General Lab Information

Artificial Photosynthesis banner image

2021

  • Rotundo, L.; Grills, D. C.; Gobetto, R.; Priola, E.; Nervi, C.; Polyansky, D. E.; Fujita, E., Photochemical CO2 reduction using Re(I) tricarbonyl complexes with bipyridyl-type ligands with and without 2nd coordination sphere effects. ChemPhotoChem 2021. ASAP, invited paper for a special issue “Photocatalytic Carbon Dioxide Reduction”. DOI:10.1002/cptc.202000307
  • Liu, ; Wang, W. H.; Xiong, H.; Nijamudheen, A.; Ertem, M. Z.; Wang, M.; Duan, L., Efficient iridium catalysts for formic acid dehydrogenation: Investigating the electronic effect on the elementary β-hydride elimination and hydrogen formation steps. Inorg. Chem.2021. ASAP DOI:10.1021/acs.inorgchem.0c03815.
  • Nganga, J. K.; Wolf, L. M.; Mullick, K.; Reinheimer, E.; Saucedo, C.; Wilson, M. E.; Grice, K. A.; Ertem, M. Z.; Angeles-Boza, A. M., Methane generation from CO2 with a molecular rhenium catalyst. Chem.2021. ASAP DOI:10.1021/acs.inorgchem.0c02579.
  • Yang, Y.; Ertem, M. Z.; Duan, L., Amide-based second coordination sphere promotes the dimer pathway of Mn-catalyzed CO2-to-CO reduction at low overpotential. Sci.2021. ASAP, DOI:10.1039/D0SC05679K

2020

  • Wang, L.; Shaffer, D. W.; Manbeck, G. F.; Polyansky, D. E.; Concepcion, J. J., High-Redox-Potential Chromophores for Visible-Light-Driven Water Oxidation at Low pH. ACS Catal. 2020,10 (1), 580-585. DOI:10.1021/acscatal.9b04034
  • Sampaio, R. N.; Grills, D. C.; Polyansky, D. E.; Szalda, D. J.; Fujita, E., Unexpected Roles of Triethanolamine in the Photochemical Reduction of CO2 to Formate by Ruthenium Complexes. Am. Chem. Soc. 2020,142 (5), 2413-2428. DOI:10.1021/jacs.9b11897
  • Vereshchuk, N.; Matheu, R.; Benet-Buchholz, J.; Pipelier, M.; Lebreton, J.; Didier, D. D.; Tessier, A.; Gimbert-Surinach, C.; Ertem, M. Z.; Llobet, A., Second Coordination Sphere Effects in an Evolved Ru Complex Based on Highly Adaptable Ligand Results in Rapid Water Oxidation Catalysis. Am. Chem. Soc. 2020,142 (11), 5068-5077. DOI:10.1021/jacs.9b11935
  • Ertem, M. Z.; Concepcion, J. J., Oxygen Atom Transfer as an Alternative Pathway for Oxygen- Oxygen Bond Formation. Chem. 2020,59 (9), 5966-5974. DOI:10.1021/acs.inorgchem.9b03751
  • Kanega, R.; Ertem, M. Z.; Onishi, N.; Szalda, D. J.; Fujita, E.; Himeda, Y., CO2 Hydrogenation and Formic Acid Dehydrogenation Using Ir Catalysts with Amide-Based Ligands. Organometallics 2020,39 (9), 1519-1531. Invited paper to a special issue “Organometallic Chemistry for Enabling Carbon Dioxide Utilization” Inside cover graphic. DOI:10.1021/acs.organomet.9b00809
  • Manbeck, G. F.; Polyansky, D. E.; Fujita, E., Comprehensive Mechanisms of Electrocatalytic CO2 Reduction by Ir(bip)(ppy)(CH3CN)(PF6)2. ACS Catal. 2020,10 (11), 6497-6509. DOI:10.1021/acscatal.9b04371
  • Rotundo, L.; Polyansky, D. E.; Gobetto, R.; Grills, D. C.; Fujita, E.; Nervi, C.; Manbeck, G. F., Molecular Catalysts with Intramolecular Re-O Bond for Electrochemical Reduction of Carbon Dioxide. Chem. 2020,59 (17), 12187-12199. DOI:10.1021/acs.inorgchem.0c01181
  • Grills, D. C.; Ertem, M. Z.; McKinnon, M.; Ngo, K. T.; Rochford, J., Corrigendum to "Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts" (vol 374, pg 173, 2018). Chem. Rev. 2020,420, Article 213420. DOI:10.1016/j.ccr.2020.213420
  • Souza, B. L.; Faustino, L. A.; Prado, F. S.; Sampaio, R. N.; Maia, P. I. S.; Machado, A. E. H.; Patrocinio, A. O. T., Spectroscopic characterization of a new Re(I) tricarbonyl complex with a thiosemicarbazone derivative: towards sensing and electrocatalytic applications. Dalton Trans. 2020,49 (45), 16368-16379. DOI:10.1039/D0DT01078B

2019

  • Onishi, N.; Kanega, R.; Fujita, E.; Himeda, Y., Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation Catalyzed by Iridium Complexes Bearing Pyridyl-pyrazole Ligands: Effect of an Electron-donating Substituent on the Pyrazole Ring on the Catalytic Activity and Durability. Synth. Catal. 2019,361 (2), 289-296. Invited paper for a special issue “CO2 utilization”, inside cover graphic. DOI:10.1002/adsc.201801323
  • Badiei, Y. M.; Xie, Y.; Renderos, G.; Concepcion, J. J.; Szalda, D.; Guevara, J.; Rosales, R.; Ortiz, E.; Hankins, M., Rapid identification of homogeneous O2 evolution catalysts and comparative studies of Ru(II)-carboxamides vs. Ru(II)-carboxylates in water-oxidation. Catal. 2019,369, 10-20. DOI:10.1016/j.jcat.2018.10.009
  • Hsieh, Y. C.; Betancourt, L. E.; Senanayake, S. D.; Hu, E. Y.; Zhang, Y.; Xu, W. Q.; Polyansky, D. E., Modification of CO2 Reduction Activity of Nanostructured Silver Electrocatalysts by Surface Halide Anions. ACS Appl. Energy Mater. 2019,2 (1), 102-109. DOI:10.1021/acsaem.8b01692
  • Lopes, J. M. S.; Sharma, K.; Sampaio, R. N.; Batista, A. A.; Ito, A. S.; Machado, A. E. H.; Araujo, P. T.; Neto, N. M. B., Novel insights on the vibronic transitions in free base meso-tetrapyridyl porphyrin. Acta Part A 2019,209, 274-279. DOI:10.1016/j.saa.2018.10.054
  • Matheu, R.; Ertem, M. Z.; Gimbert-Surinach, C.; Sala, X.; Llobet, A., Seven Coordinated Molecular Ruthenium-Water Oxidation Catalysts: A Coordination Chemistry Journey. Rev. 2019,119 (6), 3453-3471. DOI:10.1021/acs.chemrev.8b00537
  • McKinnon, M.; Ngo, K. T.; Sobottka, S.; Sarkar, B.; Ertem, M. Z.; Grills, D. C.; Rochford, J., Synergistic Metal-Ligand Redox Cooperativity for Electrocatalytic CO2 Reduction Promoted by a Ligand-Based Redox Couple in Mn and Re Tricarbonyl Complexes. Organometallics 2019,38 (6), 1317-1329. DOI:10.1021/acs.organomet.8b00584
  • Takasugi, S.; Miseki, Y.; Sasaki, K.; Fujita, E.; Sayama, K., Significance of an anion effect in the selective oxidation of Ce3+ to Ce4+ over a porous WO3Electrochim. Acta 2019,307, 369-374. DOI:10.1016/j.electacta.2019.03.178
  • Gonell, S.; Massey, M. D.; Moseley, I. P.; Schauer, C. K.; Muckerman, J. T.; Miller, A. J. M., The Trans Effect in Electrocatalytic CO2 Reduction: Mechanistic Studies of Asymmetric Ruthenium Pyridyl-Carbene Catalysts. Am. Chem. Soc. 2019,141 (16), 6658-6671. DOI:10.1021/jacs.9b01735
  • Lymar, S. V.; Manbeck, G. F.; Polyansky, D. E., Hydrogen bonding between hydroxylic donors and MLCT- excited Ru(bpy)2(bpz)2+ complex: implications for photoinduced electron-proton transfer. Commun. 2019,55 (42), 5870-5873. DOI:10.1039/C9CC01896D
  • Wang, L.; Polyansky, D. E.; Concepcion, J. J., Self-Assembled Bilayers as an Anchoring Strategy: Catalysts, Chromophores, and Chromophore-Catalyst Assemblies. Am. Chem. Soc. 2019,141 (20), 8020-8024. DOI:10.1021/jacs.9b01044
  • Matheu, R.; Garrido-Barros, P.; Gil-Sepulcre, M.; Ertem, M. Z.; Sala, X.; Gimbert-Surinach, C.; Llobet, A., The development of molecular water oxidation catalysts. Nature Rev. Chem. 2019,3 (5), 331-341. DOI:10.1038/s41570-019-0096-0
  • Matsubara, Y.; Grills, D. C.; Koide, Y., Thermodynamic Cycles Relevant to Hydrogenation of CO2 to Formic Acid in Water and Acetonitrile. Lett. 2019,48 (7), 627-629. DOI:10.1246/cl.190180
  • Singh, N.; Botcha, N. K.; Jones, T. M.; Ertem, M. Z.; Niklas, J.; Farquhar, E. R.; Poluektov, O. G.; Mukherjee, A., Reactivity of bio-inspired Cu(II) (N2/Py2) complexes with peroxide at room temperature. Inorg. Biochem. 2019,197, 110674. DOI:10.1016/j.jinorgbio.2019.03.014
  • McKinnon, M.; Belkina, V.; Ngo, K. T.; Ertem, M. Z.; Grills, D. C.; Rochford, J., An Investigation of Electrocatalytic CO2 Reduction Using a Manganese Tricarbonyl Biquinoline Complex. Chem. 2019,7. DOI:10.3389/fchem.2019.00628
  • Wang, D. G.; Wang, L.; Brady, M. D.; Dares, C. J.; Meyer, G. J.; Meyer, T. J.; Concepcion, J. J., Self-Assembled Chromophore-Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell. Phys. Chem. C 2019,123 (50), 30039-30045. Journal Cover Article, ACS Editors’ Choice Article. DOI:10.1021/acs.jpcc.9b07125

