2 to Methanol: Importance of Metal-Oxide and Metal-Carbide Interfaces in the Activation of CO2. https://www.osti.gov/biblio/1225435
  24. Nguyen-Phan, T. (2015). Striving Toward Noble-Metal-Free Photocatalytic Water Splitting: The Hydrogenated-Graphene-TiO2 Prototype . https://www.osti.gov/biblio/1232700
  25. Rodriguez, J. (2015). Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces. https://www.osti.gov/biblio/1224780
  26. An, W. (2015). Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction. ACS catalysis https://dx.doi.org/10.1021/acscatal.5b01656
  27. Zheng, D. (2015). Preferential Solvation of Lithium Cations and the Impacts on the Oxygen Reduction in Li-Air Batteries. https://www.osti.gov/biblio/1214540
  28. Graciani, J. (2015). When ruthenia met titania: achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides. https://www.osti.gov/biblio/1234376
  29. Skripnikov, L. (2015). Further investigation of g factors for the lead monofluoride ground state. https://www.osti.gov/biblio/1222617
  30. Palomino, R. (2015). The effect of Fe-Rh alloying on CO hydrogenation to C2+ oxygenates . https://www.osti.gov/biblio/1228866
  31. Hunter, T. (2015). The structure of the Caenorhabditis elegans Manganese Superoxide Dismutase MnSOD-3-Azide complex. Protein Science https://dx.doi.org/10.1002/pro.2768
  32. Matheu, R. (2015). Intramolecular Proton Transfer Boosts Water Oxidation Catalyzed by a Ru Complex . https://www.osti.gov/biblio/1226070
  33. Suarez, S. (2015). Do TFSA Anions Slither? Pressure Exposes the Role of TFSA Conformational Exchange in Self-Diffusion. Journal of Physical Chemistry B https://dx.doi.org/10.1021/acs.jpcb.5b08658
  34. Hwang, S. (2015). Investigating the Reversibility of Structural Modifications of LixNiyMnzCo1−y−zO2 Cathode Materials during Initial Charge/Discharge at Multiple Length Scales. Chemistry of Materials https://dx.doi.org/10.1021/acs.chemmater.5b02457
  35. Hu, Y. (2015). A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Advanced Energy Materials https://dx.doi.org/10.1002/aenm.201501005
  36. Meng, F. (2015). Biomass-Derived High-Performance Tungsten-Based Electrocatalysts on Graphene for Hydrogen Evolution. Journal of Materials Chemistry A https://dx.doi.org/10.1039/C5TA05589J
  37. Mani, T. (2015). Electron Localization of Anions Probed by Nitrile Vibrations. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.5b04648
  38. Wang, W. (2015). CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. Chemical Reviews https://www.osti.gov/biblio/1214520
  39. Hu, J. (2015). Pt Monolayer Shell on Nitrided Alloy Core -A Path to Highly 7 Stable Oxygen Reduction Catalyst. Catalysts https://www.osti.gov/biblio/1213365
  40. Wang, W. (2015). Highly Robust Hydrogen Generation by Bio-Inspired Ir Complexes for Dehydrogenation of Formic Acid in Water: Experimental and Theoretical Mechanistic Investigations at Different pH. ACS Catalysis https://dx.doi.org/10.1021/acscatal.5b01090
  41. Zarzana, C. (2015). A Comparison of the gamma-Radiolysis of TODGA and T(EH)DGA Using UHPLC-ESI-MS Analysis . https://www.osti.gov/biblio/1240715
  42. Yang, X. & Chen, J. (2015). Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface. Journal of the American Chemical Society https://dx.doi.org/10.1021/jacs.5b06150
  43. Johnson, P. (2015). Photo-assisted Intersystem Crossing: The predominant triplet formation mechanism in some Isolated Polycyclic Aromatic Molecules excited with pulsed lasers. https://www.osti.gov/biblio/1213379
  44. Yu, L. (2015). CO Oxidation on Gold-Supported Iron Oxides: New Insights into Strong Oxide-Metal Interactions . https://www.osti.gov/biblio/1222616
  45. Campecino, J. (2015). A Semisynthetic Strategy Leads to Alteration of the Backbone Amidate Ligand in the NiSOD Active Site . https://www.osti.gov/biblio/1224774
  46. Yang, X. (2015). Direct Epoxidation of Propylene over Stabilized Cu+ Surface Sites on Ti Modified Cu2O. Angewandte International Edition Chemie https://dx.doi.org/10.1002/anie.201504538
  47. Twagirayezu, S. (2015). Frequency-comb referenced spectroscopy of v4- and v5-excited hot bands in the 1.5 mu m spectrum of C2H2. Journal of Molecular Spectroscopy https://dx.doi.org/10.1016/j.jms.2015.06.010
  48. Wang, J. (2015). Ultralow charge-transfer resistance with ultralow Pt loading for hydrogen evolution and oxidation using Ru@Pt core-shell nanocatalysts. Scientific Reports https://www.osti.gov/biblio/1213359
  49. Buceta, D. (2015). Controlling Bimetallic Nanostructures by the Microemulsion Method with Subnanometer Resolution Using a Prediction Model. https://www.osti.gov/biblio/1214524
  50. Bo, S. (2015). Defect-Tolerant Diffusion Channels for Mg2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO4 and MgxFe2-xB2O5 . https://www.osti.gov/biblio/1239784
  51. Liu, Z. (2015). Mechanistic Insights of Ethanol Steam Reforming over Ni-CeOx(111): The Importance of Hydroxyl Groups for Suppressing Coke Formation. The Journal of Physical Chemistry C https://dx.doi.org/10.1021/acs.jpcc.5b04310
  52. Zhou, Y. (2015). Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts . https://www.osti.gov/biblio/1214526
  53. Nakayama, M. (2015). Influence of Cluster-Support Interactions on Reactivity of Size-Selected NbxOy Clusters. https://www.osti.gov/biblio/1224194
  54. Lei, W. (2015). Surface-Structure Sensitivity of CeO2 Nanocrystals in Photocatalysis and Enhancing the Reactivity with Nanogold . https://www.osti.gov/biblio/1222610
  55. Forthomme, D. (2015). Application of the Hartmann-Tran profile to precise experimental data sets of 12C2H2. Journal of Quantitative Spectroscopy and Radiative Transfer https://dx.doi.org/10.1016/j.jqsrt.2015.06.013
  56. Zaikowski, L. (2015). Charge Transfer Fluorescence and 34 nm Exciton Diffusion Length in Polymers with Electron Acceptor End Traps. https://www.osti.gov/biblio/1214521
  57. Xi, L. (2015). Transport of Triplet Excitons along Continuous 100 nm Polyfluorene Chains. https://www.osti.gov/biblio/1214522
  58. Hurst, J. (2015). Mechanistic Insight into Peroxydisulfate Reactivity: Oxidation of the cis,cis-[Ru(bpy)(2)(OH2)](2)O4+ Blue Dimmer. https://www.osti.gov/biblio/1214523
  59. Lukatskaya, M. (2015). Probing the mechanism of high capacitance in two-dimensional titanium carbide using in-situ X-Ray absorption spectroscopy. Advanced Energy Materials https://www.osti.gov/biblio/1188237
  60. Hwang, S. (2015). Using Real-Time Electron Microscopy To Explore the Effects of Transition-Metal Composition on the Local Thermal Stability in Charged Li(x)Nli(y)Mn(z)Co(1-y-z)O(2) Cathode Materials . https://www.osti.gov/biblio/1214525
  61. Fujita, E. (2015). Preface: Forum on Small Molecules Related to Carbon-Containing Fuels. https://www.osti.gov/biblio/1188265
  62. Matheu, R. (2015). Behavior of the Ru-bda Water Oxidation Catalyst Covalently Anchored on Glassy Carbon Electrodes. https://www.osti.gov/biblio/1221759
  63. Block, E. (2015). Implausibility of the vibrational theory of olfaction. https://www.osti.gov/biblio/1213361
  64. Rodriguez, J. (2015). The carburization of transition metal molybdates (MxMoO4, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO2 hydrogenation. Catalysis Letters https://dx.doi.org/10.1007/s10562-015-1540-5
  65. Lewandowska-Andralojc, A. (2015). Mechanistic Studies of Hydrogen Evolution in Aqueous Solution Catalyzed by a Tertpyridine-Amine Cobalt Complex. https://www.osti.gov/biblio/1213364
  66. Grills, D. (2015). Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility. https://www.osti.gov/biblio/1183835
  67. Zhang, T. (2015). Insights into the structure-photoreactivity relationships in well-defined perovskite ferroelectric KNbO3 nanowires . https://www.osti.gov/biblio/1222609
  68. Zheng, D. (2015). Investigation of the Electrocatalytic Oxygen Reduction and Evolution Reactions in Lithium-Oxygen Batteries. https://www.osti.gov/biblio/1177850