2018

  • Luo, S.; Nguyen-Phan, T. D.; Vovchok, D.; Waluyo, I.; Palomino, R. M.; Gamalski, A. D.; Barrio, L.; Xu, W. Q.; Polyansky, D. E.; Rodriguez, J. A.; Senanayake, S. D., Enhanced, robust light-driven H2 generation by gallium-doped titania nanoparticles. PCCP 2018,20 (3), 2104-2112. DOI:10.1039/C7CP04155A
  • Kanega, R.; Onishi, N.; Wang, L.; Murata, K.; Muckerman, J. T.; Fujita, E.; Himeda, Y., Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability. Chem. Eur. J. 2018,24 (69), 18389-18392. Invited paper to a special issue “Renewable Energy” Inside cover graphic. DOI:10.1002/chem.201800428
  • Koike, K.; Grills, D. C.; Tamaki, Y.; Fujita, E.; Okubo, K.; Yamazaki, Y.; Saigo, M.; Mukuta, T.; Onda, K.; Ishitani, O., Investigation of excited state, reductive quenching, and intramolecular electron transfer of Ru(II)-Re(I) supramolecular photocatalysts for CO2 reduction using time-resolved IR measurements. Chem. Sci. 2018,9 (11), 2961-2974. DOI:10.1039/c7sc05338j
  • Matheu, R.; Ertem, M. Z.; Pipelier, M.; Lebreton, J.; Dubreuil, D.; Benet-Buchholz, J.; Sala, X.; Tessier, A.; Llobet, A., The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation. ACS Catal. 2018,8 (3), 2039-2048. DOI:10.1021/acscatal.7b03638.
  • Shimoda, T.; Morishima, T.; Kodama, K.; Hirose, T.; Polyansky, D. E.; Manbeck, G. F.; Muckerman, J. T.; Fujita, E., Photocatalytic CO2 Reduction by Trigonal-Bipyramidal Cobalt(II) Polypyridyl Complexes: The Nature of Cobalt(I) and Cobalt(0) Complexes upon Their Reactions with CO2, CO, or Proton. Inorg. Chem. 2018,57 (9), 5486-5498. DOI:10.1021/acsinorgchem.8b00433
  • Brennaman, M. K.; Gish, M. K.; Alibabaei, L.; Norris, M. R.; Binstead, R. A.; Nayak, A.; Lapides, A. M.; Song, W. J.; Brown, R. J.; Concepcion, J. J.; Templeton, J. L.; Papanikolas, J. M.; Meyer, T. J., Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore-Catalyst Assembly on TiO2. J. Phys. Chem. C 2018,122 (24), 13017-13026. DOI:10.1021/acs.jpcc.8b04837
  • Wang, L.; Yan, D. H.; Shaffer, D. W.; Ye, X. Y.; Layne, B. H.; Concepcion, J. J.; Liu, M. Z.; Nam, C. Y., Improved Stability and Performance of Visible Photoelectrochemical Water Splitting on Solution-Processed Organic Semiconductor Thin Films by Ultrathin Metal Oxide Passivation. Chem. Mater. 2018,30 (2), 324-335. DOI:10.1021/acs.chemmater.7b02889
  • Miyase, Y.; Takasugi, S.; Iguchi, S.; Miseki, Y.; Gunji, T.; Sasaki, K.; Fujita, E.; Sayama, K., Modification of BiVO4/WO3 composite photoelectrodes with Al2O3 via chemical vapor deposition for highly efficient oxidative H2O2 production from H2O. Sustainable Energy Fuels 2018,2 (7), 1621-1629. DOI:10.1039/c8se00070k
  • Schneider, T. W.; Hren, M. T.; Ertem, M. Z.; Angeles-Boza, A. M., RuII(tpy)(bpy)Cl+-Catalyzed reduction of carbon dioxide. Mechanistic insights by carbon-13 kinetic isotope effects. Chem. Commun. 2018,54 (61), 8518-8521. DOI:10.1039/C8CC03009J
  • Wang, L.; Ertem, M. Z.; Kanega, R.; Murata, K.; Szalda, D. J.; Muckerman, J. T.; Fujita, E.; Himeda, Y., Additive-Free Ruthenium-Catalyzed Hydrogen Production from Aqueous Formaldehyde with High Efficiency and Selectivity. ACS Catal. 2018,8 (9), 8600-8605. DOI:10.1021/acscatal.8b02088
  • Xie, Y.; Shaffer, D. W.; Concepcion, J. J., O-O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis. Inorg. Chem. 2018,57 (17), 10533-10542. Journal Cover Article, ACS Editors’ Choice Article, Most-Read Article in Inorganic Chemistry in 2018. DOI:10.1021/acs.inorgchem.8b00329
  • Matheu, R.; Ghaderian, A.; Francas, L.; Chernev, P.; Ertem, M. Z.; Benet-Buchholz, J.; Batista, V. S.; Haumann, M.; Gimbert-Surinach, C.; Sala, X.; Llobet, A., Behavior of Ru-bda Water-Oxidation Catalysts in Low Oxidation States. Chem. Eur. J. 2018,24 (49), 12838-12847. DOI:10.1002/chem.201801236
  • Wang, L.; Ertem, M. Z.; Murata, K.; Muckerman, J. T.; Fujita, E.; Himeda, Y., Highly Efficient and Selective Methanol Production from Paraformaldehyde and Water at Room Temperature. ACS Catal. 2018,8 (6), 5233-5239. DOI:10.1021/acscatal.8b00321
  • Grills, D. C.; Ertem, M. Z.; McKinnon, M.; Ngo, K. T.; Rochford, J., Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coord. Chem. Rev. 2018,374, 173-217. DOI:10.1016/j.ccr.2018.05.022
  • Lymar, S. V.; Ertem, M. Z.; Polyansky, D. E., Solvent-dependent transition from concerted electron-proton to proton transfer in photoinduced reactions between phenols and polypyridine Ru complexes with proton-accepting sites. Dalton Trans. 2018,47 (44), 15917-15928. DOI:10.1039/C8DT03858A