  69. Rodriguez, J. (2015). Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants. Journal of Catalysis https://www.osti.gov/biblio/1183268
  70. Li, H. (2015). Effects of Mg Doping on Remarkably Enhanced Electrochemistry Performances of Na3V2(PO4)3 Cathode Material for Sodium Ion Batteries. https://www.osti.gov/biblio/1177849
  71. Yu, X. (2015). Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during first cycle by in situ X-Ray fluorescence microscopy. Advanced Energy Materials https://dx.doi.org/10.1002/aenm.201500072
  72. Rodriguez, J. (2015). Pulse studies to decipher the role of surface morphology in CuO/CeO2 nanocatalysts for the water gas shift reaction. Catalysis Letters https://www.osti.gov/biblio/1183269
  73. Wang, Y. (2015). Ti substituted tunnel-type Na0.44MnO2 oxide as negative electrode for aqueous sodium-ion batteries. Nature Communications https://dx.doi.org/10.1038/ncomms7401
  74. Youn, H. (2015). High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors. ChemSusChem https://www.osti.gov/biblio/1177001
  75. Ruijun, H. (2015). Replacing Precious Metals with Carbide Catalysts for Hydrogenation Reactions. Topics in Catalysis https://dx.doi.org/10.1007/s11244-015-0365-1
  76. Manbeck, G. (2015). A Review of Iron and Cobalt Porphyrins, Phthalocyanines, and Related Complexes for Electrochemical and Photochemical Reduction of Carbon Dioxide. J. Porphyrins and Phthalocyanines https://www.osti.gov/biblio/1182538
  77. Forthomme, D. (2015). Doppler-Resolved Kinetics of Saturation Recovery. J Phys Chem A https://dx.doi.org/10.1021/acs.jpca.5b00628
  78. Carrasco, J. (2015). In Situ and Theoretical Studies for the Dissociation of Water on an Active Ni/CeO2 Catalyst: Importance of Strong Metal-Support Interactions for the Cleavage of O-H Bonds. https://www.osti.gov/biblio/1183857
  79. Zheng, D. (2015). Quantitative and Qualitative Determination of Polysulfide Species in the Electrolyte of Lithium-Sulfur Battery by HPLC ESI/MS with One-step Derivatization. Advanced Energy Materials https://dx.doi.org/10.1002/aenm.201401888
  80. Ma, W. (2015). Non-equilibrium oxidation states of zirconium during early stages of metal oxidation . https://www.osti.gov/biblio/1234379
  81. Yue, J. (2015). Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe2(MoO4)3. https://www.osti.gov/biblio/1182528
  82. Mahmood, Q. (2015). Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures. ACS Nano Letters https://dx.doi.org/10.1021/nl504200y
  83. Ertem, M. (2015). Photoinduced Water Oxidation at the Aqueous GaN (101̅0) Interface: Deprotonation Kinetics of the First Proton-Coupled Electron-Transfer Step. https://www.osti.gov/biblio/1183858
  84. Liu, J. (2015). TiO2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure . https://www.osti.gov/biblio/1221760
  85. Manbeck, G. (2015). Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO2 Reduction Catalysts. J. Physical Chemistry B https://dx.doi.org/%2010.1021/jp511131x
  86. Onishi, N. (2015). CO2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-responsive Ligand. Inorganic Chemistry https://dx.doi.org/10.1021/ic502904q
  87. Xiao, J. (2015). Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries. https://www.osti.gov/biblio/1169566
  88. Concepcion, J. (2015). Mechanism of water oxidation by [Ru(bda)(L)(2)]: the return of the blue dimer. https://www.osti.gov/biblio/1183859
  89. Khalifah, P. (2015). Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings. https://www.osti.gov/biblio/1183834
  90. Zhou, J. (2015). Characterization of One-Dimensional Molecular Chains of 4,4'-Biphenyl Diisocyanide on Au(111) by Scanning Tunneling Microscopy. Journal of Chemical Physics https://www.osti.gov/biblio/1182489
  91. Yu, H. (2015). Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules. https://www.osti.gov/biblio/1182509
  92. Divins, N. (2015). The influence of nano-architectured CeOx supports in RhPd/CeO2 for the catalytic ethanol steam reforming reaction. Catalysis Today https://dx.doi.org/10.1016/j.cattod.2014.12.042
  93. Santhanagopalan, D. (2015). Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography . https://www.osti.gov/biblio/1182519
  94. Luo, S. (2015). Hierarchical Heterogeneity at the CeOx-TiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures. https://www.osti.gov/biblio/1188249
  95. Luo, S. (2015). Hierarchical Heterogeneity at the CeOx-TiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures. https://www.osti.gov/biblio/1183830
  96. Guo, Y. (2015). Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship. https://www.osti.gov/biblio/1213360
  97. Maroney, M. (2015). Nickel Superoxide Dismutase: Structural and Functional Roles of His1 and its H-bonding Network. Biochemistry https://dx.doi.org/10.1021/bi501258u
  98. Mani, T. (2015). Vibrational Stark Effects To Identify Ion Pairing and Determine Reduction Potentials in Electrolyte-Free Environments. https://www.osti.gov/biblio/1183827
  99. Vogt, L. (2015). Computational Insights on Crystal Structures of the Oxygen-Evolving Complex of Photosystem II with Either Ca2+ or Ca2+ Substituted by Sr2+. https://www.osti.gov/biblio/1183828

2014

  1. Yu, H. & Yu, H. (2014). A complex guided spectral transform Lanczos method for studying quantum resonance states. https://www.osti.gov/biblio/1182481
  2. Hu, E. (2014). Thermal stability in the blended lithium manganese oxide - Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study. Journal of Power Sources https://dx.doi.org/10.1016/j.jpowsour.2014.12.015
  3. Liu, C. (2014). Mechanistic Study of Methanol Synthesis from CO2 and H-2 on a Modified Model Mo6S8 Cluster. https://www.osti.gov/biblio/1183833
  4. Zhang, L. (2014). Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries. https://www.osti.gov/biblio/1182479
  5. Mudiyanselage, K. & Stacchiola, D. (2014). Adsorbate-driven morphological changes on Cu(111) nano-pits. Physical Chemistry Chemical Physics https://dx.doi.org/10.1039/C4CP05088F
  6. Teixeira, M. (2014). Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue. https://www.osti.gov/biblio/1182506
  7. Huang, X. (2014). Insight into the Atomic Structure of High-Voltage Spinel 2 LiNi0.5Mn1.5O4 Cathode Material. https://www.osti.gov/biblio/1169558
  8. Zheng, D. (2014). Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries. https://www.osti.gov/biblio/1172108
  9. Shaikh, N. (2014). Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms . https://www.osti.gov/biblio/1169029
  10. Zhou, Y. (2014). Tuning charge-discharge induce Q1 d unit cellbreathing through metal-metal bonding inlayer-structured cathode materials for lithium-ionbatteries. Nature Communications https://dx.doi.org/10.1038/ncomms6381
  11. Zhou, Y. (2014). FeO 0.7 F 1.3 /C Nanocomposite as a High-Capacity Cathode Material for Sodium-Ion Batteries. https://www.osti.gov/biblio/1169557
  12. Sun, Y. (2014). Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes. https://www.osti.gov/biblio/1183838
  13. Suna, Y. (2014). Positional Effects of Hydroxy Groups on Catalytic Activity of Proton-Responsive Half-Sandwich Cp*Iridium(III) Complexes. https://www.osti.gov/biblio/1182539
  14. Kuttiyiel, K. (2014). Au-Promoted Structurally Ordered Intermetallic PdCo Nanoparticles for the Oxygen Reduction Reaction. https://www.osti.gov/biblio/1182508
  15. Yoon, W. (2014). In situ soft XAS study on nickel-based layered cathode material at elevated temperatures: A novel approach to study thermal stability . https://www.osti.gov/biblio/1169028
  16. Wang, Q. (2014). Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li-air batteries. https://www.osti.gov/biblio/1177851
  17. Kharche, N. (2014). First-Principles Approach to Calculating Energy Level Alignment at Aqueous Semiconductor Interfaces . https://www.osti.gov/biblio/1182496
  18. Li, X. (2014). O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: a quaternary layered cathode compound for rechargeable Na ion batteries. Electrochemistry Communications https://dx.doi.org/10.1016/j.elecom.2014.10.003