2017

  • Suna, Y., Himeda, Y.; Fujita, E.; Muckerman, J. T.; Ertem, M. Z., Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective catalysts for CO2 Hydrogenation, ChemSusChem, 2017, 10, 4535-4543, DOI:10.1002/cssc.201701676.
  • Grills, D. C.; Polyansky, D. E., Fujita, E., Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis, ChemSusChem 2017, 10, 4359-4373, DOI:10.1002/cssc.201701559.
  • Dau, H.; Fujita, E.; Sun, L., Artificial Photosynthesis: Beyond Mimicking Nature, ChemSusChem 2017, 10, 4228-4235, DOI:10.1002/cssc.201702106.
  • Lymar, S. V.; Ertem, M. Z.; Lewandowska-Andralojc, A.; Polyansky, D. E., Role of Hydrogen Bonding in Photoinduced Electron–Proton Transfer from Phenols to a Polypyridine Ru Complex with a Proton-Accepting Ligand, J. Phys. Chem. Lett. 2017, 8, 4043-4048, DOI:10.1021/acs.jpclett.7b01614.
  • Kanega, R.; Onishi, N.; Szalda, D. J.; Ertem, M. Z.; Muckerman, J. T.; Fujita, E.; Himeda, Y., CO2 Hydrogenation catalysts with Deprotonated Picolonamide Ligands, ACS Catal. 2017, 7, 6426-6429. DOI:10.1021/acscatal.7b02280.
  • Manbeck, G. F.; Fujita, E.; Brewer, K., Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts, J. Am. Chem. Soc. 2017, 139, 7843−7854, DOI:10.1021/jacs.7b02142
  • Kumagai, H.; Hammarström, L.; Whang, D. R.; Shinohara, Y.; Martinez, J.; Karlsson, J.; Summers, P.; Windle, C. D.; Kodera, M.; Cogdell, R.; Tolod, K. R.; Apaydin, D. H.; Fujita, E.; Kibler, A.; Fan, F.; Gibson, E. A.; Usami, H.; Iwase, A.; Inoue, H.; Kudo, A.; Gust, D.; Domen, K.; Cassiola, F.; Takagi, K.; Kang, S.O.; Yamakata, A.; Li, C.; Sun, L.; Park, H.; Kang, Y. S.; Li, R.; Fonzo, F. D.; Setoyama, T.; Ishitani, O., Inorganic assembly catalysts for artificial photosynthesis: general discussion, Faraday Discuss., 2017, 198, 481-507, DOI:10.1039/c7fd90018j.
  • Wang, M,; Artero, V.; Hammarström, L.; Martinez, J.; Karlsson, J.; Gust, D.; Summers, P.; Machan, C.; Brueggeller, P.; Windle, C. D.; Kageshima, Y.; Cogdell, R.; Tolod, K. R.; Kibler, A.; Apaydin, D. H.; Fujita, E.; Ehrmaier, J.; Shima, S.; Gibson, E.; Karadas, F.; Harriman, A.; Inoue, H.; Kudo, A.; Takayama, T.; Wasielewski, M.; Cassiola, F.; Yagi, M.; Ishida, H.; Franco, F.; Kang, S. O.; Nocera, D.; Li, C.; Fonzo, F. D.; Park, H.; Sun, L.; Setoyama, T.; ;Kang, Y. S.; Ishitani, O.; Shen, J.-R; Son, H.-J.; Masaoka, S., Molecular catalysts for artificial photosynthesis: general discussion, Faraday Discuss., 2017, 198, 353-395, DOI:10.1039/c7fd90017a.
  • Artero, V.; Hammarstrom, L.; Fan, F. T.; Whang, D. R.; Martinez, J.; Harriman, A.; Noguchi, T.; Karlsson, J.; Summers, P.; Itoh, S.; Cogdell, R.; Kibler, A.; Ehrmaier, J.; Tamiaki, H.; Fujita, E.; Shima, S.; Yoshino, S.; Inoue, H.; Wasielewski, M.; Corry, T.; Gust, D.; Cassiola, F.; Ishida, H.; Takagi, K.; Kang, S. O.; Li, C.; Sun, L. C.; Park, H.; Hashimoto, H.; Amao, Y.; Son, E. J.; Kamiya, N.; Shen, J. R.; Yamaguchi, K., Biological approaches to artificial photosynthesis, fundamental processes and theoretical approaches: general discussion. Faraday Discuss. 2017, 198, 147-168. DOI:10.1039/c7fd90016c.
  • Manbeck, G. F.; Garg, K.; Shimoda, T.; Szalda, D. J.; Ertem, M. Z.; Muckerman, J. T.; Fujita, E., Hydricity, Electrochemistry, and Excited-State Chemistry of Ir Complexes for CO2 Reduction, Faraday Discuss. 2017, 198, 301-317, DOI:10.1039/c6fd00223d.
  • Wang, L.; Onishi, N.; Murata, K.; Hirose, T.; Muckerman, J. T.; Fujita, E.; Himeda, Y., Efficient Hydrogen Storage and Production using an Iridium Catalyst with an Imidazoline-Based Proton-Responsive Ligand in Water, ChemSusChem, 2017, 10, 1071-1075, DOI:10.1002/cssc.201601437.
  • Nganga, J. K; Samanamu, C. R.; Tanski, J. M.; Pacheco, C.; Saucedo, C.; Batista, V. S.; Grice, K. A.; Ertem, M. Z.; Angeles-Boza, A. M., Electrochemical Reduction of CO2 Catalyzed by Re(pyridine-oxazoline)(CO)3Cl Complexes, Inorg. Chem. 2017, 56, 3214-3226. DOI:10.1021/acs.inorgchem.6b02384.
  • Ngo, K. T.; McKinnon, M.; Mahanti, B.; Narayanan, R. P.; Grills, D. C.; Ertem, M. Z.; Rochford, J., Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes, J. Am. Chem. Soc. 2017, 139, 2604-2618. DOI:10.1021/jacs.6b08776.
  • Shaffer, David W.; Xie, Yan; Concepcion, Javier J., O-O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O-O radical coupling, Chem. Soc. Rev., 2017, 46(20), 6170-6193. DOI:10.1039/C7CS00542C.
  • Matheu, R.; Ertem, M. Z.; Gimbert-Surinach, C.; Benet-Buchholz, J.; Sala, X.; Llobet, A., Hydrogen Bonding Rescues Overpotential in Seven Coordinated Ru Water Oxidation Catalysts, J. ACS Catal. 2017, 7, 6525-6532. DOI:10.1021/acscatal.7b01860.
  • Shaffer, D. W.; Xie, Y.; Szalda, D. J.; Concepcion, J. J., Lability and Basicity of Bipyridine-Carboxylate-Phosphonate Ligand Accelerate Single-Site Water Oxidation by Ruthenium-Based Molecular Catalysts, J. Am. Chem. Soc. 2017, 139(43), 15347-15355, DOI:10.1021/jacs.7b06096
  • B. D.; Xie, Y.; Sheridan, M. V.; Wang, D.; Shaffer, D. W.; Meyer, T. J.; Concepcion, J. J., Light-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore-Catalyst Assembly, Sherman, ACS Energy Lett. 2017, 2, 124-128. DOI:10.1021/acsenergylett.6b00661.
  • Li, Y.; Kuttiyiel, K. A.; Lijun Wu, L.; Zhu, Y.; Fujita, E.; Adzic. R. R.; Sasaki, K., Enhancing Electrocatalytic Performance of Bifunctional Cobalt Manganese Oxynitride Nanocatalysts on Graphene, ChemSusChem. 2017,10, 68-73. DOI:10.1002/cssc.201601188 (with Electrochemistry group).

2016

  • Min, S.; Rasul, S.; Li, H.; Grills, D. C.; Takanabe, K.; Li, L.-J.; Huang, K.-W., Electrocatalytic Reduction of Carbon Dioxide with a Well-Defined PN3-Ru Pincer Complex, ChemPlusChem 2016, 81, 166-171. DOI:10.1002/cplu.201500474.
  • Shaffer, D. W.; Xie, Y.; Szalda, D. J.; Concepcion, J. J. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine-Dicarboxylate Complexes,Inorg. Chem. 2016, 55, 12024-12035. DOI:10.1021/acs.inorgchem.6b02193.
  • Matsubara, Y.; Grills, D. C.; Koide, Y. Experimental Insight into the Thermodynamics of the Dissolution of Electrolytes in Room-Temperature Ionic Liquids: From the Mass Action Law to the Absolute Standard Chemical Potential of a Proton, ACS Omega 2016, 1, 1393-1411. DOI:10.1021/acsomega.6b00129. S
  • Schneider, T.; Ertem, M. Z.; Muckerman, J. T.; Angeles-Boza, A. M. Mechanism of Photocatalytic Reduction of CO2 by Re(bpy)(CO)3Cl from Differences in Carbon Isotope Discrimination, ACS Catal. 2016, 6, 5473-5481. DOI: 10.1021/acscatal.5b01976.
  • Manbeck, G. F.; Fujita, E.; Concepcion, J. J. Proton Coupled Electron Transfer in a Strongly Coupled Photosystem II-Inspired Chromophore-Imidazole-Phenol Complex: Stepwise Oxidation and Concerted Reduction, J. Am. Chem. Soc. 2016,138, 11536-11549. DOI:10.1021/jacs.6b03506..
  • Xie, Y.; Shaffer, D. W.; Lewandowska-Andralojc, A.; Szalda, D. J.; Concepcion, J. J. Water oxidation by ruthenium complexes incorporating multifunctional bipyridyl diphosphonate ligands, Angew. Chem. Int. Ed., 2016, 55, 8067-8071. DOI:10.1002/anie.201601943.
  • Nguyen-Phan, T.-D.; Luo, S.; Vovchok, D.; Llorca, J.; Sallis, S.; Kattel, S.; Xu, W.; Piper, L. F. J.; Polyansky, D. E.; Senanayake, S. D.; Stacchiola, D. J. and Rodriguez, J. A. Three-Dimensional Ruthenium-Doped TiO2 Sea Urchins for Enhanced Visible-Light-Responsive H2 Production, Phys. Chem. Chem. Phys., 2016, 18, 15972-15979. DOI: 10.1039/C6CP00472E
  • Ho, J.; Ertem, M. Z. Calculating Free Energy Changes in Continuum Solvation Models J. Phys. Chem. B, 2016, 120, 1319-1329. DOI: 10.1021/acs.jpcb.6b00164
  • Duan, L.; Manbeck, G. F.; Kowalczyk, M.; Szalda, D. J.; Muckerman, J.T.; Himeda, Y.; Fujita, E. A Non-Innocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3)]2+ (6DHBP = 6,6ʹ-(OH)2bpy), Inorg. Chem. 2016, 55, 4582–4594. DOI: 10.1021/acs.inorgchem.6b00398
  • Nguyen-Phan, T.-D.; Liu, Z.; Luo, S.; Gamalski, A. D.; Vovchok, D.; Xu, W.; Stach, E. A.; Polyansky, D. E.; Fujita, E.; Rodriguez, J. A.; Senanayake, S. D. Unravelling the Hydrogenation of TiO2 and Graphene Oxide/TiO2 Composites in Real Time by In Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis, J. Phys. Chem. C. 2016, 120, 3472-3482. DOI:10.1021/acs.jpcc.5b09504
  • Nguyen-Phan, T.-D.; Luo, S.; Vovchok, D.; Llorca, J.; Graciani, J.; Sanz, J. F.; Sallis, S.; Xu, W.; Bai, J.; Piper, L. F. J.; Polyansky, D. E.; Fujita, E.; Senanayake, S. D.; Stacchiola, D. J.; Rodriguez, J. A. Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods, ACS Catal. 2016, 6, 407-417. DOI:10.1021/acscatal.5b02318
  • Onishi, N.; Ertem, M. Z.; Xu, S.; Tsurusaki, A.; Manaka, Y.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands, Catal. Sci. Tech. 2016, 6, 988-992. DOI:10.1039/c5cy01865j
  • Ertem, M. Z; Himeda, Y.; Fujita, E.; Muckerman, J. T. Interconversion of Formic Acid and Carbon Dioxide by Proton-Responsive, Half Sandwich Cp*Ir(III) Complexes: A Computational Mechanistic Investigation, ACS Catal. 2016, 6, 600-609. DOI:10.1021/acscatal.5b01663