  19. Wang, J. (2014). Can CO-tolerant Anodes be Economically Viable for PEMFC Applications with Reformates?. https://www.osti.gov/biblio/1169026
  20. Amaresh, S. (2014). Metal Oxide Coated Lithium Cobalt Fluorophosphate Cathode Materials for Lithium Secondary Batteries-Effect of Aging and Temperature. https://www.osti.gov/biblio/1149438
  21. Lee, S. (2014). Preparation and Characterization of Chlorine Doped Li3V2(PO4)3 as High Rate Cathode Active Material for Lithium Secondary Batteries. https://www.osti.gov/biblio/1149439
  22. Guo, Y. (2014). Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research https://dx.doi.org/10.1007/s12274-014-0588-7
  23. Brasch, N. (2014). Pulse Radiolysis Studies of the Reaction of Nitrogen Dioxide with the Vitamin B12 Complexes Cob(II)alamin and Nitrocobalamin. https://www.osti.gov/biblio/1182504
  24. Yang, X. (2014). A new class of electrocatalysts of supporting Pt on an Engel-Brewer alloy substrate: a demonstration for oxidation of ethylene glycol. https://www.osti.gov/biblio/1160052
  25. Yang, X. (2014). A new class of electrocatalysts of supporting Pt on an Engel-Brewer alloy substrate: a demonstration for oxidation of ethylene glycol . https://www.osti.gov/biblio/1165959
  26. Cave, R. (2014). Multistate Treatments of the Electronic Coupling in Donor-Bridge-Acceptor Systems: Insights and Caveats from a Simple Model. https://www.osti.gov/biblio/1165689
  27. Sekharan, S. (2014). QM/MM Model of the Mouse Olfactory Receptor MOR244-3 Validated by Site-Directed Mutagenesis Experiments . https://www.osti.gov/biblio/1162385
  28. Chen, W. (2014). Tungsten Carbide-Nitride on Graphene Nanoplatelets as a Durable Hydrogen Evolution Electrocatalyst. https://www.osti.gov/biblio/1165732
  29. Whiteley, J. (2014). Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor. https://www.osti.gov/biblio/1165731
  30. Roller, J. (2014). Flame-Based Synthesis of Core-Shell Structures Using Pd-Ru and Pd Cores. https://www.osti.gov/biblio/1165688
  31. Roller, J. (2014). Flame-Based Synthesis of Core-Shell Structures Using Pd-Ru and Pd Cores. https://www.osti.gov/biblio/1165966
  32. Roller, J. (2014). Flame-Based Synthesis of Core-Shell Structures Using Pd-Ru and Pd Cores . https://www.osti.gov/biblio/1165691
  33. Tang, P. (2014). The microwave adsorption behavior and microwave-assisted heteroatoms doping of graphene-based nano-carbon materials . https://www.osti.gov/biblio/1163937
  34. Asara, G. (2014). New Insights into the Structure of the C-Terminated beta-Mo2C (001) Surface from First-Principles Calculations . https://www.osti.gov/biblio/1160056
  35. Weissenrieder, J. (2014). Reactivity and Mass Transfer of Low-Dimensional Catalysts . https://www.osti.gov/biblio/1172079
  36. Mudiyanselage, K. (2014). Isolation and characterization of formates on CeOx-CuyO/Cu(111) . https://www.osti.gov/biblio/1169561
  37. Xu, F. (2014). Redox-Mediated Reconstruction of Copper during Carbon Monoxide Oxidation. https://www.osti.gov/biblio/1160031
  38. Kim, J. (2014). Analysis of Charged State Stability for Monoclinic LiMnBO3 Cathode. https://www.osti.gov/biblio/1160027
  39. Magee, J. (2014). Promotion of Pt surfaces for ethanol electro-oxidation by the addition of small SnO2 nanoparticles: Activity and mechanism. https://www.osti.gov/biblio/1149080
  40. Ma, J. (2014). Molybdenum Substitution for Improving the Charge Compensation and Activity of Li2MnO3. https://www.osti.gov/biblio/1160030
  41. Kottas, G. (2014). Tetraarylcyclobutadienecyclopentadienylcobalt Complexes: Synthesis, Electronic Spectra, Magnetic Circular Dichroism, Linear Dichroism, and TD DFT Calculations. https://www.osti.gov/biblio/1160040
  42. Beriguete, W. (2014). Production of a gadolinium-loaded liquid scintillator for the Daya Bay reactor neutrino experiment . https://www.osti.gov/biblio/1165692