2015

  • Manbeck, G. F.; Fujita, E., A Review of Iron and Cobalt Porphyrins, Phthalocyanines, and Related Complexes for Electrochemical and Photochemical Reduction of Carbon Dioxide, J. Porphyrins Phthalocyanines, 2015, 19, 45-64. DOI:10.1142/S1088424615300013.
  • Xu, S.; Onishi, N.; Tsurusaki, A.; Manaka, Y.; Wang, W.-H.; Muckerman, J. T. Fujita, E.; Himeda, Y. Highly Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO2 Hydrogenation, Eur. J. Inorg. Chem., 2015, 5591-5594. DOI:10.1002/ejic.201501030
  • Khan, S.; Yang, K.; Ertem, M. Z.; Batista, V. S.; Brudvig, G. W., Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18O Kinetic Isotope Effects, ACS Catal. 2015, 5, 7104-7113. DOI:10.1021/acscatal.5b01976.
  • Manbeck, G. F.; Muckerman, J. T.; Szalda, D. J.; Himeda, Y.; Fujita, E., Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO2 Reduction Catalysts, J. Phys. Chem. B, 2015, 119, 7457-7466. DOI:10.1021/jp511131x.
  • Garg, K.; Matsubara,Y.; Ertem, M. Z.; Lewandowska-Andralojc, A.; Sato, S.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Striking Differences in Properties of Geometric Isomers of [Ir(tpy)(ppy)H]+: Experimental and Computational Studies of their Hydricities, Interaction with CO2, and Photochemistry, Angew. Chem. Int. Ed. 2015, 54, 14128-14132. DOI:10.1002/anie.201506961
  • Meng, F.; Hu, E,; Zhang, L.; Sasaki, K.; Muckerman, J. T.; Fujita, E.Biomass-Derived High-Performance Tungsten-Based Electrocatalysts on Graphyne for Hydrogen Evolution, J. Mater. Chem. A, 2015, 3, 18572 – 18577. DOI:10.1039/c5ta05589
  • Matheu, R.; Ertem, M. Z.; Benet-Buchholz, J.; Coronado, E.; Batista, V. S.; Sala, X.; Llobet, A., Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex, J. Am. Chem. Soc. 2015, 137, 10786-11549. DOI:10.1021/jacs.5b06541.
  • Wang, W.-H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photochemical CO2 Reduction, Chem. Rev. 2015, 115, 12936-12973. DOI:10.1021/acs.chemrev.5b00197
  • Matsubara, Y.; Grills, D. C.; Kuwahara, Y. Thermodynamic Aspects of Electrocatalytic CO2 Reduction Using an Ionic Liquid as Solvent or Electrolyte, ACS Catal., 2015, 5, 6440-6452. DOI: 10.1021/acscatal.5b00656
  • Wang, W.-H.; Ertem, M. Z.; Xu, S.; Onishi, N.; Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Highly Robust Hydrogen Generation by New Bioinspired Ir Complexes for dehydrogenation of Formic Acid in Water, ACS Catal. 2015, 5, 5496-5504. DOI:10.1021/acscatal.5b01090
  • Lewandowska-Andralojc, A; Baine, T.; Zhao, X.: Muckerman, J. T.; Fujita, E.; Polyansky, D.E. Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex, Inorg. Chem. 2015, 54, 4310-4021. DOI:10.1021/ic5031137
  • Hsieh, Y.-C.; Senanayake, S. D.; Zhang, Y.; Xu W.; Polyansky, D. E. The effect of chloride anions on the formation and reactivity of nanoporous silver catalysts for CO2 electroreduction, ACS Catal. 2015, 5, 5349−5356. DOI: 10.1021/acscatal.5b01235
  • Ertem, M. Z.; Kharche, N.; Batista, V. S.; Hybertsen, M. S.; Tully, J. C.; Muckerman, J. T. "Photo-induced Water Oxidation at the Aqueous GaN clip Interface: Deprotonation Kinetics of the First Proton-Coupled Electron-Transfer Step," ACS Catal. 2015, 5, 2317-2323. DOI: 10.1021/acscatal.5b00054
  • Nguyen-Phan, T.-D.; Luo, S.; Liu, Z.; Pham, V. H.; Gamalski, A. D.; Xu, W.; Stach, E. A.; Dickersons, J. H.; Polyansky, D. E.; Senanayake, S. D.; Fujita, E.; Rodriguez, J. A. Striving towards noble-metal-free photo-catalytic splitting of water: The hydrogenated-graphene-TiO2 prototype, Chem. Mater., 2015, 27, 6282-6296. DOI:10.1021/acs.chemmater.5b02131
  • Kunwar, N.; Sharma, S.; Benjamin, S.; Polyansky, D. E., Artificial Photosynthesis. In Solar Energy Conversion and Storage. Photochemical Modes, Suresh C. Ameta; Ameta, R., Eds. CRC Press: Boca Raton, 2015; 187-218.
  • Musat, R. M.; Crowell, R. A.; Polyansky, D. E.; Thomas, M. F.; Wishart, J. F.; Katsumura, Y.; Takahashi, K.* Ultrafast transient absorption spectrum of the room temperature ionic liquid1-hexyl-3-methylimidazoliumbromide: Confounding effects of photo-degradation, Radiat. Phys. Chem. 2015, 117, 78–82.
  • Manbeck, G. F.; Fujita, E. A Review of Iron and Cobalt Porphyrins, Phthalocyanines, and Related Complexes for Electrochemical and Photochemical Reduction of Carbon Dioxide, J. Porphyrins Phthalocyanines 2015, 19, 45-64. DOI:10.1142/S1088424615300013
  • Fujita, E.; Goldman, A. S. Preface for Small-Molecule Activation: Carbon-containing Fuels, Inorg. Chem. 2015, 54, 5040-5042. DOI:10.1021/acs.inorgchem.5b00790
  • Onishi, N.; Xu, S.; Manaka, Y.; Suna, Y.; Wang, W.-H.; Muckerman, J.; Fujita, E.; Himeda, Y., CO2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-responsive Ligand, Inorg. Chem. 2015, 54, 5114-5123. DOI:10.1021/ic502904q.
  • Manbeck, G. F.; Muckerman, J. T.; Szalda, D. J.; Himeda, Y.; Fujita, E. Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO2 Reduction Catalysts, J. Phys. Chem. B 2015, 119, 7457-7466, John R. Miller and Marshall D. Newton Festschrift. DOI:101021/jp511131x.
  • Luo, S.; Nguyen-Phan, T.-D.; Johnston-Peck, A.; Barrio, L.; Sallis, S.; Arena, D.; Kundu, S.; Xu, W.; Piper, L.; Stach, E.; Polyansky, D. E.; Fujita, E.; Rodriguez, J.; Senanayake, S. Hierarchical Heterogeneity at the CeOx -TiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures, J. Phys. Chem. C 2015, 119, 2669-2679. DOI:10.1021/jp511986n
  • Concepcion, J. J.; Zhong, D. K.; Szalda, D. J.; Muckerman, J.T.; Fujita, E. Mechanism of water oxidation by [Ru(bda)(L)2]: the return of the “blue dimer”, Chem. Commun. 2015, 51, 4105-4108. DOI:10.1039/C4CC07968J

2014

  • Polyansky, D. E. “Electrocatalysts for Carbon Dioxide Reduction” In Encyclopedia of Applied Electrochemistry; Kreysa G., Ota K., Savinell R., Eds.; Springer Science: New York, 2014; Vol. 1, p 431-436.
  • Grills, D. C.; Matsubara, Y.; Kuwahara, Y.; Golisz, S. R.; Kurtz, D. A.; Mello, B. A.  "Electrocatalytic CO2 Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential" J. Phys. Chem. Lett. 2014, 5, 2033-2038. DOI:10.1021/jz500759x
  • Chen, W.-F.; Schneider, J. M.; Sasaki, S.; Wang, C.-H.; Schneider, S.; Iyer, S.; Iyer, S; Chu, Y.; Muckerman, J. T.; Fujita, E.  "Tungsten Carbide-Nitride on Graphene Nanoplatelets as a Durable Hydrogen Evolution Electrocatalyst" ChemSusChem 2014, 7, 2414-2418. DOI:10.1002/cssc.201402454
  • Bhattacharjee, A.; Chavaroy-Kerlidou, M.; Dempsey, J. L.; Gray, H. B.; Fujita, E.; Muckerman, J. T.; Fontecave, M.; Artero, V.; Arantes, G. M.; Field, M. T.  "Theoretical Modeling of Low Energy Electronic Transitions in Reduced Cobaloximes" ChemPhysChem 2014, 15, 2951-2958. DOI:10.1002/cphc.201402398.
  • Suna, Y.; Ertem, M. Z.; Wang, W.-H.; Kambayashi, H.; Manaka, Y.; Muckerman, J. T.; Fujita, E.; Himeda, Y. "Positional Effects of Hydroxy Groups on Catalytic Activity of Proton-Responsive Half-Sandwich Cp*Iridium(III) Complexes" Organometallics 2014, 33, 6519-6530.
  • Estes, D. P.; Grills, D. C.; Norton, J. R. "The Reaction of Cobaloximes with Hydrogen: Products and Thermodynamics" J. Am. Chem. Soc. 2014, 136, 17362-17365. DOI:10.1021/ja508200g
  • Kharche, N.; Muckerman, J. T.; Hybertsen, M. S. "First-Principles Approach for Aqueous Semiconductor Interfaces" Phys. Rev. Lett. 2014, 113, 176802. DOI:10.1103/PhysRevLett.113.176802
  • Polyansky, D. E.; Hurst, J. K.; Lymar, S. V.  "Application of Pulse Radiolysis to Mechanistic Investigation of Water Oxidation Catalysis" Eur. J. Inorg. Chem. 2014, 619-634. DOI:10.1002/ejic.201300753
  • Shkrob, I. A.; Marin, T. W.; Wishart, J. F.; Grills, D. C. "Radiation Stability of Cations in Ionic Liquids. 5. Task-Specific Ionic Liquids Consisting of Biocompatible Cations and the Puzzle of Radiation Hypersensitivity" J. Phys. Chem. B, 2014, 118, 10477-10492. DOI:10.1021/jp5049716
  • Muckerman, J. T.; Kowalczyk, M.; Badiei, Y. M.; Polyansky, D. E.; Concepcion, J. J.; Zong, R.; Thummel, R. P.; Fujita, E. "New Water Oxidation Chemistry of a Seven-Coordinate Ruthenium Complex with a Tetradentate Polypyridyl Ligand" Inorg. Chem. 2014, 53, 6904-6913. DOI:10.1021/ic500709h
  • Kharche, N.; Hybertsen, M. S.; Muckerman, J. T.  "Computational Investigation of Structural and Electronic Properties of Aqueous Interfaces of GaN, ZnO, and GaN/ZnO Alloy", Phys. Chem. Chem. Phys. 2014, 16, 12057-12066. DOI: 10.1039/c4cp00486h
  • Grills, D.C.; Farrington, J. A.; Layne, B. H.; Lymar, S. V.; Mello, B. A.; Preses, J. M.; Wishart, J. F. "Mechanism of the Formation of a Mn-Based CO2 Reduction Catalyst Revealed by Pulse Radiolysis with Time-Resolved Infrared Detection" J. Am. Chem. Soc. 2014, 136, 5563–5566, DOI:10.1021/ja501051s.
  • Wang, W.-H.;  Xu, S.;  Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. "Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight " ChemSusChem 2014, 7, 1976-1983. DOI:10.1002/cssc.201301414
  • Lewandowska-Andralojc, A.; Grills, D. C.; Zhang, J.; Bullock, R. M.; Miyazawa, A.; Kawanishi, Y.; Fujita, E. “Kinetic and Mechanistic Studies of Carbon-to-Metal Hydrogen Atom Transfer Involving Os-Centered Radicals: Evidence for Tunneling”  J. Am. Chem. Soc. 2014, 136, 3572–3578, DOI:10.1021/ja4123076.
  • Lewandowska-Andralojc, A.; Polyansky, D. E.; Wang, C.-H.; Wang, W.-H.; Himeda, Y.; Fujita, E. "Efficient Water Oxidation with Organometallic Iridium Complexes as Precatalysts at Neutral pH" Phys. Chem. Chem. Phys. 2014, 16, 11976-11987. DOI: 10.1039/C3CP55101F.
  • Matsubara, Y.; Hightower, S. H.; Chen, J.; Grills, D. C.; Polyansky, D. E.; Muckerman, J. T.; Tanaka, K.; Fujita, E.  "Reactivity of a fac-ReCl(α-diimine)(CO)3 complex with an NAD+ model ligand toward CO2 reduction" Chem. Commun. 2014, 50, 728-730, DOI:10.1039/C3CC47699E.
  • Manaka, Y.; Wang, W.-H.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita. E.; Himeda, Y.  Efficient H2 generation from formic acid using azole complexes in water, Catal. Sci. Technol. 2014, 4, 34-37, DOI: 10.1039/c3cy00830d.
  • Wada, T.; Tanaka, K.; Muckerman, J. T.; Fujita, E. "Water Oxidation by Ruthenium Catalysts Having Non-innocent Ligands", in Molecular Water Oxidation Catalysis; Llobet, A., Ed.; Wiley: 2014, p 77-111. DOI:10.1002/9781118698648.ch5
  • Wang, W.-H.; Himeda, Y.; Muckerman, J. T.; Fujita, E. "Interconversion of CO2/H2 and formic acid under mild conditions in water: Ligand design for effective catalysis" Advances in Inorganic Chemistry, Vol. 66, CO2 Chemistry, Eds. Van Eldik, R.; Aresta, M. Burlington, Elsevier, 2014, 190-220. DOI:10.1016/B978-0-12-420221-4.00006-8

2013

  • Zamadar, M.; Asaoka, S.; Grills, D. C.; Miller, J. R. “Giant Infrared Absorption Bands of Electrons and Holes in Conjugated Molecules”  Nature Commun. 2013, 4:2818, http://dx.doi.org/10.1038/ncomms3818.
  • Lewandowska-Andralojc, A.; Polyansky, D. E. “Mechanism of the Quenching of the Tris(bipyridine)ruthenium(II) Emission by Persulfate: Implications for Photo-Induced Oxidation Reactions” J. Phys Chem. A 2013, 117, 10311–10319, DOI: 10.1021/jp407573d.
  • Kawanami, H.; Grills, D. C.; Ishizaka, T.; Chatterjee, M.; Suzuki, A. “Photocatalytic Reduction of CO2 under Supercritical CO2 Conditions: Effect of Pressure, Temperature, and Solvent on Catalytic Efficiency”, J. CO2 Util. 2013, 3-4, 93-97, http://dx.doi.org/10.1016/j.jcou.2013.07.008.
  • Badiei, Y. M.; Wang, W.-H.; Hull. J. F.; Szalda, D. J.; Muckerman, J. T.; Himeda. Y.; Fujita, E. "Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media", Inorg. Chem. 2013, 52, 8845-8850, DOI: 10.1021/ic401023w.
  • Chen, W.-F.; Muckerman, J. T.; Fujita, E. "Recent Developments in Transition Metal Carbides and Nitrides as Hydrogen Evolution Electrocatalysts", Chem. Commun. 2013, 49, 8896-8909, 10.1039/C3CC44076A.
  • Zhong, D. K.; Zhao, S.; Polyansky, D. E.; Fujita, E.  “Photoisomerization of Active Ruthenium Water Oxidation Catalyst Inhibited by Immobilization onto Metal Oxide Electrodes”, J. Catal. 2013, 307, 140–147, 10.1016/j.jcat.2013.07.018.
  • Johnston-Peck, A. C.; Senanayake, S. D.; Plata, J. J.; Kundu, S.; Xu, W.; Barrio, L.; Graciani, J.; Fdez. Sanz, J.; Navarro, R. M.; Fierro, J. L. G.; Stach, E. A.; Rodriguez, J. A. “Nature of the Mixed-Oxide Interface in Ceria–Titania Catalysts: Clusters, Chains, and Nanoparticles” J. Phys. Chem. C., 2013, 117, 14463-14471, DOI: 10.1021/jp3125268.
  • Kundu, S.; Vidal, A.; Nadeem, A.; Senanayake, S.; Idriss, H.; Liu, P.; Rodriguez, J. A.; Stacchiola, D. “Ethanol Photo Reaction on RuOx/Ru Modified TiO2(110)” J. Phys. Chem. C. 2013, 117, 11149-11158, DOI: 10.1021/jp4015367.
  • Schneider J.; Fujita, E. “Carbon Dioxide Capture and Activation,” in Comprehensive Inorganic Chemistry II, Vol. 8, Eds. Poeppelmeier K.; Reedijk, J. Elsevier, Oxford, England, 2013, pp 475-504.
  • Wang, L.; Kang, W.; Hybertsen, M.; Maeda, K.; Domen, K.; Khalifah, P. “Design of Medium Band Gap Ag-Bi-Nb-O and Ag-Bi-Ta-O Semiconductors for Driving Direct Water Splitting with Visible Light”, Inorg. Chem. 2013, 52, 9192–9205, DOI: 10.1021/ic400089s.
  • Chen, W.-F.; Wang, C.-H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. "Highly Active and Durable Nanostructured Molybdenum Carbide Electrocatalysts for Hydrogen Production," Energy Environ. Sci. 2013, 6, 943-951, DOI: 10.1039/C2EE23891H.
  • Doherty, M. D.; Grills, D. C.; Huang, K.-W.; Muckerman, J. T.; Polyansky, D.; Fujita, E. “Kinetics and Thermodynamics of Small Molecule Binding to Pincer-PCP Rhodium(I) Complexes,” Inorg. Chem. 2013, 52, 4160-4172, DOI: 10.1021/ic300672g.
  • Zhao, H. C.; Mello, M.; Fu, B.-L.; Chowdury, H.; Szalda, D. J.; Tsai, M.-K.; Grills, D. C.; Rochford, J. “Investigation of Monomeric versus Dimeric fac-Rhenium(I) Tricarbonyl Systems Containing the Noninnocent 8-Oxyquinolate Ligand”, Organometallics 2013, 32, 1832-1841, DOI: 10.1021/om301250v.
  • Wang, W.-H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. "Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO2 Catalyzed by Bio-Inspired Proton-Responsive Iridium(III) Complexes", ACS Catal. 2013, 3, 856-860, DOI: 10.1021/cs400172j.
  • Chen, W. –F.; Iyer, S.; Iyer, S.; Sasaki, K., Wang, C. -H.;  Zhu, Y.; Muckerman, J. T.; Fujita, E.  “Biomass-derived Electrocatalytic Composites for Hydrogen Evolution”, Energy Environ. Sci. 2013, 6, 1818-1826, DOI: 10.1039/C3EE40596F.
  • Wang, W.-H.; Hull, J. F.; Muckerman, J. T.; Fujita, E.; Himeda, Y. “Hydroxy-substituted aromatic N-heterocycles: Versatile ligands in organometallic catalysis” New J. Chem. 2013, 37, 1860-1866, DOI: 10.1039/c3nj41146j.
  • Appel, A. M.; Bocarsly, A. B.; Bercaw, J. E.; Dobbek, H.; Dupuis, M.; DuBois, D. L.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C.; Portis, A.; Ragsdale, S.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Spitler, M.; Stack,R. J.; Thauer, R. K.; Waldrop, G. L. “Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2”, Chem. Rev. 2013, 113, 6621-6658, DOI:10.1021/cr300463y.
  • Muckerman, J. T.; Skone, J. H.; Ning, M.; Wasada-Tsutsui, Y. "Toward the Accurate Calculation of pKa Values in Water and Acetonitrile," Biochim. Biophys. Acta - Bioenergetics 2013, 1827, 882-891, DOI:10.1016/j.bbabio.2012.11.004.
  • Fujita, E.; Muckerman, J. T.; Himeda, Y. “Interconversion of CO2 and Formic Acid by Bio-Inspired Ir Complexes with Pendent Bases,” Biochim. Biophys. Acta - Bioenergetics 2013, 1827, 1031-1038, DOI:10.1016/j.bbabio.2012.11.004.
  • Hayashi, Y.; Szalda, D. J.; Grills, D. C.; Hanson, J.; Huang, K. -W.; Muckerman, J. T.; Fujita, E. “Isolation and X-ray Structures of Four Rh(PCP) Complexes Including a Rh(I) Dioxygen Complex with a Short O–O Bond,” Polyhedron (Michelle Millar Special Issue) 2013, 58, 106-114, DOI:10.1016/j.poly.2012.10.006.
  • Lewandowska-Andralojc, A.; Polyansky, D. E.;  Zong, R.;  Thummel, R. P.;  Fujita, E. Enabling Light-Driven Water Oxidation via a Low Energy RuIV=O Intermediate, PCCP 2013, 15, 14058-14068, DOI: 10.1039/C3CP52038B.
  • Wang, W.-H.; Suna, Y.; Himeda, Y.; Muckerman, J. T.; Fujita, E. “Functionalized Cyclopentadienyl Rhodium(III) Bipyridine Complexes: Synthesis, Characterization, and Catalytic Application in Hydrogenation of Ketones”, Dalton Trans. 2013, 42, 9628-9636, DOI: 10.1039/c3dt50445j.
  • Akimov, A. V.; Muckerman, J. T.; Prezhdo, O. V. “Non-adiabatic Dynamics of Positive Charge during Photocatalytic Water Splitting on GaN(10-10) Surface: Charge Localization Governs Splitting Efficiency”, J. Am. Chem. Soc. 2013, 135, 8682-8691, DOI: 10.1021/ja4029395.
  • Badiei, Y. M.; Polyansky, D. E.; Muckerman, J. T.; Szalda, D. J.; Haberdar, R.;  Zong, R.; Thummel, R. P.; Fujita, E. "Water Oxidation with Mononuclear Ruthenium (II) Polypyridine Complexes Involving a Direct RuIV=O Pathway in Neutral and Alkaline Media", Inorg. Chem. 2013,  52, 8845–8850, DOI: 10.1021/ic401023w.
  • Reinert, A. A.; Payne, C.; Wang, L.; Ciston, J.; Zhu, Y.; Khalifah, P. “Synthesis and Characterization of Visible Light Absorbing (GaN)1-x(ZnO)x Semiconductor Nanorods”, Inorg. Chem. 2013, 52, 8389-8398, DOI: 10.1021/ic400011n.