  43. Buceta, D. (2014). Critical Size Range of Sub-Nanometer Au Clusters for the Catalytic Activity in the Hydrogen Oxidation Reaction. https://www.osti.gov/biblio/1165965
  44. Buceta, D. (2014). Critical Size Range of Sub-Nanometer Au Clusters for the Catalytic Activity in the Hydrogen Oxidation Reaction . https://www.osti.gov/biblio/1160028
  45. Akimov, A. (2014). Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics . https://www.osti.gov/biblio/1149120
  46. Bo, S. (2014). Thin-Film and Bulk Investigations of LiCoBO3 as a Li-Ion Battery Cathode . https://www.osti.gov/biblio/1160042
  47. Kelly, T. (2014). Theoretical and Experimental Studies of Ethanol Decomposition and Electrooxidation over Pt-Modified Tungsten Carbide. https://www.osti.gov/biblio/1160041
  48. Kelly, T. (2014). Theoretical and Experimental Studies of Ethanol Decomposition and Electrooxidation over Pt-Modified Tungsten Carbide. https://www.osti.gov/biblio/1132501
  49. Liu, J. (2014). Ionic Conduction in Cubic Na3TiP3O9N, a Secondary Na-Ion Battery Cathode with Extremely Low Volume Change . https://www.osti.gov/biblio/1149119
  50. Baber, A. (2014). Stabilization of Catalytically Active Cu+ Surface Sites on Titanium-Copper Mixed-Oxide Films. https://www.osti.gov/biblio/1149128
  51. Wan, W. (2014). Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group . https://www.osti.gov/biblio/1149121
  52. Cheng, W. (2014). Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. https://www.osti.gov/biblio/1149081
  53. Kim, D. (2014). Effect of H2O on the Morphological Changes of KNO3 Formed on K2O/Al2O3 NOx Storage Materials: Fourier Transform Infrared and Time-Resolved X-ray Diffraction Studies . https://www.osti.gov/biblio/1131641
  54. Polyansky, D. (2014). Application of Pulse Radiolysis to Mechanistic Investigations of Water Oxidation Catalysis. https://www.osti.gov/biblio/1149890
  55. Holroyd, R. (2014). Pressure tuning of electron attachment to benzoquinoes in Nonpolar fluids: Continuous adjustment to free energy changes. The Journal of Physical Chemistry https://dx.doi.org/10.1021/jp412090k
  56. Vukmirovic, M. (2014). Pt monolayer shell on hollow Pd core electrocatalysts: scale up synthesis, structure, and activity for the oxygen reduction reaction. https://www.osti.gov/biblio/1124568
  57. Zhang, Y. (2014). High Performance Pt Mono layer Catalysts Produced via Core-Catalyzed Coating in Ethanol . https://www.osti.gov/biblio/1131642
  58. Akimov, A. (2014). Advanced Capabilities of the PYXAID Program: Integration Schemes, Decoherenc:e Effects, Multiexcitonic States, and Field-Matter Interaction . https://www.osti.gov/biblio/1130446
  59. Yu, X. (2014). Identifying the Critical Role of Li Substitution in P2-Nax(LiyNixMn1-y-z)O2(0 < x, y, z <1) Intercalation Cathode Materials for High Energy Na-ion Batteries. Chemistry of Materials https://www.osti.gov/biblio/1124553
  60. Kim, J. (2014). Unexpected high power performance of atomic layer deposition coated Li(Ni1/3Mn1/3C01/3)O2 cathodes. https://www.osti.gov/biblio/1124555
  61. Guzman-Blas, R. (2014). EDTA-Ce(111) Modified Pt Vulcan CX-72 Catalyst Synthesis for Methanol Oxidation in Acid Solution. https://www.osti.gov/biblio/1132461
  62. Axnanda, S. (2014). In Situ Characterizations of Nanostructured SnOx/Pt(111) Surfaces Using Ambient-Pressure XPS (APXPS) and High-Pressure Scanning Tunneling Microscopy (HPSTM) . https://www.osti.gov/biblio/1130447
  63. Trimithioti, M. (2014). Analysis of depolarization ratios of CINO2 dissolved in methanol. https://www.osti.gov/biblio/1132459
  64. Lopez, I. (2014). A Self-Improved Water Oxidation Catalyst: Is One Really Enough?. https://www.osti.gov/biblio/1123661

2013

  1. Xu, Z. (2013). Nanoscale Lamellar Monoclinic Li2MnO3 Phase with Stacking Disordering in Lithium-Rich and Oxygen-Deficient Li1.07O4-0 Cathode Materials. https://www.osti.gov/biblio/1124573
  2. Lucier, B. (2013). Unravelling the Structure of Magnus' Pink Salt . https://www.osti.gov/biblio/1130445