2012

  • Schneider, J.; Jia, H.;  Kobiro, K.; Cabelli, D.; Muckerman, J. T.; Fujita, E. “Nickel(II) Macrocycles: Highly Efficient Electrocatalysts for the Selective Reduction of CO2 to CO,” Energy Environ. Sci. 2012, 5, 9502-9510, DOI: 10.1039/c2ee22528j.
  • Matsubara, Y.; Fujita, E.; Doherty, M. D.; Muckerman, J. T.; Creutz, C. “Thermodynamic and Kinetic Hydricity of Ruthenium(II) Hydride Complexes,” J. Am. Chem. Soc. 2012, 134, 15743-15757, DOI:10.1021/ja302937q.
  • Zidki, T.; Zhang, L.; Shafirovich,V.; Lymar, S. V. “Water Oxidation Catalyzed by Cobalt(II) Adsorbed on Silica Nanoparticles” J. Am. Chem. Soc. 2012, 134, 14275-14278, DOI: 10.1021/ja304030y.
  • Kundu, S.; Ciston, J.; Senanayake, S. D.; Arena, D.; Fujita, E.; Stacchiola, D.; Rodriguez, J. A. “Exploring the Structural and Electronic Properties of Pt/Ceria-Modified TiO2 and its Photo-Catalytic Activity for Water Splitting under Visible Light,” J. Phys. Chem. C 2012, 116, 14062-14070, DOI: 10.1021/jp304475x.
  • Kundu, S.; Vidal, A.B.; Yang, F.; Ramírez, P.J.; Senanayake, S.D.; Stacchiola, D.;  Evans, J.; Liu, P.; Rodriguez, J.A. “Special Chemical Properties of RuOx Nanowires in RuOx/TiO2(110): Dissociation of Water and Hydrogen Production,” J. Phys. Chem. C 2012, 116, 4767–4773, DOI: 10.1021/jp2117054.
  • Muckerman, J. T.; Achord, P.; Creutz, C. A.; Polyansky, D. E.; Fujita, E. “Calculation of Thermodynamic Hydricities and the Design of Hydride Donors for CO2 Reduction,” Proc. Nat. Acad. Sci. USA 2012, 109, 15657-15662, DOI: 10.1073/pnas.1201026109.
  • Lacina, D.; Yang, L.; Chopra, I.; Muckerman, J. T.; Chabal, Y.; Graetz, J. "Investigation of LiAlH4–THF formation by direct hydrogenation of catalyzed Al and LiH," Phys. Chem. Chem. Phys. 2012, 14, 6569-6576, DOI: 10.1039/C2CP40493A.
  • Malingowski, A. C.; Stephens, P. W.; Huq, A.; Huang, Q.; Khalid, S.; Khalifah, P. G. “Substitutional Mechanism of Ni into the Wide Band Gap Semiconductor InTaO4 and its Implications for Water Splitting Activity in the Wolframite Structure Type,” Inorg. Chem. 2012, 51, 6096–6103, DOI: 10.1021/ic202715c.
  • Chen, W.-F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. “Hydrogen-Evolution Catalysts Based on Non-Noble Metal NiMo Nitride Nanosheets,” Angew. Chem. Int. Ed. 2012, 51, 6131-6135, DOI: 10.1002/anie.201200699.
  • Wang, W.-H.; Hull, J. F.; Muckerman, J. T.; Fujita, E.; Himeda, Y. “Second-coordination-sphere and electronic effects enhance iridium(III)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure,” Energy Environ. Sci. 2012, 5, 7923-7926, DOI: 10.1039/C2EE21888G.
  • Wang, W.-H.; Hull, J. F.; Muckerman, J. T.; Fujita, E.; Hirose, T.; Himeda, Y.  “Highly Efficient D2 Generation by Dehydrogenation of Formic Acid in D2O via H+/D+ Exchange on Iridium Catalyst. Application to Synthesis of Deuterated Compounds by Transfer Deuterogenation,” Chem. Eur. J. 2012, 18, 9397-9404, DOI: 10.1002/chem.201200576.
  • Agarwal, J.; Sanders, B. C.; Fujita, E.; Schaefer III, H. F.; Harrop, T. C.; Muckerman, J. T. “Exploring the Intermediates of Photochemical CO2 Reduction: Reaction of Re(dmb)(CO)3COOH with CO2,” Chem. Commun. 2012, 48, 6797-6799, DOI: 10.1039/c2cc32288a.
  • Al-Mahboob, A.; Muller, E.; Karim, A.; Muckerman, J. T.; Ciobanu, C. V.; Sutter, P. "Site-Dependent Activity of Atomic Ti Catalysts in Al-Based Hydrogen Storage Materials," J. Am. Chem. Soc. 2012, 134, 10381-10384, DOI: 10.1021/ja304203y.
  • Agarwal, J.; Fujita, E.; Schaefer, H. F. III; Muckerman, J. T. “Mechanisms for CO Production from CO2 Using Reduced Rhenium Tricarbonyl Catalysts,” J. Am. Chem. Soc. 2012, 134, 5180-5186, DOI: 10.1021/ja2105834.
  • Hull, J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. “Reversible Hydrogen Storage using CO2 and a Proton-Switchable Iridium Catalyst in Aqueous Media under Mild Temperatures and Pressures,” Nature Chemistry 2012, 4, 383-388, DOI: 10.1038/NCHEM.1295.
  • Schneider, J.; Jia, H.; Muckerman, J. T.; Fujita, E. “Thermodynamics and Kinetics of CO2, CO and H+ Binding to a Metal Centre of CO2 Reduction Catalysts,” Chem. Soc. Rev. 2012, 41, 2036-2051, DOI: 10.1039/c1cs15278e.
  • Cohen, B.. W.; Polyansky, D. E.; Achord, A.; Cabelli, D.; Muckerman, J. T.; Tanaka, K.; Thummel, R. P.; Zong, R.; Fujita, E. “Steric Effect for Proton, Hydrogen-Atom, and Hydride Transfer Reactions with Geometric Isomers of NADH-Model Ruthenium Complexes,” Faraday Discuss. 2012, 155, 129-144, DOI: 10.1039/c1fd00094b.

2011

  • Muckerman, J. T.; Fujita, E. “Theoretical Studies of the Mechanism of Catalytic Hydrogen Production by a Cobaloxime,” Chem. Commun. 2011, 47, 12456-12458, DOI: 10.1039/c1cc15330g.
  • Boyer, J. L.; Polyansky, D. E.; Szalda, D. J.; Zong, R.; Thummel, R. P.; Fujita, E. “Effects of a Proximal Base on Water Oxidation and Proton Reduction Catalyzed by Geometric Isomers of [Ru(tpy)(pynap)(OH2)]2+,” Angew. Chem. Int. Ed. 2011, 50, 12600-12604, DOI: 10.1002/anie.201102648.
  • Yang, F.; Kundu, S.; Vidal, A.B.; Graciani, J.; Ramírez, P.J.; Senanayake, S.D.; Stacchiola, D.;  Evans, J.; Liu, P.; Fdez Sanz, J.; Rodriguez, J.A. “Determining the Behaviour of RuOx Nanoparticles in Mixed-Metal Oxides: Structural and Catalytic Properties of RuO2/TiO2(110) Surfaces,” Angew. Chem. Int. Ed. 2011, 50, 10198-10202, DOI:10.1002/anie.201103798.
  • Polyansky, D. E.; Muckerman, J. T.; Rochford, J.; Zong, R.; Thummel. R. P.; Fujita, E. “Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates,” J. Am. Chem. Soc. 2011, 133, 14649-14665, DOI: 10.1021/ja203249e.
  • Li, L.; Muckerman, J. T.; Hybertsen, M. S.; Allen, P. B. “Phase Diagram, Structure and Electronic Properties of (Ga1-xZnx)(N1-xOx) Solid Solution from DFT-Based Simulations,” Phys. Rev. B 2011, 83, 134202, DOI: 10.1103/PhysRevB.83.134202.
  • Small, Y. A.; DuBois, D. L.; Fujita, E.; Muckerman, J. T. “Proton Management as a Design Principle for Hydrogenase-Inspired Catalysts,” Energy Environ. Sci. 2011, 4, 3008-3020, DOI: 10.1039/c1ee01170g.
  • Wada, T.;  Muckerman, J. T.; Fujita, E.; Tanaka, K. “Substituents Dependent Capability of Bis(ruthenium-dioxolene-terpyridine) Complexes Toward Water Oxidation,” Dalton Trans. 2011, 40, 2225-2233, DOI: 10.1039/c0dt00977f.
  • Fujita, E.; Muckerman, J. T.; Domen, K. “A Current Perspective on Photocatalysis (Editorial),” ChemSusChem. 2011, 4, 155-157, DOI: 10.1002/cssc.201100040.

2010

  • Creutz, C.; Chou, M. H.; Hou, H.; Muckerman, J. T. “Hydride Ion Transfer from Ruthenium(II) Complexes in Water: Kinetics and Mechanism,” Inorg. Chem. 2010, 49, 9809-9822, DOI: 10.1021/ic101124q.
  • Chen, J.; Szalda, D. J.; Fujita, E.; Creutz, C. “Iron(II) and Ruthenium(II) Complexes Containing P, N, and H Ligands: Structure, Spectroscopy, Electrochemistry and Reactivity,” Inorg. Chem. 2010, 49, 9380-9391, DOI: 10.1021/ic101077t.
  • Shen, X.; Small, Y, A. Wang, J.; Allen, P. B.; Fernandez-Serra, M. V.; Hybertsen, M. S.; Muckerman, J. T.  “Photocatalytic Water Oxidation at the GaN (1010) – Water Interface,” J. Phys. Chem. C 2010, 114, 13695-13704, DOI: 10.1021/jp102958s.
  • Cohen, B. W.; Polyansky, D. E.; Zong, R.; Zhou, H.; Ouk, T.; Cabelli, D.; Thummel, R. P.; Fujita, E. “Differences of pH-Dependent Mechanisms on Generation of Hydride Donors using Ru(II) Complexes Containing Geometric Isomers of NAD+ Model Ligands: NMR and Radiolysis Studies in Aqueous Solution,” Inorg. Chem. 2010, 49, 8034-8044, DOI: 10.1021/ic101098v.
  • Grills, D. C; Fujita, E. “New Directions for the Photocatalytic Reduction of CO2: Supramolecular, scCO2 or Biphasic Ionic Liquid-scCO2 Systems,” J. Phys. Chem. Lett. 2010, 1, 2709-2718, DOI: 10.1021/jz1010237.
  • Doherty, M. D.; Grills, D. C.; Muckerman, J. T.; Polyansky, D. E.; Fujita, E. “Toward More Efficient Photochemical CO2 Reduction: Use of scCO2 or Photogenerated Hydrides,”  Coord. Chem. Rev. 2010, 254, 2472-2482, DOI: 10.1016/j.ccr.2009.12.013.
  • Concepcion, J. J.; Tsai, M.-K.; Muckerman, J. T.; Meyer, T. J.  “Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts,” J. Am. Chem. Soc. 2010, 132, 1545-1557, DOI: 10.1021/ja904906v.
  • Chen, H.; Wang, L.; Bai, J.; Hanson, J. C.; Warren, J. B.; Muckerman, J. T.; Fujita, E.;  Rodriguez, J. A. “In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts,” J. Phys. Chem. C 2010, 114, 1809-1814, DOI: 10.1021/jp909649n.
  • Rochford, J.; Tsai, M.-K.; Szalda, D. J.; Boyer, J. L.; Muckerman, J. T.; Fujita, E., “Oxidation State Characterization of Ruthenium 2-Iminoquinone Complexes through Experimental and Theoretical Studies,” Inorg. Chem. 2010, 49, 860-869, DOI: 10.1021/ic901194k.
  • Grills, D.C.; Cook. A. R.; Fujita, E.; George, M. W.; Miller, J. R.; Preses, J. M.; Wishart, J. F. “Application of External-Cavity Quantum Cascade Infrared Lasers to Nanosecond Time-Resolved Infrared Spectroscopy of Condensed-Phase Samples Following Pulse Radiolysis,” Appl. Spec. 2010, 64, 563-570 (cover article), https://www.s-a-s.org/journal/viewer/abstract/10166.
  • Boyer, J. L.; Rochford, J.; Tsai, M.-K.; Muckerman, J. T.; Fujita, E., “Ruthenium Complexes with Non-innocent Ligands: Electron Distribution and Implications for Catalysis,” Coord. Chem. Rev. 2010, 254, 309-330, DOI: 10.1016/j.ccr.2009.09.006.

2009

  • Muckerman, J. T.; Fujita, E. “Artificial Photosynthesis” in Chemical Evolution II: From Origins of Life to Modern Society. ACS Symposium Series; Chapter 15, pp 283-312, Zaikowski, L.; Friedrich, J. M., Eds.; American Chemical Society: Washington, D.C., 2009.
  • Morris, A. J.; Meyer, G. J.; Fujita, E., “Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels,” Acc. Chem. Res. 2009, 42, 1983-1994.
  • Fukushima, T.; Fujita, E.; Muckerman, J. T.; Polyansky, D. E.; Wada, T.; Tanaka, K., Photochemical Stereospecific Hydrogenation of a Ru Complex with an NAD+/NADH-Type Ligand,” Inorg. Chem. 2009, 48, 11510-11512.
  • Achord, P.; Fujita, E.; Muckerman, J. T.; Scott, B.; Fortman, G. C.; Temprado, M.; Xiaochen, C.; Captain, B.; Isrow, D.; Weir, J. J.; McDonough, J. E.; Hoff, C. D. “Experimental and Computational Studies of Binding of Dinitrogen, Nitriles, Azides, Diazoalkanes, Pyridines and Pyrazines to M(PR3)2(CO)3 (M = Mo, W; R = Me, iPr),” Inorg. Chem. 2009, 48, 7891-7904.
  • Tsai, M.-K.; Rochford, J.; Polyansky, D. E.; Wada, T.; Tanaka, K.; Fujita, E.; Muckerman, J. T. “Characterization of Redox States of Ru(OH2)(Q)(tpy)2+ (Q = 3,5-di-tert-butyl-1,2-benzoquinone, tpy = 2,2':6',2''-terpyridine) and Related Species through Experimental and Theoretical Studies,” Inorg. Chem. 2009, 48, 4372-4383.
  • Doherty, M. D.; Grills, D. C.; Fujita, E. “Synthesis of Fluorinated ReCl(4,4′-R2-2,2′-bipyridine)(CO)3 Complexes and Their Photophysical Characterization in CH3CN and Supercritical CO2,” Inorg. Chem. 2009, 48, 1796-1798.
  • Petroski, J.; Chou, M. H.; Creutz, C. “The Coordination Chemistry of Gold Surfaces: Formation and Far-Infrared Spectra of Alkanethiolate-Capped Gold Nanoparticles,” J. Organomet. Chem. 2009, 694, 1138-1143.
  • Creutz, C.; Chou, M. H. “Hydricities of d6 Metal Hydride Complexes in Water” J. Am. Chem. Soc. 2009, 113, 3650-3659.
  • Shen, X.; Allen, P. B.; Hybertsen, M. S.; Muckerman, J. T. “Water Adsorption on the GaN (10EQ \O(1,¯)0) Non-polar Surface,” J. Phys. Chem. C 2009, 113, 3365-3368.
  • Chen, H.; Wen, W.; Wang, Q.; Hanson, J. C.; Muckerman, J. T.; Fujita, E.; Frenkel, A.; Rodriguez, J. A. “Preparation of (Ga1-xZnx)(N1-xOx) Photocatalysts from the Reaction of NH3 with Ga2O3/ZnO and ZnGa2O4: In situ Time-Resolved XRD and XAFS Studies,” J. Phys. Chem. C 2009, 113, 3650-3659.