  3. Zamadar, M. (2013). Giant infrared absorption bands of electrons and holes in conjugated molecules. https://www.osti.gov/biblio/1123660
  4. Lee, S. (2013). Structural Changes in Reduced Graphene Oxide upon MnO2 Deposition by the Redox Reaction between Carbon and Permanganate Ions. The Journal of Physical Chemistry https://dx.doi.org/10.1021/jp411176b
  5. Bakalis, J. (2013). Polarons, Compressed Polarons, and Bipolarons in Conjugated Polymers. https://www.osti.gov/biblio/1132458
  6. Wang, L. (2013). Quantized Hamiltonian dynamics captures the low-temperature regime of charge transport in molecular crystals. https://www.osti.gov/biblio/1129003
  7. Kuttiyiel, K. (2013). Core-shell, hollow-structured iridium-nickel nitride nanoparticles for the hydrogen evolution reaction. https://www.osti.gov/biblio/1129004
  8. Grimminger, R. (2013). An experimental and theoretical study of the electronic spectrum of HPS a second row HNO analog. https://www.osti.gov/biblio/1124560
  9. Hu, Y. (2013). Origin of additional capacities in metal oxide lithium-ion battery electrodes. https://www.osti.gov/biblio/1117487
  10. Cao, B. (2013). Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. https://www.osti.gov/biblio/1127417
  11. Baber, A. (2013). In Situ Imaging of Cu2O under Reducing Conditions: Formation Metallic Fronts by Mass Transfer. https://www.osti.gov/biblio/1124562
  12. Matsubara, Y. (2013). Formation of n2-Coordinated Dihydropyridine-Ruthenium(II)Complexes by Hydride Transfer from Ruthenium(II)to Pyridinium Cations. https://www.osti.gov/biblio/1123649
  13. Badiei, Y. (2013). Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media. https://www.osti.gov/biblio/1124561
  14. Pal, R. (2013). S0-State Model of the Oxygen-Evolving Complex of Photosystem II. https://www.osti.gov/biblio/1126602
  15. Akimov, A. (2013). The PXYAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems. https://www.osti.gov/biblio/1123655
  16. Janssen, Y. (2013). Reciprocal Salt Flux Growth of LiFePO4 Single Crystals with Controlled Defect Concentrations. https://www.osti.gov/biblio/1124559
  17. Cheon, J. (2013). Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. https://www.osti.gov/biblio/1110767
  18. Yu, X. (2013). A Size-Dependent Sodium Storage Mechanism in Li4Ti5O12 Investigated by a Novel Characterization Technique Combining in Situ X‑ray Diffraction and Chemical Sodiation. https://www.osti.gov/biblio/1127031
  19. Liu, J. (2013). Divalent Iron Nitridophosphates: A New Class of Cathodes Materials for Li-ion Batteries. https://www.osti.gov/biblio/1122777
  20. Wang, H. (2013). 3D Honeycombed-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells. https://www.osti.gov/biblio/1117483
  21. Wang, Y. (2013). A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. https://www.osti.gov/biblio/1127026
  22. Gong, K. (2013). Metalizing carbon nanotubes with Pd-Pt core-shell nanowires enhances electrocatalytic activity and stability in the oxygen reduction reaction . https://www.osti.gov/biblio/1151407
  23. Aharmim, B. (2013). Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory B.. https://www.osti.gov/biblio/1126597
  24. Wang, L. (2013). Design of Medium Band Gap Ag-Bi-Nb-O and Ag-Bi-Ta-O Semiconductors for Driving Direct Water Splitting with Visible Light. https://www.osti.gov/biblio/1127029
  25. Johnson, P. (2013). Enhancement of Triplet Stability in Benzene by Substituents with Triple Bonds. https://www.osti.gov/biblio/1117480
  26. Chen, W. (2013). Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. https://www.osti.gov/biblio/1127033
  27. Cook, A. & Cook, A. (2013). Rapid Step Capture of Holes in Chloroform during Pulse Radiolysis. https://www.osti.gov/biblio/1129001
  28. Izquierdo, J. (2013). Development of Mg2= Ion-Selective Microelectrodes for Potentiometric Scanning Electrochemical Microscopy Monitoring of Galvanic Corrosion Processes. https://www.osti.gov/biblio/1122778