2008

  • Chaudhuri, S.; Rangan, S.; Veyan, J. F.; Muckerman, J. T.; Chabal, Y. J. "Formation and bonding of alane clusters on Al(111) surfaces studied by infrared absorption spectroscopy and theoretical modeling," J. Am. Chem. Soc. 2008, 130, 10576-10587.
  • Polyansky, D. E.; Cabelli, D.; Muckerman, J. T.; Fukushima, T.; Tanaka, K.; Fujita, E. “Mechanism of Hydride Donor Generation Using a Ru(II) Complex Containing an NAD+ Model Ligand: Pulse and Steady-State Radiolysis Studies,” Inorg. Chem. 2008, 47, 3958-3968 (cover article).
  • Creutz, C.; Chou, M. H., “Binding of Catechols to Mononuclear Titanium(IV) and to 1- and 5-nm TiO2 Nanoparticles,” Inorg. Chem. 2008, 47, 3509-3514.
  • Fujita, E.; Muckerman, J. T. “Catalytic Reactions Using Transition-Metal-Complexes Toward Solar Fuel Generation,” (Invited Review Article) Bull. Jpn. Soc. Coord. Chem. 2008, 51, 41-54.
  • Huang, K.-W.; Grills, D. C.; Han, J. H.; Szalda, D. J.; Fujita, E. “Selective Decarbonylation by a Pincer PCP-Rhodium(I) Complex,” Inorg. Chim. Acta 2008, 361, 3327-3331.
  • Muckerman, J. T.; Polyansky, D. E.; Wada, T.; Tanaka, K.; Fujita, E. “Water Oxidation by a Ruthenium Complex with Non-Innocent Quinone Ligands: Possible Formation of an O–O Bond at a Low Oxidation State of the Metal. Forum ‘on Making Oxygen,” Inorg. Chem. 2008, 47, 1787-1802.
  • Cheng, T. Y.; Szalda, D. J.; Hanson, J. C.; Muckerman, J. T.; Bullock, R. M. "Four-electron-donor hemilabile eta3-PPh3 ligand that binds through a C = C bond rather than an agostic C-H interaction, and displacement of the C = C by methyl iodide or water," Organometallics 2008, 27, 3785-3795.

2007

  • Creutz, C.; Chou, M. H. "Rapid Transfer of Hydride Ion from a Ruthenium Complex to C1 Species in Water," J. Am Chem. Soc. 2007, 129, 10108 – 10109.
  • Rimmer, R. D.; Grills, D. C.; Fan, H.; Ford, P. C.; Caulton, K. G. “Metal-Dependent Reactivity Differences for Transients Formed by Flash Photolysis of (PNP)M(CO), M = Co and Rh” J. Am. Chem. Soc. 2007, 129, 15430-15431, http://dx.doi.org/10.1021/ja076357l.
  • Wilson, A. D.; Shoemaker, R. K.; Miedaner, A.; Muckerman, J. T.; DuBois, D. L.; DuBois, M. R. "Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases," Proc. Nat. Acad. Sci. USA 2007, 104, 6951-6956.
  • Miyasato, Y.; Wada, T.; Muckerman, J. T.; Fujita, E.; Tanaka, K. “Generation of Ru(II)-Semiquinone-Anilino Radical through Deprotonation of Ru(III)-Semiquinone-Anilido Complex,” Angew. Chem. Int. Ed. 2007, 46, 5728-5730.
  • Muckerman, J. T.; Fujita, E.; Hoff, C. D.; Kubas, G. J. “Theoretical Investigation of the Binding of Small Molecules and the Intramolecular Agostic Interaction at Tungsten Centers with Carbonyl and Phosphine Ligands,” J. Phys. Chem. B, 2007, 111, 6815-6821.
  • Creutz, C. “Nonadiabatic, Intramolecular Electron Transfer from Ruthenium(II) to Cobalt(III) Complexes,” J. Phys. Chem. B 2007, 111, 6713-6717.
  • Polyansky, D. E.; Cabelli, D.; Muckerman, J. T.; Fujita, E.; Koizumi, T.; Fukushima, T.; Wada, T.; Tanaka, K. ” Photochemical and Radiolytic Production of Organic Hydride Donor with Ru(II) Complex Containing an NAD+ Model Ligand,” Angew. Chem. Int. Ed. 2007, 46, 4169-4172.
  • Chen, H.; Nambu, A.; Wen, W.; Graciani, J.; Zhong, Z.; Hanson, J. C.; Fujita, E.; Rodríguez, J. A. “Reaction of NH3 with Titania: N-doping of the Oxide and TiN formation.”  J. Phys. Chem. B 2007, 111, 1366-1372.
  • Chaudhuri, S.; Muckerman, J. T. "Catalytic activity of Ti-doped NaH nanoclusters towards hydrogenation of terminal alkenes," Molec. Simulation 2007, 33, 919-924.
  • Huang, K.-W.; Han, J. H.; Musgrave, C. B.; Fujita, E. “Carbon Dioxide Reduction by Pincer Rhodium η2-Dihydrogen Complexes: Hydrogen Binding Modes and Mechanistic Studies by Density Functional Theory Calculations.” Organometallics 2007, 26, 508-513.
  • Shinozaki, K; Hayashi, Y; Brunschwig, B. S.; Fujita, E. “Characterization of transient species and products in photochemical reactions of Re(dmb)(CO)3 Et with and without CO2,”  Res. Chem. Intermed. 2007, 33, 27-36.

2006

  • Grills, D. C.; van Eldik, R.; Muckerman, J. T.; Fujita, E. “Direct Measurements of Rate Constants and Activation Volumes for the Binding of H2, D2, N2, C2H4 and CH3CN to W(CO)3(PCy3)2: Theoretical and Experimental Studies with Time-Resolved Step-Scan FTIR and UV-vis Spectroscopy.” J. Am. Chem. Soc. 2006, 128, 15728-15741.
  • Chaudhuri, S.; Graetz, J.; Ignatov, A.; Reilly, J. J.; Muckerman, J. T. "Understanding the role of Ti in reversible hydrogen storage as sodium alanate: A combined experimental and density functional theoretical approach," J. Am. Chem. Soc. 2006, 128, 11404-11415.
  • Creutz, C.; "Interfacial charge transfer absorption: 3. Application to semiconductor-molecule assemblies," Brunschwig, B. S.; Sutin, N. J. Phys. Chem. B 2006, 110, 25181-25190.
  • Nambu, A.; Graciani, J.; Rodriguez, J. A.: Wu, Q.; Fujita, E.; Fernandez-Sanz, J. “N-doping of TiO2(110): Photoemission and Density Functional Studies,” J. Chem. Phys. 2006, 125, 094706.
  • Creutz, C.; Ford, P. C.; Meyer, T. J. "Henry Taube: Inorganic Chemist Extraordinaire," Inorg. Chem. 2006, 45,  7059 – 7068.
  • Grills, D. C.; Huang, K.-W.; Muckerman, J. T.; Fujita, E. “Kinetic Studies of the Photoinduced Formation of Transition Metal-Dinitrogen Complexes Using Time-Resolved Infrared and UV-vis Spectroscopy.” Coord. Chem. Rev. 2006, 250, 1681-1695.
  • Fujita, E.; Brunschwig,B. S.; Creutz, C.; Muckerman, J. T.; Sutin, N.; Szalda, D. J.; van Eldik, R. “Transition State Characterization for the Reversible Binding of Dihydrogen to Bis(2,2'-bipyridine)rhodium(I) from Temperature- and Pressure-Dependent Experimental and Theoretical Studies.” Inorg. Chem. 2006, 45, 1595 - 1603.
  • Creutz, C.; Brunschwig, B. S.; Sutin, N. "Interfacial charge transfer absorption: Application to metal-molecule assemblies," Chem. Phys. 2006, 324, 244-258.
  • Wilson, A. D.; Newell, R. H.; McNevin, M. J.; Muckerman, J. T.; DuBois, M. R.; DuBois, D. L. "Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays," J. Am. Chem. Soc. 2006, 128, 358-366.
  • Graetz, J.; Chaudhuri, S.; Lee, Y.; Vogt, T.; Muckerman, J. T.; Reilly, J. J. "Pressure-induced structural and electronic changes in alpha-AlH3," Phys. Rev. B 2006, 74.