  29. Zhong, D. (2013). Diminished photoisomerization of active ruthenium water oxidation catalyst by anchoring to metal oxide electrodes. https://www.osti.gov/biblio/1126598
  30. An, W. (2013). Size and Shape Effects of Pd@Pt Core-Shell Nanoparticles: Unique Role of Surface Contraction and Local Structural Flexibility. https://www.osti.gov/biblio/1127024
  31. Mudiyanselage, K. (2013). Probing adsorption sites for CO on ceria. https://www.osti.gov/biblio/1117484
  32. Reinert, A. (2013). Synthesis and Characterization of Visible Light Absorbing (GaN)(1-x)(ZnO)(x) Semiconductor Nanorods. https://www.osti.gov/biblio/1117486
  33. Lewandowska-Andralojc, A. (2013). Enabling light-driven water oxidation via a low-energy RuIVQO intermediate. https://www.osti.gov/biblio/1110744
  34. Choi, Y. (2013). Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts. https://www.osti.gov/biblio/1127027
  35. Porosoff, M. (2013). Challenges and opportunities in correlating bimetallic model surfaces and supported catalysts. https://www.osti.gov/biblio/1132460
  36. Hemant, H. (2013). Structure of 1-Alky 1-1-methylprrolidinium Bis(trifluoromethylsulfonyl)a mide Ionic Liquids with Linear, Branched, and Cyclic Alkyl Groups. https://www.osti.gov/biblio/1127413
  37. Xiao, J. (2013). Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries. https://www.osti.gov/biblio/1109510
  38. Canonica, L. (2013). Rejection of surface background in thermal detectors: The Absurd project. https://www.osti.gov/biblio/1127415
  39. Akimov, A. (2013). Nonadiabatic Dynamics of Positive Charge during PhotocatalyticWater Splitting on GaN(10-10) Surface: Charge Localization GovernsSplitting Efficiency. https://www.osti.gov/biblio/1093205
  40. Flege, J. (2013). Growth mode and oxidation state analysis of individual cerium oxide islands on Ru(0001). https://www.osti.gov/biblio/1110743
  41. Kundu, S. (2013). Ethanol Photoreaction on RuOx/Ru-Modified TiO2(110). https://www.osti.gov/biblio/1093213
  42. Blyth, S. (2013). An apparatus for studying spallation neutrons in the Aberdeen Tunnel laboratory. https://www.osti.gov/biblio/1110739
  43. Piper, L. (2013). Elucidating the Nature of Pseudo Jahn−Teller Distortions in LixMnPO4: Combining Density Functional Theory with Soft and Hard X‑ray Spectroscopy. https://www.osti.gov/biblio/1093215
  44. Kuttiyiel, K. (2013). Pt monolayer on Au-stabilized PdNi core-shell nanoparticles for oxygen reduction reaction. https://www.osti.gov/biblio/1129005
  45. Wilson, D. (2013). Final State Distributions of the Radical Photoproducts from the UV Photooxidation of 2‑Butanone on TiO2(110). https://www.osti.gov/biblio/1093798
  46. Muckerman, J. (2013). Toward the accurate calculation of pKa vaules in water and acetonitrile. https://www.osti.gov/biblio/1110752
  47. Karthikeyan, K. (2013). Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method. https://www.osti.gov/biblio/1108584
  48. Karthikeyan, K. (2013). Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method. https://www.osti.gov/biblio/1127028
  49. Carrasco, J. (2013). Theoretical Studies of the Adsorption of CO and C on Ni(111) and Ni/ CeO2(111): Evidence of a Strong Metal−Support Interaction. https://www.osti.gov/biblio/1108583
  50. Zhang, Y. (2013). Hollow core supported Pt monolayer catalysts for oxygen reduction. https://www.osti.gov/biblio/1079385
  51. Shen, P. & White, M. (2013). Photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method. https://www.osti.gov/biblio/1117479
  52. Ertem, M. (2013). Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO2 on Pt(111). https://www.osti.gov/biblio/1088202
  53. Lee, Y. (2013). Li(Mn1/3Ni1/3Fe1/3)O2ePolyaniline hybrids as cathode active material with ultra-fast chargeedischarge capability for lithium batteries. https://www.osti.gov/biblio/1079395
  54. Ding, J. (2013). Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. https://www.osti.gov/biblio/1076945